| 1 |
684 |
jeremybenn |
/* Statement Analysis and Transformation for Vectorization
|
| 2 |
|
|
Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
|
| 3 |
|
|
Free Software Foundation, Inc.
|
| 4 |
|
|
Contributed by Dorit Naishlos <dorit@il.ibm.com>
|
| 5 |
|
|
and Ira Rosen <irar@il.ibm.com>
|
| 6 |
|
|
|
| 7 |
|
|
This file is part of GCC.
|
| 8 |
|
|
|
| 9 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
| 10 |
|
|
the terms of the GNU General Public License as published by the Free
|
| 11 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
| 12 |
|
|
version.
|
| 13 |
|
|
|
| 14 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
| 15 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
| 16 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
| 17 |
|
|
for more details.
|
| 18 |
|
|
|
| 19 |
|
|
You should have received a copy of the GNU General Public License
|
| 20 |
|
|
along with GCC; see the file COPYING3. If not see
|
| 21 |
|
|
<http://www.gnu.org/licenses/>. */
|
| 22 |
|
|
|
| 23 |
|
|
#include "config.h"
|
| 24 |
|
|
#include "system.h"
|
| 25 |
|
|
#include "coretypes.h"
|
| 26 |
|
|
#include "tm.h"
|
| 27 |
|
|
#include "ggc.h"
|
| 28 |
|
|
#include "tree.h"
|
| 29 |
|
|
#include "target.h"
|
| 30 |
|
|
#include "basic-block.h"
|
| 31 |
|
|
#include "tree-pretty-print.h"
|
| 32 |
|
|
#include "gimple-pretty-print.h"
|
| 33 |
|
|
#include "tree-flow.h"
|
| 34 |
|
|
#include "tree-dump.h"
|
| 35 |
|
|
#include "cfgloop.h"
|
| 36 |
|
|
#include "cfglayout.h"
|
| 37 |
|
|
#include "expr.h"
|
| 38 |
|
|
#include "recog.h"
|
| 39 |
|
|
#include "optabs.h"
|
| 40 |
|
|
#include "diagnostic-core.h"
|
| 41 |
|
|
#include "tree-vectorizer.h"
|
| 42 |
|
|
#include "langhooks.h"
|
| 43 |
|
|
|
| 44 |
|
|
|
| 45 |
|
|
/* Return a variable of type ELEM_TYPE[NELEMS]. */
|
| 46 |
|
|
|
| 47 |
|
|
static tree
|
| 48 |
|
|
create_vector_array (tree elem_type, unsigned HOST_WIDE_INT nelems)
|
| 49 |
|
|
{
|
| 50 |
|
|
return create_tmp_var (build_array_type_nelts (elem_type, nelems),
|
| 51 |
|
|
"vect_array");
|
| 52 |
|
|
}
|
| 53 |
|
|
|
| 54 |
|
|
/* ARRAY is an array of vectors created by create_vector_array.
|
| 55 |
|
|
Return an SSA_NAME for the vector in index N. The reference
|
| 56 |
|
|
is part of the vectorization of STMT and the vector is associated
|
| 57 |
|
|
with scalar destination SCALAR_DEST. */
|
| 58 |
|
|
|
| 59 |
|
|
static tree
|
| 60 |
|
|
read_vector_array (gimple stmt, gimple_stmt_iterator *gsi, tree scalar_dest,
|
| 61 |
|
|
tree array, unsigned HOST_WIDE_INT n)
|
| 62 |
|
|
{
|
| 63 |
|
|
tree vect_type, vect, vect_name, array_ref;
|
| 64 |
|
|
gimple new_stmt;
|
| 65 |
|
|
|
| 66 |
|
|
gcc_assert (TREE_CODE (TREE_TYPE (array)) == ARRAY_TYPE);
|
| 67 |
|
|
vect_type = TREE_TYPE (TREE_TYPE (array));
|
| 68 |
|
|
vect = vect_create_destination_var (scalar_dest, vect_type);
|
| 69 |
|
|
array_ref = build4 (ARRAY_REF, vect_type, array,
|
| 70 |
|
|
build_int_cst (size_type_node, n),
|
| 71 |
|
|
NULL_TREE, NULL_TREE);
|
| 72 |
|
|
|
| 73 |
|
|
new_stmt = gimple_build_assign (vect, array_ref);
|
| 74 |
|
|
vect_name = make_ssa_name (vect, new_stmt);
|
| 75 |
|
|
gimple_assign_set_lhs (new_stmt, vect_name);
|
| 76 |
|
|
vect_finish_stmt_generation (stmt, new_stmt, gsi);
|
| 77 |
|
|
mark_symbols_for_renaming (new_stmt);
|
| 78 |
|
|
|
| 79 |
|
|
return vect_name;
|
| 80 |
|
|
}
|
| 81 |
|
|
|
| 82 |
|
|
/* ARRAY is an array of vectors created by create_vector_array.
|
| 83 |
|
|
Emit code to store SSA_NAME VECT in index N of the array.
|
| 84 |
|
|
The store is part of the vectorization of STMT. */
|
| 85 |
|
|
|
| 86 |
|
|
static void
|
| 87 |
|
|
write_vector_array (gimple stmt, gimple_stmt_iterator *gsi, tree vect,
|
| 88 |
|
|
tree array, unsigned HOST_WIDE_INT n)
|
| 89 |
|
|
{
|
| 90 |
|
|
tree array_ref;
|
| 91 |
|
|
gimple new_stmt;
|
| 92 |
|
|
|
| 93 |
|
|
array_ref = build4 (ARRAY_REF, TREE_TYPE (vect), array,
|
| 94 |
|
|
build_int_cst (size_type_node, n),
|
| 95 |
|
|
NULL_TREE, NULL_TREE);
|
| 96 |
|
|
|
| 97 |
|
|
new_stmt = gimple_build_assign (array_ref, vect);
|
| 98 |
|
|
vect_finish_stmt_generation (stmt, new_stmt, gsi);
|
| 99 |
|
|
mark_symbols_for_renaming (new_stmt);
|
| 100 |
|
|
}
|
| 101 |
|
|
|
| 102 |
|
|
/* PTR is a pointer to an array of type TYPE. Return a representation
|
| 103 |
|
|
of *PTR. The memory reference replaces those in FIRST_DR
|
| 104 |
|
|
(and its group). */
|
| 105 |
|
|
|
| 106 |
|
|
static tree
|
| 107 |
|
|
create_array_ref (tree type, tree ptr, struct data_reference *first_dr)
|
| 108 |
|
|
{
|
| 109 |
|
|
struct ptr_info_def *pi;
|
| 110 |
|
|
tree mem_ref, alias_ptr_type;
|
| 111 |
|
|
|
| 112 |
|
|
alias_ptr_type = reference_alias_ptr_type (DR_REF (first_dr));
|
| 113 |
|
|
mem_ref = build2 (MEM_REF, type, ptr, build_int_cst (alias_ptr_type, 0));
|
| 114 |
|
|
/* Arrays have the same alignment as their type. */
|
| 115 |
|
|
pi = get_ptr_info (ptr);
|
| 116 |
|
|
pi->align = TYPE_ALIGN_UNIT (type);
|
| 117 |
|
|
pi->misalign = 0;
|
| 118 |
|
|
return mem_ref;
|
| 119 |
|
|
}
|
| 120 |
|
|
|
| 121 |
|
|
/* Utility functions used by vect_mark_stmts_to_be_vectorized. */
|
| 122 |
|
|
|
| 123 |
|
|
/* Function vect_mark_relevant.
|
| 124 |
|
|
|
| 125 |
|
|
Mark STMT as "relevant for vectorization" and add it to WORKLIST. */
|
| 126 |
|
|
|
| 127 |
|
|
static void
|
| 128 |
|
|
vect_mark_relevant (VEC(gimple,heap) **worklist, gimple stmt,
|
| 129 |
|
|
enum vect_relevant relevant, bool live_p,
|
| 130 |
|
|
bool used_in_pattern)
|
| 131 |
|
|
{
|
| 132 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
| 133 |
|
|
enum vect_relevant save_relevant = STMT_VINFO_RELEVANT (stmt_info);
|
| 134 |
|
|
bool save_live_p = STMT_VINFO_LIVE_P (stmt_info);
|
| 135 |
|
|
gimple pattern_stmt;
|
| 136 |
|
|
|
| 137 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 138 |
|
|
fprintf (vect_dump, "mark relevant %d, live %d.", relevant, live_p);
|
| 139 |
|
|
|
| 140 |
|
|
/* If this stmt is an original stmt in a pattern, we might need to mark its
|
| 141 |
|
|
related pattern stmt instead of the original stmt. However, such stmts
|
| 142 |
|
|
may have their own uses that are not in any pattern, in such cases the
|
| 143 |
|
|
stmt itself should be marked. */
|
| 144 |
|
|
if (STMT_VINFO_IN_PATTERN_P (stmt_info))
|
| 145 |
|
|
{
|
| 146 |
|
|
bool found = false;
|
| 147 |
|
|
if (!used_in_pattern)
|
| 148 |
|
|
{
|
| 149 |
|
|
imm_use_iterator imm_iter;
|
| 150 |
|
|
use_operand_p use_p;
|
| 151 |
|
|
gimple use_stmt;
|
| 152 |
|
|
tree lhs;
|
| 153 |
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
| 154 |
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
| 155 |
|
|
|
| 156 |
|
|
if (is_gimple_assign (stmt))
|
| 157 |
|
|
lhs = gimple_assign_lhs (stmt);
|
| 158 |
|
|
else
|
| 159 |
|
|
lhs = gimple_call_lhs (stmt);
|
| 160 |
|
|
|
| 161 |
|
|
/* This use is out of pattern use, if LHS has other uses that are
|
| 162 |
|
|
pattern uses, we should mark the stmt itself, and not the pattern
|
| 163 |
|
|
stmt. */
|
| 164 |
|
|
if (TREE_CODE (lhs) == SSA_NAME)
|
| 165 |
|
|
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
|
| 166 |
|
|
{
|
| 167 |
|
|
if (is_gimple_debug (USE_STMT (use_p)))
|
| 168 |
|
|
continue;
|
| 169 |
|
|
use_stmt = USE_STMT (use_p);
|
| 170 |
|
|
|
| 171 |
|
|
if (!flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
|
| 172 |
|
|
continue;
|
| 173 |
|
|
|
| 174 |
|
|
if (vinfo_for_stmt (use_stmt)
|
| 175 |
|
|
&& STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (use_stmt)))
|
| 176 |
|
|
{
|
| 177 |
|
|
found = true;
|
| 178 |
|
|
break;
|
| 179 |
|
|
}
|
| 180 |
|
|
}
|
| 181 |
|
|
}
|
| 182 |
|
|
|
| 183 |
|
|
if (!found)
|
| 184 |
|
|
{
|
| 185 |
|
|
/* This is the last stmt in a sequence that was detected as a
|
| 186 |
|
|
pattern that can potentially be vectorized. Don't mark the stmt
|
| 187 |
|
|
as relevant/live because it's not going to be vectorized.
|
| 188 |
|
|
Instead mark the pattern-stmt that replaces it. */
|
| 189 |
|
|
|
| 190 |
|
|
pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
|
| 191 |
|
|
|
| 192 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 193 |
|
|
fprintf (vect_dump, "last stmt in pattern. don't mark"
|
| 194 |
|
|
" relevant/live.");
|
| 195 |
|
|
stmt_info = vinfo_for_stmt (pattern_stmt);
|
| 196 |
|
|
gcc_assert (STMT_VINFO_RELATED_STMT (stmt_info) == stmt);
|
| 197 |
|
|
save_relevant = STMT_VINFO_RELEVANT (stmt_info);
|
| 198 |
|
|
save_live_p = STMT_VINFO_LIVE_P (stmt_info);
|
| 199 |
|
|
stmt = pattern_stmt;
|
| 200 |
|
|
}
|
| 201 |
|
|
}
|
| 202 |
|
|
|
| 203 |
|
|
STMT_VINFO_LIVE_P (stmt_info) |= live_p;
|
| 204 |
|
|
if (relevant > STMT_VINFO_RELEVANT (stmt_info))
|
| 205 |
|
|
STMT_VINFO_RELEVANT (stmt_info) = relevant;
|
| 206 |
|
|
|
| 207 |
|
|
if (STMT_VINFO_RELEVANT (stmt_info) == save_relevant
|
| 208 |
|
|
&& STMT_VINFO_LIVE_P (stmt_info) == save_live_p)
|
| 209 |
|
|
{
|
| 210 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 211 |
|
|
fprintf (vect_dump, "already marked relevant/live.");
|
| 212 |
|
|
return;
|
| 213 |
|
|
}
|
| 214 |
|
|
|
| 215 |
|
|
VEC_safe_push (gimple, heap, *worklist, stmt);
|
| 216 |
|
|
}
|
| 217 |
|
|
|
| 218 |
|
|
|
| 219 |
|
|
/* Function vect_stmt_relevant_p.
|
| 220 |
|
|
|
| 221 |
|
|
Return true if STMT in loop that is represented by LOOP_VINFO is
|
| 222 |
|
|
"relevant for vectorization".
|
| 223 |
|
|
|
| 224 |
|
|
A stmt is considered "relevant for vectorization" if:
|
| 225 |
|
|
- it has uses outside the loop.
|
| 226 |
|
|
- it has vdefs (it alters memory).
|
| 227 |
|
|
- control stmts in the loop (except for the exit condition).
|
| 228 |
|
|
|
| 229 |
|
|
CHECKME: what other side effects would the vectorizer allow? */
|
| 230 |
|
|
|
| 231 |
|
|
static bool
|
| 232 |
|
|
vect_stmt_relevant_p (gimple stmt, loop_vec_info loop_vinfo,
|
| 233 |
|
|
enum vect_relevant *relevant, bool *live_p)
|
| 234 |
|
|
{
|
| 235 |
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
| 236 |
|
|
ssa_op_iter op_iter;
|
| 237 |
|
|
imm_use_iterator imm_iter;
|
| 238 |
|
|
use_operand_p use_p;
|
| 239 |
|
|
def_operand_p def_p;
|
| 240 |
|
|
|
| 241 |
|
|
*relevant = vect_unused_in_scope;
|
| 242 |
|
|
*live_p = false;
|
| 243 |
|
|
|
| 244 |
|
|
/* cond stmt other than loop exit cond. */
|
| 245 |
|
|
if (is_ctrl_stmt (stmt)
|
| 246 |
|
|
&& STMT_VINFO_TYPE (vinfo_for_stmt (stmt))
|
| 247 |
|
|
!= loop_exit_ctrl_vec_info_type)
|
| 248 |
|
|
*relevant = vect_used_in_scope;
|
| 249 |
|
|
|
| 250 |
|
|
/* changing memory. */
|
| 251 |
|
|
if (gimple_code (stmt) != GIMPLE_PHI)
|
| 252 |
|
|
if (gimple_vdef (stmt))
|
| 253 |
|
|
{
|
| 254 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 255 |
|
|
fprintf (vect_dump, "vec_stmt_relevant_p: stmt has vdefs.");
|
| 256 |
|
|
*relevant = vect_used_in_scope;
|
| 257 |
|
|
}
|
| 258 |
|
|
|
| 259 |
|
|
/* uses outside the loop. */
|
| 260 |
|
|
FOR_EACH_PHI_OR_STMT_DEF (def_p, stmt, op_iter, SSA_OP_DEF)
|
| 261 |
|
|
{
|
| 262 |
|
|
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, DEF_FROM_PTR (def_p))
|
| 263 |
|
|
{
|
| 264 |
|
|
basic_block bb = gimple_bb (USE_STMT (use_p));
|
| 265 |
|
|
if (!flow_bb_inside_loop_p (loop, bb))
|
| 266 |
|
|
{
|
| 267 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 268 |
|
|
fprintf (vect_dump, "vec_stmt_relevant_p: used out of loop.");
|
| 269 |
|
|
|
| 270 |
|
|
if (is_gimple_debug (USE_STMT (use_p)))
|
| 271 |
|
|
continue;
|
| 272 |
|
|
|
| 273 |
|
|
/* We expect all such uses to be in the loop exit phis
|
| 274 |
|
|
(because of loop closed form) */
|
| 275 |
|
|
gcc_assert (gimple_code (USE_STMT (use_p)) == GIMPLE_PHI);
|
| 276 |
|
|
gcc_assert (bb == single_exit (loop)->dest);
|
| 277 |
|
|
|
| 278 |
|
|
*live_p = true;
|
| 279 |
|
|
}
|
| 280 |
|
|
}
|
| 281 |
|
|
}
|
| 282 |
|
|
|
| 283 |
|
|
return (*live_p || *relevant);
|
| 284 |
|
|
}
|
| 285 |
|
|
|
| 286 |
|
|
|
| 287 |
|
|
/* Function exist_non_indexing_operands_for_use_p
|
| 288 |
|
|
|
| 289 |
|
|
USE is one of the uses attached to STMT. Check if USE is
|
| 290 |
|
|
used in STMT for anything other than indexing an array. */
|
| 291 |
|
|
|
| 292 |
|
|
static bool
|
| 293 |
|
|
exist_non_indexing_operands_for_use_p (tree use, gimple stmt)
|
| 294 |
|
|
{
|
| 295 |
|
|
tree operand;
|
| 296 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
| 297 |
|
|
|
| 298 |
|
|
/* USE corresponds to some operand in STMT. If there is no data
|
| 299 |
|
|
reference in STMT, then any operand that corresponds to USE
|
| 300 |
|
|
is not indexing an array. */
|
| 301 |
|
|
if (!STMT_VINFO_DATA_REF (stmt_info))
|
| 302 |
|
|
return true;
|
| 303 |
|
|
|
| 304 |
|
|
/* STMT has a data_ref. FORNOW this means that its of one of
|
| 305 |
|
|
the following forms:
|
| 306 |
|
|
-1- ARRAY_REF = var
|
| 307 |
|
|
-2- var = ARRAY_REF
|
| 308 |
|
|
(This should have been verified in analyze_data_refs).
|
| 309 |
|
|
|
| 310 |
|
|
'var' in the second case corresponds to a def, not a use,
|
| 311 |
|
|
so USE cannot correspond to any operands that are not used
|
| 312 |
|
|
for array indexing.
|
| 313 |
|
|
|
| 314 |
|
|
Therefore, all we need to check is if STMT falls into the
|
| 315 |
|
|
first case, and whether var corresponds to USE. */
|
| 316 |
|
|
|
| 317 |
|
|
if (!gimple_assign_copy_p (stmt))
|
| 318 |
|
|
return false;
|
| 319 |
|
|
if (TREE_CODE (gimple_assign_lhs (stmt)) == SSA_NAME)
|
| 320 |
|
|
return false;
|
| 321 |
|
|
operand = gimple_assign_rhs1 (stmt);
|
| 322 |
|
|
if (TREE_CODE (operand) != SSA_NAME)
|
| 323 |
|
|
return false;
|
| 324 |
|
|
|
| 325 |
|
|
if (operand == use)
|
| 326 |
|
|
return true;
|
| 327 |
|
|
|
| 328 |
|
|
return false;
|
| 329 |
|
|
}
|
| 330 |
|
|
|
| 331 |
|
|
|
| 332 |
|
|
/*
|
| 333 |
|
|
Function process_use.
|
| 334 |
|
|
|
| 335 |
|
|
Inputs:
|
| 336 |
|
|
- a USE in STMT in a loop represented by LOOP_VINFO
|
| 337 |
|
|
- LIVE_P, RELEVANT - enum values to be set in the STMT_VINFO of the stmt
|
| 338 |
|
|
that defined USE. This is done by calling mark_relevant and passing it
|
| 339 |
|
|
the WORKLIST (to add DEF_STMT to the WORKLIST in case it is relevant).
|
| 340 |
|
|
- FORCE is true if exist_non_indexing_operands_for_use_p check shouldn't
|
| 341 |
|
|
be performed.
|
| 342 |
|
|
|
| 343 |
|
|
Outputs:
|
| 344 |
|
|
Generally, LIVE_P and RELEVANT are used to define the liveness and
|
| 345 |
|
|
relevance info of the DEF_STMT of this USE:
|
| 346 |
|
|
STMT_VINFO_LIVE_P (DEF_STMT_info) <-- live_p
|
| 347 |
|
|
STMT_VINFO_RELEVANT (DEF_STMT_info) <-- relevant
|
| 348 |
|
|
Exceptions:
|
| 349 |
|
|
- case 1: If USE is used only for address computations (e.g. array indexing),
|
| 350 |
|
|
which does not need to be directly vectorized, then the liveness/relevance
|
| 351 |
|
|
of the respective DEF_STMT is left unchanged.
|
| 352 |
|
|
- case 2: If STMT is a reduction phi and DEF_STMT is a reduction stmt, we
|
| 353 |
|
|
skip DEF_STMT cause it had already been processed.
|
| 354 |
|
|
- case 3: If DEF_STMT and STMT are in different nests, then "relevant" will
|
| 355 |
|
|
be modified accordingly.
|
| 356 |
|
|
|
| 357 |
|
|
Return true if everything is as expected. Return false otherwise. */
|
| 358 |
|
|
|
| 359 |
|
|
static bool
|
| 360 |
|
|
process_use (gimple stmt, tree use, loop_vec_info loop_vinfo, bool live_p,
|
| 361 |
|
|
enum vect_relevant relevant, VEC(gimple,heap) **worklist,
|
| 362 |
|
|
bool force)
|
| 363 |
|
|
{
|
| 364 |
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
| 365 |
|
|
stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
|
| 366 |
|
|
stmt_vec_info dstmt_vinfo;
|
| 367 |
|
|
basic_block bb, def_bb;
|
| 368 |
|
|
tree def;
|
| 369 |
|
|
gimple def_stmt;
|
| 370 |
|
|
enum vect_def_type dt;
|
| 371 |
|
|
|
| 372 |
|
|
/* case 1: we are only interested in uses that need to be vectorized. Uses
|
| 373 |
|
|
that are used for address computation are not considered relevant. */
|
| 374 |
|
|
if (!force && !exist_non_indexing_operands_for_use_p (use, stmt))
|
| 375 |
|
|
return true;
|
| 376 |
|
|
|
| 377 |
|
|
if (!vect_is_simple_use (use, stmt, loop_vinfo, NULL, &def_stmt, &def, &dt))
|
| 378 |
|
|
{
|
| 379 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
| 380 |
|
|
fprintf (vect_dump, "not vectorized: unsupported use in stmt.");
|
| 381 |
|
|
return false;
|
| 382 |
|
|
}
|
| 383 |
|
|
|
| 384 |
|
|
if (!def_stmt || gimple_nop_p (def_stmt))
|
| 385 |
|
|
return true;
|
| 386 |
|
|
|
| 387 |
|
|
def_bb = gimple_bb (def_stmt);
|
| 388 |
|
|
if (!flow_bb_inside_loop_p (loop, def_bb))
|
| 389 |
|
|
{
|
| 390 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 391 |
|
|
fprintf (vect_dump, "def_stmt is out of loop.");
|
| 392 |
|
|
return true;
|
| 393 |
|
|
}
|
| 394 |
|
|
|
| 395 |
|
|
/* case 2: A reduction phi (STMT) defined by a reduction stmt (DEF_STMT).
|
| 396 |
|
|
DEF_STMT must have already been processed, because this should be the
|
| 397 |
|
|
only way that STMT, which is a reduction-phi, was put in the worklist,
|
| 398 |
|
|
as there should be no other uses for DEF_STMT in the loop. So we just
|
| 399 |
|
|
check that everything is as expected, and we are done. */
|
| 400 |
|
|
dstmt_vinfo = vinfo_for_stmt (def_stmt);
|
| 401 |
|
|
bb = gimple_bb (stmt);
|
| 402 |
|
|
if (gimple_code (stmt) == GIMPLE_PHI
|
| 403 |
|
|
&& STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_reduction_def
|
| 404 |
|
|
&& gimple_code (def_stmt) != GIMPLE_PHI
|
| 405 |
|
|
&& STMT_VINFO_DEF_TYPE (dstmt_vinfo) == vect_reduction_def
|
| 406 |
|
|
&& bb->loop_father == def_bb->loop_father)
|
| 407 |
|
|
{
|
| 408 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 409 |
|
|
fprintf (vect_dump, "reduc-stmt defining reduc-phi in the same nest.");
|
| 410 |
|
|
if (STMT_VINFO_IN_PATTERN_P (dstmt_vinfo))
|
| 411 |
|
|
dstmt_vinfo = vinfo_for_stmt (STMT_VINFO_RELATED_STMT (dstmt_vinfo));
|
| 412 |
|
|
gcc_assert (STMT_VINFO_RELEVANT (dstmt_vinfo) < vect_used_by_reduction);
|
| 413 |
|
|
gcc_assert (STMT_VINFO_LIVE_P (dstmt_vinfo)
|
| 414 |
|
|
|| STMT_VINFO_RELEVANT (dstmt_vinfo) > vect_unused_in_scope);
|
| 415 |
|
|
return true;
|
| 416 |
|
|
}
|
| 417 |
|
|
|
| 418 |
|
|
/* case 3a: outer-loop stmt defining an inner-loop stmt:
|
| 419 |
|
|
outer-loop-header-bb:
|
| 420 |
|
|
d = def_stmt
|
| 421 |
|
|
inner-loop:
|
| 422 |
|
|
stmt # use (d)
|
| 423 |
|
|
outer-loop-tail-bb:
|
| 424 |
|
|
... */
|
| 425 |
|
|
if (flow_loop_nested_p (def_bb->loop_father, bb->loop_father))
|
| 426 |
|
|
{
|
| 427 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 428 |
|
|
fprintf (vect_dump, "outer-loop def-stmt defining inner-loop stmt.");
|
| 429 |
|
|
|
| 430 |
|
|
switch (relevant)
|
| 431 |
|
|
{
|
| 432 |
|
|
case vect_unused_in_scope:
|
| 433 |
|
|
relevant = (STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_nested_cycle) ?
|
| 434 |
|
|
vect_used_in_scope : vect_unused_in_scope;
|
| 435 |
|
|
break;
|
| 436 |
|
|
|
| 437 |
|
|
case vect_used_in_outer_by_reduction:
|
| 438 |
|
|
gcc_assert (STMT_VINFO_DEF_TYPE (stmt_vinfo) != vect_reduction_def);
|
| 439 |
|
|
relevant = vect_used_by_reduction;
|
| 440 |
|
|
break;
|
| 441 |
|
|
|
| 442 |
|
|
case vect_used_in_outer:
|
| 443 |
|
|
gcc_assert (STMT_VINFO_DEF_TYPE (stmt_vinfo) != vect_reduction_def);
|
| 444 |
|
|
relevant = vect_used_in_scope;
|
| 445 |
|
|
break;
|
| 446 |
|
|
|
| 447 |
|
|
case vect_used_in_scope:
|
| 448 |
|
|
break;
|
| 449 |
|
|
|
| 450 |
|
|
default:
|
| 451 |
|
|
gcc_unreachable ();
|
| 452 |
|
|
}
|
| 453 |
|
|
}
|
| 454 |
|
|
|
| 455 |
|
|
/* case 3b: inner-loop stmt defining an outer-loop stmt:
|
| 456 |
|
|
outer-loop-header-bb:
|
| 457 |
|
|
...
|
| 458 |
|
|
inner-loop:
|
| 459 |
|
|
d = def_stmt
|
| 460 |
|
|
outer-loop-tail-bb (or outer-loop-exit-bb in double reduction):
|
| 461 |
|
|
stmt # use (d) */
|
| 462 |
|
|
else if (flow_loop_nested_p (bb->loop_father, def_bb->loop_father))
|
| 463 |
|
|
{
|
| 464 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 465 |
|
|
fprintf (vect_dump, "inner-loop def-stmt defining outer-loop stmt.");
|
| 466 |
|
|
|
| 467 |
|
|
switch (relevant)
|
| 468 |
|
|
{
|
| 469 |
|
|
case vect_unused_in_scope:
|
| 470 |
|
|
relevant = (STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_reduction_def
|
| 471 |
|
|
|| STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_double_reduction_def) ?
|
| 472 |
|
|
vect_used_in_outer_by_reduction : vect_unused_in_scope;
|
| 473 |
|
|
break;
|
| 474 |
|
|
|
| 475 |
|
|
case vect_used_by_reduction:
|
| 476 |
|
|
relevant = vect_used_in_outer_by_reduction;
|
| 477 |
|
|
break;
|
| 478 |
|
|
|
| 479 |
|
|
case vect_used_in_scope:
|
| 480 |
|
|
relevant = vect_used_in_outer;
|
| 481 |
|
|
break;
|
| 482 |
|
|
|
| 483 |
|
|
default:
|
| 484 |
|
|
gcc_unreachable ();
|
| 485 |
|
|
}
|
| 486 |
|
|
}
|
| 487 |
|
|
|
| 488 |
|
|
vect_mark_relevant (worklist, def_stmt, relevant, live_p,
|
| 489 |
|
|
is_pattern_stmt_p (stmt_vinfo));
|
| 490 |
|
|
return true;
|
| 491 |
|
|
}
|
| 492 |
|
|
|
| 493 |
|
|
|
| 494 |
|
|
/* Function vect_mark_stmts_to_be_vectorized.
|
| 495 |
|
|
|
| 496 |
|
|
Not all stmts in the loop need to be vectorized. For example:
|
| 497 |
|
|
|
| 498 |
|
|
for i...
|
| 499 |
|
|
for j...
|
| 500 |
|
|
1. T0 = i + j
|
| 501 |
|
|
2. T1 = a[T0]
|
| 502 |
|
|
|
| 503 |
|
|
3. j = j + 1
|
| 504 |
|
|
|
| 505 |
|
|
Stmt 1 and 3 do not need to be vectorized, because loop control and
|
| 506 |
|
|
addressing of vectorized data-refs are handled differently.
|
| 507 |
|
|
|
| 508 |
|
|
This pass detects such stmts. */
|
| 509 |
|
|
|
| 510 |
|
|
bool
|
| 511 |
|
|
vect_mark_stmts_to_be_vectorized (loop_vec_info loop_vinfo)
|
| 512 |
|
|
{
|
| 513 |
|
|
VEC(gimple,heap) *worklist;
|
| 514 |
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
| 515 |
|
|
basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
|
| 516 |
|
|
unsigned int nbbs = loop->num_nodes;
|
| 517 |
|
|
gimple_stmt_iterator si;
|
| 518 |
|
|
gimple stmt;
|
| 519 |
|
|
unsigned int i;
|
| 520 |
|
|
stmt_vec_info stmt_vinfo;
|
| 521 |
|
|
basic_block bb;
|
| 522 |
|
|
gimple phi;
|
| 523 |
|
|
bool live_p;
|
| 524 |
|
|
enum vect_relevant relevant, tmp_relevant;
|
| 525 |
|
|
enum vect_def_type def_type;
|
| 526 |
|
|
|
| 527 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 528 |
|
|
fprintf (vect_dump, "=== vect_mark_stmts_to_be_vectorized ===");
|
| 529 |
|
|
|
| 530 |
|
|
worklist = VEC_alloc (gimple, heap, 64);
|
| 531 |
|
|
|
| 532 |
|
|
/* 1. Init worklist. */
|
| 533 |
|
|
for (i = 0; i < nbbs; i++)
|
| 534 |
|
|
{
|
| 535 |
|
|
bb = bbs[i];
|
| 536 |
|
|
for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
|
| 537 |
|
|
{
|
| 538 |
|
|
phi = gsi_stmt (si);
|
| 539 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 540 |
|
|
{
|
| 541 |
|
|
fprintf (vect_dump, "init: phi relevant? ");
|
| 542 |
|
|
print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
|
| 543 |
|
|
}
|
| 544 |
|
|
|
| 545 |
|
|
if (vect_stmt_relevant_p (phi, loop_vinfo, &relevant, &live_p))
|
| 546 |
|
|
vect_mark_relevant (&worklist, phi, relevant, live_p, false);
|
| 547 |
|
|
}
|
| 548 |
|
|
for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
|
| 549 |
|
|
{
|
| 550 |
|
|
stmt = gsi_stmt (si);
|
| 551 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 552 |
|
|
{
|
| 553 |
|
|
fprintf (vect_dump, "init: stmt relevant? ");
|
| 554 |
|
|
print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
|
| 555 |
|
|
}
|
| 556 |
|
|
|
| 557 |
|
|
if (vect_stmt_relevant_p (stmt, loop_vinfo, &relevant, &live_p))
|
| 558 |
|
|
vect_mark_relevant (&worklist, stmt, relevant, live_p, false);
|
| 559 |
|
|
}
|
| 560 |
|
|
}
|
| 561 |
|
|
|
| 562 |
|
|
/* 2. Process_worklist */
|
| 563 |
|
|
while (VEC_length (gimple, worklist) > 0)
|
| 564 |
|
|
{
|
| 565 |
|
|
use_operand_p use_p;
|
| 566 |
|
|
ssa_op_iter iter;
|
| 567 |
|
|
|
| 568 |
|
|
stmt = VEC_pop (gimple, worklist);
|
| 569 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 570 |
|
|
{
|
| 571 |
|
|
fprintf (vect_dump, "worklist: examine stmt: ");
|
| 572 |
|
|
print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
|
| 573 |
|
|
}
|
| 574 |
|
|
|
| 575 |
|
|
/* Examine the USEs of STMT. For each USE, mark the stmt that defines it
|
| 576 |
|
|
(DEF_STMT) as relevant/irrelevant and live/dead according to the
|
| 577 |
|
|
liveness and relevance properties of STMT. */
|
| 578 |
|
|
stmt_vinfo = vinfo_for_stmt (stmt);
|
| 579 |
|
|
relevant = STMT_VINFO_RELEVANT (stmt_vinfo);
|
| 580 |
|
|
live_p = STMT_VINFO_LIVE_P (stmt_vinfo);
|
| 581 |
|
|
|
| 582 |
|
|
/* Generally, the liveness and relevance properties of STMT are
|
| 583 |
|
|
propagated as is to the DEF_STMTs of its USEs:
|
| 584 |
|
|
live_p <-- STMT_VINFO_LIVE_P (STMT_VINFO)
|
| 585 |
|
|
relevant <-- STMT_VINFO_RELEVANT (STMT_VINFO)
|
| 586 |
|
|
|
| 587 |
|
|
One exception is when STMT has been identified as defining a reduction
|
| 588 |
|
|
variable; in this case we set the liveness/relevance as follows:
|
| 589 |
|
|
live_p = false
|
| 590 |
|
|
relevant = vect_used_by_reduction
|
| 591 |
|
|
This is because we distinguish between two kinds of relevant stmts -
|
| 592 |
|
|
those that are used by a reduction computation, and those that are
|
| 593 |
|
|
(also) used by a regular computation. This allows us later on to
|
| 594 |
|
|
identify stmts that are used solely by a reduction, and therefore the
|
| 595 |
|
|
order of the results that they produce does not have to be kept. */
|
| 596 |
|
|
|
| 597 |
|
|
def_type = STMT_VINFO_DEF_TYPE (stmt_vinfo);
|
| 598 |
|
|
tmp_relevant = relevant;
|
| 599 |
|
|
switch (def_type)
|
| 600 |
|
|
{
|
| 601 |
|
|
case vect_reduction_def:
|
| 602 |
|
|
switch (tmp_relevant)
|
| 603 |
|
|
{
|
| 604 |
|
|
case vect_unused_in_scope:
|
| 605 |
|
|
relevant = vect_used_by_reduction;
|
| 606 |
|
|
break;
|
| 607 |
|
|
|
| 608 |
|
|
case vect_used_by_reduction:
|
| 609 |
|
|
if (gimple_code (stmt) == GIMPLE_PHI)
|
| 610 |
|
|
break;
|
| 611 |
|
|
/* fall through */
|
| 612 |
|
|
|
| 613 |
|
|
default:
|
| 614 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 615 |
|
|
fprintf (vect_dump, "unsupported use of reduction.");
|
| 616 |
|
|
|
| 617 |
|
|
VEC_free (gimple, heap, worklist);
|
| 618 |
|
|
return false;
|
| 619 |
|
|
}
|
| 620 |
|
|
|
| 621 |
|
|
live_p = false;
|
| 622 |
|
|
break;
|
| 623 |
|
|
|
| 624 |
|
|
case vect_nested_cycle:
|
| 625 |
|
|
if (tmp_relevant != vect_unused_in_scope
|
| 626 |
|
|
&& tmp_relevant != vect_used_in_outer_by_reduction
|
| 627 |
|
|
&& tmp_relevant != vect_used_in_outer)
|
| 628 |
|
|
{
|
| 629 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 630 |
|
|
fprintf (vect_dump, "unsupported use of nested cycle.");
|
| 631 |
|
|
|
| 632 |
|
|
VEC_free (gimple, heap, worklist);
|
| 633 |
|
|
return false;
|
| 634 |
|
|
}
|
| 635 |
|
|
|
| 636 |
|
|
live_p = false;
|
| 637 |
|
|
break;
|
| 638 |
|
|
|
| 639 |
|
|
case vect_double_reduction_def:
|
| 640 |
|
|
if (tmp_relevant != vect_unused_in_scope
|
| 641 |
|
|
&& tmp_relevant != vect_used_by_reduction)
|
| 642 |
|
|
{
|
| 643 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 644 |
|
|
fprintf (vect_dump, "unsupported use of double reduction.");
|
| 645 |
|
|
|
| 646 |
|
|
VEC_free (gimple, heap, worklist);
|
| 647 |
|
|
return false;
|
| 648 |
|
|
}
|
| 649 |
|
|
|
| 650 |
|
|
live_p = false;
|
| 651 |
|
|
break;
|
| 652 |
|
|
|
| 653 |
|
|
default:
|
| 654 |
|
|
break;
|
| 655 |
|
|
}
|
| 656 |
|
|
|
| 657 |
|
|
if (is_pattern_stmt_p (stmt_vinfo))
|
| 658 |
|
|
{
|
| 659 |
|
|
/* Pattern statements are not inserted into the code, so
|
| 660 |
|
|
FOR_EACH_PHI_OR_STMT_USE optimizes their operands out, and we
|
| 661 |
|
|
have to scan the RHS or function arguments instead. */
|
| 662 |
|
|
if (is_gimple_assign (stmt))
|
| 663 |
|
|
{
|
| 664 |
|
|
enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
|
| 665 |
|
|
tree op = gimple_assign_rhs1 (stmt);
|
| 666 |
|
|
|
| 667 |
|
|
i = 1;
|
| 668 |
|
|
if (rhs_code == COND_EXPR && COMPARISON_CLASS_P (op))
|
| 669 |
|
|
{
|
| 670 |
|
|
if (!process_use (stmt, TREE_OPERAND (op, 0), loop_vinfo,
|
| 671 |
|
|
live_p, relevant, &worklist, false)
|
| 672 |
|
|
|| !process_use (stmt, TREE_OPERAND (op, 1), loop_vinfo,
|
| 673 |
|
|
live_p, relevant, &worklist, false))
|
| 674 |
|
|
{
|
| 675 |
|
|
VEC_free (gimple, heap, worklist);
|
| 676 |
|
|
return false;
|
| 677 |
|
|
}
|
| 678 |
|
|
i = 2;
|
| 679 |
|
|
}
|
| 680 |
|
|
for (; i < gimple_num_ops (stmt); i++)
|
| 681 |
|
|
{
|
| 682 |
|
|
op = gimple_op (stmt, i);
|
| 683 |
|
|
if (!process_use (stmt, op, loop_vinfo, live_p, relevant,
|
| 684 |
|
|
&worklist, false))
|
| 685 |
|
|
{
|
| 686 |
|
|
VEC_free (gimple, heap, worklist);
|
| 687 |
|
|
return false;
|
| 688 |
|
|
}
|
| 689 |
|
|
}
|
| 690 |
|
|
}
|
| 691 |
|
|
else if (is_gimple_call (stmt))
|
| 692 |
|
|
{
|
| 693 |
|
|
for (i = 0; i < gimple_call_num_args (stmt); i++)
|
| 694 |
|
|
{
|
| 695 |
|
|
tree arg = gimple_call_arg (stmt, i);
|
| 696 |
|
|
if (!process_use (stmt, arg, loop_vinfo, live_p, relevant,
|
| 697 |
|
|
&worklist, false))
|
| 698 |
|
|
{
|
| 699 |
|
|
VEC_free (gimple, heap, worklist);
|
| 700 |
|
|
return false;
|
| 701 |
|
|
}
|
| 702 |
|
|
}
|
| 703 |
|
|
}
|
| 704 |
|
|
}
|
| 705 |
|
|
else
|
| 706 |
|
|
FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, iter, SSA_OP_USE)
|
| 707 |
|
|
{
|
| 708 |
|
|
tree op = USE_FROM_PTR (use_p);
|
| 709 |
|
|
if (!process_use (stmt, op, loop_vinfo, live_p, relevant,
|
| 710 |
|
|
&worklist, false))
|
| 711 |
|
|
{
|
| 712 |
|
|
VEC_free (gimple, heap, worklist);
|
| 713 |
|
|
return false;
|
| 714 |
|
|
}
|
| 715 |
|
|
}
|
| 716 |
|
|
|
| 717 |
|
|
if (STMT_VINFO_GATHER_P (stmt_vinfo))
|
| 718 |
|
|
{
|
| 719 |
|
|
tree off;
|
| 720 |
|
|
tree decl = vect_check_gather (stmt, loop_vinfo, NULL, &off, NULL);
|
| 721 |
|
|
gcc_assert (decl);
|
| 722 |
|
|
if (!process_use (stmt, off, loop_vinfo, live_p, relevant,
|
| 723 |
|
|
&worklist, true))
|
| 724 |
|
|
{
|
| 725 |
|
|
VEC_free (gimple, heap, worklist);
|
| 726 |
|
|
return false;
|
| 727 |
|
|
}
|
| 728 |
|
|
}
|
| 729 |
|
|
} /* while worklist */
|
| 730 |
|
|
|
| 731 |
|
|
VEC_free (gimple, heap, worklist);
|
| 732 |
|
|
return true;
|
| 733 |
|
|
}
|
| 734 |
|
|
|
| 735 |
|
|
|
| 736 |
|
|
/* Get cost by calling cost target builtin. */
|
| 737 |
|
|
|
| 738 |
|
|
static inline
|
| 739 |
|
|
int vect_get_stmt_cost (enum vect_cost_for_stmt type_of_cost)
|
| 740 |
|
|
{
|
| 741 |
|
|
tree dummy_type = NULL;
|
| 742 |
|
|
int dummy = 0;
|
| 743 |
|
|
|
| 744 |
|
|
return targetm.vectorize.builtin_vectorization_cost (type_of_cost,
|
| 745 |
|
|
dummy_type, dummy);
|
| 746 |
|
|
}
|
| 747 |
|
|
|
| 748 |
|
|
|
| 749 |
|
|
/* Get cost for STMT. */
|
| 750 |
|
|
|
| 751 |
|
|
int
|
| 752 |
|
|
cost_for_stmt (gimple stmt)
|
| 753 |
|
|
{
|
| 754 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
| 755 |
|
|
|
| 756 |
|
|
switch (STMT_VINFO_TYPE (stmt_info))
|
| 757 |
|
|
{
|
| 758 |
|
|
case load_vec_info_type:
|
| 759 |
|
|
return vect_get_stmt_cost (scalar_load);
|
| 760 |
|
|
case store_vec_info_type:
|
| 761 |
|
|
return vect_get_stmt_cost (scalar_store);
|
| 762 |
|
|
case op_vec_info_type:
|
| 763 |
|
|
case condition_vec_info_type:
|
| 764 |
|
|
case assignment_vec_info_type:
|
| 765 |
|
|
case reduc_vec_info_type:
|
| 766 |
|
|
case induc_vec_info_type:
|
| 767 |
|
|
case type_promotion_vec_info_type:
|
| 768 |
|
|
case type_demotion_vec_info_type:
|
| 769 |
|
|
case type_conversion_vec_info_type:
|
| 770 |
|
|
case call_vec_info_type:
|
| 771 |
|
|
return vect_get_stmt_cost (scalar_stmt);
|
| 772 |
|
|
case undef_vec_info_type:
|
| 773 |
|
|
default:
|
| 774 |
|
|
gcc_unreachable ();
|
| 775 |
|
|
}
|
| 776 |
|
|
}
|
| 777 |
|
|
|
| 778 |
|
|
/* Function vect_model_simple_cost.
|
| 779 |
|
|
|
| 780 |
|
|
Models cost for simple operations, i.e. those that only emit ncopies of a
|
| 781 |
|
|
single op. Right now, this does not account for multiple insns that could
|
| 782 |
|
|
be generated for the single vector op. We will handle that shortly. */
|
| 783 |
|
|
|
| 784 |
|
|
void
|
| 785 |
|
|
vect_model_simple_cost (stmt_vec_info stmt_info, int ncopies,
|
| 786 |
|
|
enum vect_def_type *dt, slp_tree slp_node)
|
| 787 |
|
|
{
|
| 788 |
|
|
int i;
|
| 789 |
|
|
int inside_cost = 0, outside_cost = 0;
|
| 790 |
|
|
|
| 791 |
|
|
/* The SLP costs were already calculated during SLP tree build. */
|
| 792 |
|
|
if (PURE_SLP_STMT (stmt_info))
|
| 793 |
|
|
return;
|
| 794 |
|
|
|
| 795 |
|
|
inside_cost = ncopies * vect_get_stmt_cost (vector_stmt);
|
| 796 |
|
|
|
| 797 |
|
|
/* FORNOW: Assuming maximum 2 args per stmts. */
|
| 798 |
|
|
for (i = 0; i < 2; i++)
|
| 799 |
|
|
{
|
| 800 |
|
|
if (dt[i] == vect_constant_def || dt[i] == vect_external_def)
|
| 801 |
|
|
outside_cost += vect_get_stmt_cost (vector_stmt);
|
| 802 |
|
|
}
|
| 803 |
|
|
|
| 804 |
|
|
if (vect_print_dump_info (REPORT_COST))
|
| 805 |
|
|
fprintf (vect_dump, "vect_model_simple_cost: inside_cost = %d, "
|
| 806 |
|
|
"outside_cost = %d .", inside_cost, outside_cost);
|
| 807 |
|
|
|
| 808 |
|
|
/* Set the costs either in STMT_INFO or SLP_NODE (if exists). */
|
| 809 |
|
|
stmt_vinfo_set_inside_of_loop_cost (stmt_info, slp_node, inside_cost);
|
| 810 |
|
|
stmt_vinfo_set_outside_of_loop_cost (stmt_info, slp_node, outside_cost);
|
| 811 |
|
|
}
|
| 812 |
|
|
|
| 813 |
|
|
|
| 814 |
|
|
/* Model cost for type demotion and promotion operations. PWR is normally
|
| 815 |
|
|
zero for single-step promotions and demotions. It will be one if
|
| 816 |
|
|
two-step promotion/demotion is required, and so on. Each additional
|
| 817 |
|
|
step doubles the number of instructions required. */
|
| 818 |
|
|
|
| 819 |
|
|
static void
|
| 820 |
|
|
vect_model_promotion_demotion_cost (stmt_vec_info stmt_info,
|
| 821 |
|
|
enum vect_def_type *dt, int pwr)
|
| 822 |
|
|
{
|
| 823 |
|
|
int i, tmp;
|
| 824 |
|
|
int inside_cost = 0, outside_cost = 0, single_stmt_cost;
|
| 825 |
|
|
|
| 826 |
|
|
/* The SLP costs were already calculated during SLP tree build. */
|
| 827 |
|
|
if (PURE_SLP_STMT (stmt_info))
|
| 828 |
|
|
return;
|
| 829 |
|
|
|
| 830 |
|
|
single_stmt_cost = vect_get_stmt_cost (vec_promote_demote);
|
| 831 |
|
|
for (i = 0; i < pwr + 1; i++)
|
| 832 |
|
|
{
|
| 833 |
|
|
tmp = (STMT_VINFO_TYPE (stmt_info) == type_promotion_vec_info_type) ?
|
| 834 |
|
|
(i + 1) : i;
|
| 835 |
|
|
inside_cost += vect_pow2 (tmp) * single_stmt_cost;
|
| 836 |
|
|
}
|
| 837 |
|
|
|
| 838 |
|
|
/* FORNOW: Assuming maximum 2 args per stmts. */
|
| 839 |
|
|
for (i = 0; i < 2; i++)
|
| 840 |
|
|
{
|
| 841 |
|
|
if (dt[i] == vect_constant_def || dt[i] == vect_external_def)
|
| 842 |
|
|
outside_cost += vect_get_stmt_cost (vector_stmt);
|
| 843 |
|
|
}
|
| 844 |
|
|
|
| 845 |
|
|
if (vect_print_dump_info (REPORT_COST))
|
| 846 |
|
|
fprintf (vect_dump, "vect_model_promotion_demotion_cost: inside_cost = %d, "
|
| 847 |
|
|
"outside_cost = %d .", inside_cost, outside_cost);
|
| 848 |
|
|
|
| 849 |
|
|
/* Set the costs in STMT_INFO. */
|
| 850 |
|
|
stmt_vinfo_set_inside_of_loop_cost (stmt_info, NULL, inside_cost);
|
| 851 |
|
|
stmt_vinfo_set_outside_of_loop_cost (stmt_info, NULL, outside_cost);
|
| 852 |
|
|
}
|
| 853 |
|
|
|
| 854 |
|
|
/* Function vect_cost_strided_group_size
|
| 855 |
|
|
|
| 856 |
|
|
For strided load or store, return the group_size only if it is the first
|
| 857 |
|
|
load or store of a group, else return 1. This ensures that group size is
|
| 858 |
|
|
only returned once per group. */
|
| 859 |
|
|
|
| 860 |
|
|
static int
|
| 861 |
|
|
vect_cost_strided_group_size (stmt_vec_info stmt_info)
|
| 862 |
|
|
{
|
| 863 |
|
|
gimple first_stmt = GROUP_FIRST_ELEMENT (stmt_info);
|
| 864 |
|
|
|
| 865 |
|
|
if (first_stmt == STMT_VINFO_STMT (stmt_info))
|
| 866 |
|
|
return GROUP_SIZE (stmt_info);
|
| 867 |
|
|
|
| 868 |
|
|
return 1;
|
| 869 |
|
|
}
|
| 870 |
|
|
|
| 871 |
|
|
|
| 872 |
|
|
/* Function vect_model_store_cost
|
| 873 |
|
|
|
| 874 |
|
|
Models cost for stores. In the case of strided accesses, one access
|
| 875 |
|
|
has the overhead of the strided access attributed to it. */
|
| 876 |
|
|
|
| 877 |
|
|
void
|
| 878 |
|
|
vect_model_store_cost (stmt_vec_info stmt_info, int ncopies,
|
| 879 |
|
|
bool store_lanes_p, enum vect_def_type dt,
|
| 880 |
|
|
slp_tree slp_node)
|
| 881 |
|
|
{
|
| 882 |
|
|
int group_size;
|
| 883 |
|
|
unsigned int inside_cost = 0, outside_cost = 0;
|
| 884 |
|
|
struct data_reference *first_dr;
|
| 885 |
|
|
gimple first_stmt;
|
| 886 |
|
|
|
| 887 |
|
|
/* The SLP costs were already calculated during SLP tree build. */
|
| 888 |
|
|
if (PURE_SLP_STMT (stmt_info))
|
| 889 |
|
|
return;
|
| 890 |
|
|
|
| 891 |
|
|
if (dt == vect_constant_def || dt == vect_external_def)
|
| 892 |
|
|
outside_cost = vect_get_stmt_cost (scalar_to_vec);
|
| 893 |
|
|
|
| 894 |
|
|
/* Strided access? */
|
| 895 |
|
|
if (STMT_VINFO_STRIDED_ACCESS (stmt_info))
|
| 896 |
|
|
{
|
| 897 |
|
|
if (slp_node)
|
| 898 |
|
|
{
|
| 899 |
|
|
first_stmt = VEC_index (gimple, SLP_TREE_SCALAR_STMTS (slp_node), 0);
|
| 900 |
|
|
group_size = 1;
|
| 901 |
|
|
}
|
| 902 |
|
|
else
|
| 903 |
|
|
{
|
| 904 |
|
|
first_stmt = GROUP_FIRST_ELEMENT (stmt_info);
|
| 905 |
|
|
group_size = vect_cost_strided_group_size (stmt_info);
|
| 906 |
|
|
}
|
| 907 |
|
|
|
| 908 |
|
|
first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt));
|
| 909 |
|
|
}
|
| 910 |
|
|
/* Not a strided access. */
|
| 911 |
|
|
else
|
| 912 |
|
|
{
|
| 913 |
|
|
group_size = 1;
|
| 914 |
|
|
first_dr = STMT_VINFO_DATA_REF (stmt_info);
|
| 915 |
|
|
}
|
| 916 |
|
|
|
| 917 |
|
|
/* We assume that the cost of a single store-lanes instruction is
|
| 918 |
|
|
equivalent to the cost of GROUP_SIZE separate stores. If a strided
|
| 919 |
|
|
access is instead being provided by a permute-and-store operation,
|
| 920 |
|
|
include the cost of the permutes. */
|
| 921 |
|
|
if (!store_lanes_p && group_size > 1)
|
| 922 |
|
|
{
|
| 923 |
|
|
/* Uses a high and low interleave operation for each needed permute. */
|
| 924 |
|
|
inside_cost = ncopies * exact_log2(group_size) * group_size
|
| 925 |
|
|
* vect_get_stmt_cost (vec_perm);
|
| 926 |
|
|
|
| 927 |
|
|
if (vect_print_dump_info (REPORT_COST))
|
| 928 |
|
|
fprintf (vect_dump, "vect_model_store_cost: strided group_size = %d .",
|
| 929 |
|
|
group_size);
|
| 930 |
|
|
}
|
| 931 |
|
|
|
| 932 |
|
|
/* Costs of the stores. */
|
| 933 |
|
|
vect_get_store_cost (first_dr, ncopies, &inside_cost);
|
| 934 |
|
|
|
| 935 |
|
|
if (vect_print_dump_info (REPORT_COST))
|
| 936 |
|
|
fprintf (vect_dump, "vect_model_store_cost: inside_cost = %d, "
|
| 937 |
|
|
"outside_cost = %d .", inside_cost, outside_cost);
|
| 938 |
|
|
|
| 939 |
|
|
/* Set the costs either in STMT_INFO or SLP_NODE (if exists). */
|
| 940 |
|
|
stmt_vinfo_set_inside_of_loop_cost (stmt_info, slp_node, inside_cost);
|
| 941 |
|
|
stmt_vinfo_set_outside_of_loop_cost (stmt_info, slp_node, outside_cost);
|
| 942 |
|
|
}
|
| 943 |
|
|
|
| 944 |
|
|
|
| 945 |
|
|
/* Calculate cost of DR's memory access. */
|
| 946 |
|
|
void
|
| 947 |
|
|
vect_get_store_cost (struct data_reference *dr, int ncopies,
|
| 948 |
|
|
unsigned int *inside_cost)
|
| 949 |
|
|
{
|
| 950 |
|
|
int alignment_support_scheme = vect_supportable_dr_alignment (dr, false);
|
| 951 |
|
|
|
| 952 |
|
|
switch (alignment_support_scheme)
|
| 953 |
|
|
{
|
| 954 |
|
|
case dr_aligned:
|
| 955 |
|
|
{
|
| 956 |
|
|
*inside_cost += ncopies * vect_get_stmt_cost (vector_store);
|
| 957 |
|
|
|
| 958 |
|
|
if (vect_print_dump_info (REPORT_COST))
|
| 959 |
|
|
fprintf (vect_dump, "vect_model_store_cost: aligned.");
|
| 960 |
|
|
|
| 961 |
|
|
break;
|
| 962 |
|
|
}
|
| 963 |
|
|
|
| 964 |
|
|
case dr_unaligned_supported:
|
| 965 |
|
|
{
|
| 966 |
|
|
gimple stmt = DR_STMT (dr);
|
| 967 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
| 968 |
|
|
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
|
| 969 |
|
|
|
| 970 |
|
|
/* Here, we assign an additional cost for the unaligned store. */
|
| 971 |
|
|
*inside_cost += ncopies
|
| 972 |
|
|
* targetm.vectorize.builtin_vectorization_cost (unaligned_store,
|
| 973 |
|
|
vectype, DR_MISALIGNMENT (dr));
|
| 974 |
|
|
|
| 975 |
|
|
if (vect_print_dump_info (REPORT_COST))
|
| 976 |
|
|
fprintf (vect_dump, "vect_model_store_cost: unaligned supported by "
|
| 977 |
|
|
"hardware.");
|
| 978 |
|
|
|
| 979 |
|
|
break;
|
| 980 |
|
|
}
|
| 981 |
|
|
|
| 982 |
|
|
default:
|
| 983 |
|
|
gcc_unreachable ();
|
| 984 |
|
|
}
|
| 985 |
|
|
}
|
| 986 |
|
|
|
| 987 |
|
|
|
| 988 |
|
|
/* Function vect_model_load_cost
|
| 989 |
|
|
|
| 990 |
|
|
Models cost for loads. In the case of strided accesses, the last access
|
| 991 |
|
|
has the overhead of the strided access attributed to it. Since unaligned
|
| 992 |
|
|
accesses are supported for loads, we also account for the costs of the
|
| 993 |
|
|
access scheme chosen. */
|
| 994 |
|
|
|
| 995 |
|
|
void
|
| 996 |
|
|
vect_model_load_cost (stmt_vec_info stmt_info, int ncopies, bool load_lanes_p,
|
| 997 |
|
|
slp_tree slp_node)
|
| 998 |
|
|
{
|
| 999 |
|
|
int group_size;
|
| 1000 |
|
|
gimple first_stmt;
|
| 1001 |
|
|
struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info), *first_dr;
|
| 1002 |
|
|
unsigned int inside_cost = 0, outside_cost = 0;
|
| 1003 |
|
|
|
| 1004 |
|
|
/* The SLP costs were already calculated during SLP tree build. */
|
| 1005 |
|
|
if (PURE_SLP_STMT (stmt_info))
|
| 1006 |
|
|
return;
|
| 1007 |
|
|
|
| 1008 |
|
|
/* Strided accesses? */
|
| 1009 |
|
|
first_stmt = GROUP_FIRST_ELEMENT (stmt_info);
|
| 1010 |
|
|
if (STMT_VINFO_STRIDED_ACCESS (stmt_info) && first_stmt && !slp_node)
|
| 1011 |
|
|
{
|
| 1012 |
|
|
group_size = vect_cost_strided_group_size (stmt_info);
|
| 1013 |
|
|
first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt));
|
| 1014 |
|
|
}
|
| 1015 |
|
|
/* Not a strided access. */
|
| 1016 |
|
|
else
|
| 1017 |
|
|
{
|
| 1018 |
|
|
group_size = 1;
|
| 1019 |
|
|
first_dr = dr;
|
| 1020 |
|
|
}
|
| 1021 |
|
|
|
| 1022 |
|
|
/* We assume that the cost of a single load-lanes instruction is
|
| 1023 |
|
|
equivalent to the cost of GROUP_SIZE separate loads. If a strided
|
| 1024 |
|
|
access is instead being provided by a load-and-permute operation,
|
| 1025 |
|
|
include the cost of the permutes. */
|
| 1026 |
|
|
if (!load_lanes_p && group_size > 1)
|
| 1027 |
|
|
{
|
| 1028 |
|
|
/* Uses an even and odd extract operations for each needed permute. */
|
| 1029 |
|
|
inside_cost = ncopies * exact_log2(group_size) * group_size
|
| 1030 |
|
|
* vect_get_stmt_cost (vec_perm);
|
| 1031 |
|
|
|
| 1032 |
|
|
if (vect_print_dump_info (REPORT_COST))
|
| 1033 |
|
|
fprintf (vect_dump, "vect_model_load_cost: strided group_size = %d .",
|
| 1034 |
|
|
group_size);
|
| 1035 |
|
|
}
|
| 1036 |
|
|
|
| 1037 |
|
|
/* The loads themselves. */
|
| 1038 |
|
|
vect_get_load_cost (first_dr, ncopies,
|
| 1039 |
|
|
((!STMT_VINFO_STRIDED_ACCESS (stmt_info)) || group_size > 1
|
| 1040 |
|
|
|| slp_node),
|
| 1041 |
|
|
&inside_cost, &outside_cost);
|
| 1042 |
|
|
|
| 1043 |
|
|
if (vect_print_dump_info (REPORT_COST))
|
| 1044 |
|
|
fprintf (vect_dump, "vect_model_load_cost: inside_cost = %d, "
|
| 1045 |
|
|
"outside_cost = %d .", inside_cost, outside_cost);
|
| 1046 |
|
|
|
| 1047 |
|
|
/* Set the costs either in STMT_INFO or SLP_NODE (if exists). */
|
| 1048 |
|
|
stmt_vinfo_set_inside_of_loop_cost (stmt_info, slp_node, inside_cost);
|
| 1049 |
|
|
stmt_vinfo_set_outside_of_loop_cost (stmt_info, slp_node, outside_cost);
|
| 1050 |
|
|
}
|
| 1051 |
|
|
|
| 1052 |
|
|
|
| 1053 |
|
|
/* Calculate cost of DR's memory access. */
|
| 1054 |
|
|
void
|
| 1055 |
|
|
vect_get_load_cost (struct data_reference *dr, int ncopies,
|
| 1056 |
|
|
bool add_realign_cost, unsigned int *inside_cost,
|
| 1057 |
|
|
unsigned int *outside_cost)
|
| 1058 |
|
|
{
|
| 1059 |
|
|
int alignment_support_scheme = vect_supportable_dr_alignment (dr, false);
|
| 1060 |
|
|
|
| 1061 |
|
|
switch (alignment_support_scheme)
|
| 1062 |
|
|
{
|
| 1063 |
|
|
case dr_aligned:
|
| 1064 |
|
|
{
|
| 1065 |
|
|
*inside_cost += ncopies * vect_get_stmt_cost (vector_load);
|
| 1066 |
|
|
|
| 1067 |
|
|
if (vect_print_dump_info (REPORT_COST))
|
| 1068 |
|
|
fprintf (vect_dump, "vect_model_load_cost: aligned.");
|
| 1069 |
|
|
|
| 1070 |
|
|
break;
|
| 1071 |
|
|
}
|
| 1072 |
|
|
case dr_unaligned_supported:
|
| 1073 |
|
|
{
|
| 1074 |
|
|
gimple stmt = DR_STMT (dr);
|
| 1075 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
| 1076 |
|
|
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
|
| 1077 |
|
|
|
| 1078 |
|
|
/* Here, we assign an additional cost for the unaligned load. */
|
| 1079 |
|
|
*inside_cost += ncopies
|
| 1080 |
|
|
* targetm.vectorize.builtin_vectorization_cost (unaligned_load,
|
| 1081 |
|
|
vectype, DR_MISALIGNMENT (dr));
|
| 1082 |
|
|
if (vect_print_dump_info (REPORT_COST))
|
| 1083 |
|
|
fprintf (vect_dump, "vect_model_load_cost: unaligned supported by "
|
| 1084 |
|
|
"hardware.");
|
| 1085 |
|
|
|
| 1086 |
|
|
break;
|
| 1087 |
|
|
}
|
| 1088 |
|
|
case dr_explicit_realign:
|
| 1089 |
|
|
{
|
| 1090 |
|
|
*inside_cost += ncopies * (2 * vect_get_stmt_cost (vector_load)
|
| 1091 |
|
|
+ vect_get_stmt_cost (vec_perm));
|
| 1092 |
|
|
|
| 1093 |
|
|
/* FIXME: If the misalignment remains fixed across the iterations of
|
| 1094 |
|
|
the containing loop, the following cost should be added to the
|
| 1095 |
|
|
outside costs. */
|
| 1096 |
|
|
if (targetm.vectorize.builtin_mask_for_load)
|
| 1097 |
|
|
*inside_cost += vect_get_stmt_cost (vector_stmt);
|
| 1098 |
|
|
|
| 1099 |
|
|
if (vect_print_dump_info (REPORT_COST))
|
| 1100 |
|
|
fprintf (vect_dump, "vect_model_load_cost: explicit realign");
|
| 1101 |
|
|
|
| 1102 |
|
|
break;
|
| 1103 |
|
|
}
|
| 1104 |
|
|
case dr_explicit_realign_optimized:
|
| 1105 |
|
|
{
|
| 1106 |
|
|
if (vect_print_dump_info (REPORT_COST))
|
| 1107 |
|
|
fprintf (vect_dump, "vect_model_load_cost: unaligned software "
|
| 1108 |
|
|
"pipelined.");
|
| 1109 |
|
|
|
| 1110 |
|
|
/* Unaligned software pipeline has a load of an address, an initial
|
| 1111 |
|
|
load, and possibly a mask operation to "prime" the loop. However,
|
| 1112 |
|
|
if this is an access in a group of loads, which provide strided
|
| 1113 |
|
|
access, then the above cost should only be considered for one
|
| 1114 |
|
|
access in the group. Inside the loop, there is a load op
|
| 1115 |
|
|
and a realignment op. */
|
| 1116 |
|
|
|
| 1117 |
|
|
if (add_realign_cost)
|
| 1118 |
|
|
{
|
| 1119 |
|
|
*outside_cost = 2 * vect_get_stmt_cost (vector_stmt);
|
| 1120 |
|
|
if (targetm.vectorize.builtin_mask_for_load)
|
| 1121 |
|
|
*outside_cost += vect_get_stmt_cost (vector_stmt);
|
| 1122 |
|
|
}
|
| 1123 |
|
|
|
| 1124 |
|
|
*inside_cost += ncopies * (vect_get_stmt_cost (vector_load)
|
| 1125 |
|
|
+ vect_get_stmt_cost (vec_perm));
|
| 1126 |
|
|
|
| 1127 |
|
|
if (vect_print_dump_info (REPORT_COST))
|
| 1128 |
|
|
fprintf (vect_dump,
|
| 1129 |
|
|
"vect_model_load_cost: explicit realign optimized");
|
| 1130 |
|
|
|
| 1131 |
|
|
break;
|
| 1132 |
|
|
}
|
| 1133 |
|
|
|
| 1134 |
|
|
default:
|
| 1135 |
|
|
gcc_unreachable ();
|
| 1136 |
|
|
}
|
| 1137 |
|
|
}
|
| 1138 |
|
|
|
| 1139 |
|
|
|
| 1140 |
|
|
/* Function vect_init_vector.
|
| 1141 |
|
|
|
| 1142 |
|
|
Insert a new stmt (INIT_STMT) that initializes a new vector variable with
|
| 1143 |
|
|
the vector elements of VECTOR_VAR. Place the initialization at BSI if it
|
| 1144 |
|
|
is not NULL. Otherwise, place the initialization at the loop preheader.
|
| 1145 |
|
|
Return the DEF of INIT_STMT.
|
| 1146 |
|
|
It will be used in the vectorization of STMT. */
|
| 1147 |
|
|
|
| 1148 |
|
|
tree
|
| 1149 |
|
|
vect_init_vector (gimple stmt, tree vector_var, tree vector_type,
|
| 1150 |
|
|
gimple_stmt_iterator *gsi)
|
| 1151 |
|
|
{
|
| 1152 |
|
|
stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
|
| 1153 |
|
|
tree new_var;
|
| 1154 |
|
|
gimple init_stmt;
|
| 1155 |
|
|
tree vec_oprnd;
|
| 1156 |
|
|
edge pe;
|
| 1157 |
|
|
tree new_temp;
|
| 1158 |
|
|
basic_block new_bb;
|
| 1159 |
|
|
|
| 1160 |
|
|
new_var = vect_get_new_vect_var (vector_type, vect_simple_var, "cst_");
|
| 1161 |
|
|
add_referenced_var (new_var);
|
| 1162 |
|
|
init_stmt = gimple_build_assign (new_var, vector_var);
|
| 1163 |
|
|
new_temp = make_ssa_name (new_var, init_stmt);
|
| 1164 |
|
|
gimple_assign_set_lhs (init_stmt, new_temp);
|
| 1165 |
|
|
|
| 1166 |
|
|
if (gsi)
|
| 1167 |
|
|
vect_finish_stmt_generation (stmt, init_stmt, gsi);
|
| 1168 |
|
|
else
|
| 1169 |
|
|
{
|
| 1170 |
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
|
| 1171 |
|
|
|
| 1172 |
|
|
if (loop_vinfo)
|
| 1173 |
|
|
{
|
| 1174 |
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
| 1175 |
|
|
|
| 1176 |
|
|
if (nested_in_vect_loop_p (loop, stmt))
|
| 1177 |
|
|
loop = loop->inner;
|
| 1178 |
|
|
|
| 1179 |
|
|
pe = loop_preheader_edge (loop);
|
| 1180 |
|
|
new_bb = gsi_insert_on_edge_immediate (pe, init_stmt);
|
| 1181 |
|
|
gcc_assert (!new_bb);
|
| 1182 |
|
|
}
|
| 1183 |
|
|
else
|
| 1184 |
|
|
{
|
| 1185 |
|
|
bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_vinfo);
|
| 1186 |
|
|
basic_block bb;
|
| 1187 |
|
|
gimple_stmt_iterator gsi_bb_start;
|
| 1188 |
|
|
|
| 1189 |
|
|
gcc_assert (bb_vinfo);
|
| 1190 |
|
|
bb = BB_VINFO_BB (bb_vinfo);
|
| 1191 |
|
|
gsi_bb_start = gsi_after_labels (bb);
|
| 1192 |
|
|
gsi_insert_before (&gsi_bb_start, init_stmt, GSI_SAME_STMT);
|
| 1193 |
|
|
}
|
| 1194 |
|
|
}
|
| 1195 |
|
|
|
| 1196 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 1197 |
|
|
{
|
| 1198 |
|
|
fprintf (vect_dump, "created new init_stmt: ");
|
| 1199 |
|
|
print_gimple_stmt (vect_dump, init_stmt, 0, TDF_SLIM);
|
| 1200 |
|
|
}
|
| 1201 |
|
|
|
| 1202 |
|
|
vec_oprnd = gimple_assign_lhs (init_stmt);
|
| 1203 |
|
|
return vec_oprnd;
|
| 1204 |
|
|
}
|
| 1205 |
|
|
|
| 1206 |
|
|
|
| 1207 |
|
|
/* Function vect_get_vec_def_for_operand.
|
| 1208 |
|
|
|
| 1209 |
|
|
OP is an operand in STMT. This function returns a (vector) def that will be
|
| 1210 |
|
|
used in the vectorized stmt for STMT.
|
| 1211 |
|
|
|
| 1212 |
|
|
In the case that OP is an SSA_NAME which is defined in the loop, then
|
| 1213 |
|
|
STMT_VINFO_VEC_STMT of the defining stmt holds the relevant def.
|
| 1214 |
|
|
|
| 1215 |
|
|
In case OP is an invariant or constant, a new stmt that creates a vector def
|
| 1216 |
|
|
needs to be introduced. */
|
| 1217 |
|
|
|
| 1218 |
|
|
tree
|
| 1219 |
|
|
vect_get_vec_def_for_operand (tree op, gimple stmt, tree *scalar_def)
|
| 1220 |
|
|
{
|
| 1221 |
|
|
tree vec_oprnd;
|
| 1222 |
|
|
gimple vec_stmt;
|
| 1223 |
|
|
gimple def_stmt;
|
| 1224 |
|
|
stmt_vec_info def_stmt_info = NULL;
|
| 1225 |
|
|
stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
|
| 1226 |
|
|
unsigned int nunits;
|
| 1227 |
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
|
| 1228 |
|
|
tree vec_inv;
|
| 1229 |
|
|
tree vec_cst;
|
| 1230 |
|
|
tree t = NULL_TREE;
|
| 1231 |
|
|
tree def;
|
| 1232 |
|
|
int i;
|
| 1233 |
|
|
enum vect_def_type dt;
|
| 1234 |
|
|
bool is_simple_use;
|
| 1235 |
|
|
tree vector_type;
|
| 1236 |
|
|
|
| 1237 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 1238 |
|
|
{
|
| 1239 |
|
|
fprintf (vect_dump, "vect_get_vec_def_for_operand: ");
|
| 1240 |
|
|
print_generic_expr (vect_dump, op, TDF_SLIM);
|
| 1241 |
|
|
}
|
| 1242 |
|
|
|
| 1243 |
|
|
is_simple_use = vect_is_simple_use (op, stmt, loop_vinfo, NULL,
|
| 1244 |
|
|
&def_stmt, &def, &dt);
|
| 1245 |
|
|
gcc_assert (is_simple_use);
|
| 1246 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 1247 |
|
|
{
|
| 1248 |
|
|
if (def)
|
| 1249 |
|
|
{
|
| 1250 |
|
|
fprintf (vect_dump, "def = ");
|
| 1251 |
|
|
print_generic_expr (vect_dump, def, TDF_SLIM);
|
| 1252 |
|
|
}
|
| 1253 |
|
|
if (def_stmt)
|
| 1254 |
|
|
{
|
| 1255 |
|
|
fprintf (vect_dump, " def_stmt = ");
|
| 1256 |
|
|
print_gimple_stmt (vect_dump, def_stmt, 0, TDF_SLIM);
|
| 1257 |
|
|
}
|
| 1258 |
|
|
}
|
| 1259 |
|
|
|
| 1260 |
|
|
switch (dt)
|
| 1261 |
|
|
{
|
| 1262 |
|
|
/* Case 1: operand is a constant. */
|
| 1263 |
|
|
case vect_constant_def:
|
| 1264 |
|
|
{
|
| 1265 |
|
|
vector_type = get_vectype_for_scalar_type (TREE_TYPE (op));
|
| 1266 |
|
|
gcc_assert (vector_type);
|
| 1267 |
|
|
nunits = TYPE_VECTOR_SUBPARTS (vector_type);
|
| 1268 |
|
|
|
| 1269 |
|
|
if (scalar_def)
|
| 1270 |
|
|
*scalar_def = op;
|
| 1271 |
|
|
|
| 1272 |
|
|
/* Create 'vect_cst_ = {cst,cst,...,cst}' */
|
| 1273 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 1274 |
|
|
fprintf (vect_dump, "Create vector_cst. nunits = %d", nunits);
|
| 1275 |
|
|
|
| 1276 |
|
|
vec_cst = build_vector_from_val (vector_type,
|
| 1277 |
|
|
fold_convert (TREE_TYPE (vector_type),
|
| 1278 |
|
|
op));
|
| 1279 |
|
|
return vect_init_vector (stmt, vec_cst, vector_type, NULL);
|
| 1280 |
|
|
}
|
| 1281 |
|
|
|
| 1282 |
|
|
/* Case 2: operand is defined outside the loop - loop invariant. */
|
| 1283 |
|
|
case vect_external_def:
|
| 1284 |
|
|
{
|
| 1285 |
|
|
vector_type = get_vectype_for_scalar_type (TREE_TYPE (def));
|
| 1286 |
|
|
gcc_assert (vector_type);
|
| 1287 |
|
|
nunits = TYPE_VECTOR_SUBPARTS (vector_type);
|
| 1288 |
|
|
|
| 1289 |
|
|
if (scalar_def)
|
| 1290 |
|
|
*scalar_def = def;
|
| 1291 |
|
|
|
| 1292 |
|
|
/* Create 'vec_inv = {inv,inv,..,inv}' */
|
| 1293 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 1294 |
|
|
fprintf (vect_dump, "Create vector_inv.");
|
| 1295 |
|
|
|
| 1296 |
|
|
for (i = nunits - 1; i >= 0; --i)
|
| 1297 |
|
|
{
|
| 1298 |
|
|
t = tree_cons (NULL_TREE, def, t);
|
| 1299 |
|
|
}
|
| 1300 |
|
|
|
| 1301 |
|
|
/* FIXME: use build_constructor directly. */
|
| 1302 |
|
|
vec_inv = build_constructor_from_list (vector_type, t);
|
| 1303 |
|
|
return vect_init_vector (stmt, vec_inv, vector_type, NULL);
|
| 1304 |
|
|
}
|
| 1305 |
|
|
|
| 1306 |
|
|
/* Case 3: operand is defined inside the loop. */
|
| 1307 |
|
|
case vect_internal_def:
|
| 1308 |
|
|
{
|
| 1309 |
|
|
if (scalar_def)
|
| 1310 |
|
|
*scalar_def = NULL/* FIXME tuples: def_stmt*/;
|
| 1311 |
|
|
|
| 1312 |
|
|
/* Get the def from the vectorized stmt. */
|
| 1313 |
|
|
def_stmt_info = vinfo_for_stmt (def_stmt);
|
| 1314 |
|
|
|
| 1315 |
|
|
vec_stmt = STMT_VINFO_VEC_STMT (def_stmt_info);
|
| 1316 |
|
|
/* Get vectorized pattern statement. */
|
| 1317 |
|
|
if (!vec_stmt
|
| 1318 |
|
|
&& STMT_VINFO_IN_PATTERN_P (def_stmt_info)
|
| 1319 |
|
|
&& !STMT_VINFO_RELEVANT (def_stmt_info))
|
| 1320 |
|
|
vec_stmt = STMT_VINFO_VEC_STMT (vinfo_for_stmt (
|
| 1321 |
|
|
STMT_VINFO_RELATED_STMT (def_stmt_info)));
|
| 1322 |
|
|
gcc_assert (vec_stmt);
|
| 1323 |
|
|
if (gimple_code (vec_stmt) == GIMPLE_PHI)
|
| 1324 |
|
|
vec_oprnd = PHI_RESULT (vec_stmt);
|
| 1325 |
|
|
else if (is_gimple_call (vec_stmt))
|
| 1326 |
|
|
vec_oprnd = gimple_call_lhs (vec_stmt);
|
| 1327 |
|
|
else
|
| 1328 |
|
|
vec_oprnd = gimple_assign_lhs (vec_stmt);
|
| 1329 |
|
|
return vec_oprnd;
|
| 1330 |
|
|
}
|
| 1331 |
|
|
|
| 1332 |
|
|
/* Case 4: operand is defined by a loop header phi - reduction */
|
| 1333 |
|
|
case vect_reduction_def:
|
| 1334 |
|
|
case vect_double_reduction_def:
|
| 1335 |
|
|
case vect_nested_cycle:
|
| 1336 |
|
|
{
|
| 1337 |
|
|
struct loop *loop;
|
| 1338 |
|
|
|
| 1339 |
|
|
gcc_assert (gimple_code (def_stmt) == GIMPLE_PHI);
|
| 1340 |
|
|
loop = (gimple_bb (def_stmt))->loop_father;
|
| 1341 |
|
|
|
| 1342 |
|
|
/* Get the def before the loop */
|
| 1343 |
|
|
op = PHI_ARG_DEF_FROM_EDGE (def_stmt, loop_preheader_edge (loop));
|
| 1344 |
|
|
return get_initial_def_for_reduction (stmt, op, scalar_def);
|
| 1345 |
|
|
}
|
| 1346 |
|
|
|
| 1347 |
|
|
/* Case 5: operand is defined by loop-header phi - induction. */
|
| 1348 |
|
|
case vect_induction_def:
|
| 1349 |
|
|
{
|
| 1350 |
|
|
gcc_assert (gimple_code (def_stmt) == GIMPLE_PHI);
|
| 1351 |
|
|
|
| 1352 |
|
|
/* Get the def from the vectorized stmt. */
|
| 1353 |
|
|
def_stmt_info = vinfo_for_stmt (def_stmt);
|
| 1354 |
|
|
vec_stmt = STMT_VINFO_VEC_STMT (def_stmt_info);
|
| 1355 |
|
|
if (gimple_code (vec_stmt) == GIMPLE_PHI)
|
| 1356 |
|
|
vec_oprnd = PHI_RESULT (vec_stmt);
|
| 1357 |
|
|
else
|
| 1358 |
|
|
vec_oprnd = gimple_get_lhs (vec_stmt);
|
| 1359 |
|
|
return vec_oprnd;
|
| 1360 |
|
|
}
|
| 1361 |
|
|
|
| 1362 |
|
|
default:
|
| 1363 |
|
|
gcc_unreachable ();
|
| 1364 |
|
|
}
|
| 1365 |
|
|
}
|
| 1366 |
|
|
|
| 1367 |
|
|
|
| 1368 |
|
|
/* Function vect_get_vec_def_for_stmt_copy
|
| 1369 |
|
|
|
| 1370 |
|
|
Return a vector-def for an operand. This function is used when the
|
| 1371 |
|
|
vectorized stmt to be created (by the caller to this function) is a "copy"
|
| 1372 |
|
|
created in case the vectorized result cannot fit in one vector, and several
|
| 1373 |
|
|
copies of the vector-stmt are required. In this case the vector-def is
|
| 1374 |
|
|
retrieved from the vector stmt recorded in the STMT_VINFO_RELATED_STMT field
|
| 1375 |
|
|
of the stmt that defines VEC_OPRND.
|
| 1376 |
|
|
DT is the type of the vector def VEC_OPRND.
|
| 1377 |
|
|
|
| 1378 |
|
|
Context:
|
| 1379 |
|
|
In case the vectorization factor (VF) is bigger than the number
|
| 1380 |
|
|
of elements that can fit in a vectype (nunits), we have to generate
|
| 1381 |
|
|
more than one vector stmt to vectorize the scalar stmt. This situation
|
| 1382 |
|
|
arises when there are multiple data-types operated upon in the loop; the
|
| 1383 |
|
|
smallest data-type determines the VF, and as a result, when vectorizing
|
| 1384 |
|
|
stmts operating on wider types we need to create 'VF/nunits' "copies" of the
|
| 1385 |
|
|
vector stmt (each computing a vector of 'nunits' results, and together
|
| 1386 |
|
|
computing 'VF' results in each iteration). This function is called when
|
| 1387 |
|
|
vectorizing such a stmt (e.g. vectorizing S2 in the illustration below, in
|
| 1388 |
|
|
which VF=16 and nunits=4, so the number of copies required is 4):
|
| 1389 |
|
|
|
| 1390 |
|
|
scalar stmt: vectorized into: STMT_VINFO_RELATED_STMT
|
| 1391 |
|
|
|
| 1392 |
|
|
S1: x = load VS1.0: vx.0 = memref0 VS1.1
|
| 1393 |
|
|
VS1.1: vx.1 = memref1 VS1.2
|
| 1394 |
|
|
VS1.2: vx.2 = memref2 VS1.3
|
| 1395 |
|
|
VS1.3: vx.3 = memref3
|
| 1396 |
|
|
|
| 1397 |
|
|
S2: z = x + ... VSnew.0: vz0 = vx.0 + ... VSnew.1
|
| 1398 |
|
|
VSnew.1: vz1 = vx.1 + ... VSnew.2
|
| 1399 |
|
|
VSnew.2: vz2 = vx.2 + ... VSnew.3
|
| 1400 |
|
|
VSnew.3: vz3 = vx.3 + ...
|
| 1401 |
|
|
|
| 1402 |
|
|
The vectorization of S1 is explained in vectorizable_load.
|
| 1403 |
|
|
The vectorization of S2:
|
| 1404 |
|
|
To create the first vector-stmt out of the 4 copies - VSnew.0 -
|
| 1405 |
|
|
the function 'vect_get_vec_def_for_operand' is called to
|
| 1406 |
|
|
get the relevant vector-def for each operand of S2. For operand x it
|
| 1407 |
|
|
returns the vector-def 'vx.0'.
|
| 1408 |
|
|
|
| 1409 |
|
|
To create the remaining copies of the vector-stmt (VSnew.j), this
|
| 1410 |
|
|
function is called to get the relevant vector-def for each operand. It is
|
| 1411 |
|
|
obtained from the respective VS1.j stmt, which is recorded in the
|
| 1412 |
|
|
STMT_VINFO_RELATED_STMT field of the stmt that defines VEC_OPRND.
|
| 1413 |
|
|
|
| 1414 |
|
|
For example, to obtain the vector-def 'vx.1' in order to create the
|
| 1415 |
|
|
vector stmt 'VSnew.1', this function is called with VEC_OPRND='vx.0'.
|
| 1416 |
|
|
Given 'vx0' we obtain the stmt that defines it ('VS1.0'); from the
|
| 1417 |
|
|
STMT_VINFO_RELATED_STMT field of 'VS1.0' we obtain the next copy - 'VS1.1',
|
| 1418 |
|
|
and return its def ('vx.1').
|
| 1419 |
|
|
Overall, to create the above sequence this function will be called 3 times:
|
| 1420 |
|
|
vx.1 = vect_get_vec_def_for_stmt_copy (dt, vx.0);
|
| 1421 |
|
|
vx.2 = vect_get_vec_def_for_stmt_copy (dt, vx.1);
|
| 1422 |
|
|
vx.3 = vect_get_vec_def_for_stmt_copy (dt, vx.2); */
|
| 1423 |
|
|
|
| 1424 |
|
|
tree
|
| 1425 |
|
|
vect_get_vec_def_for_stmt_copy (enum vect_def_type dt, tree vec_oprnd)
|
| 1426 |
|
|
{
|
| 1427 |
|
|
gimple vec_stmt_for_operand;
|
| 1428 |
|
|
stmt_vec_info def_stmt_info;
|
| 1429 |
|
|
|
| 1430 |
|
|
/* Do nothing; can reuse same def. */
|
| 1431 |
|
|
if (dt == vect_external_def || dt == vect_constant_def )
|
| 1432 |
|
|
return vec_oprnd;
|
| 1433 |
|
|
|
| 1434 |
|
|
vec_stmt_for_operand = SSA_NAME_DEF_STMT (vec_oprnd);
|
| 1435 |
|
|
def_stmt_info = vinfo_for_stmt (vec_stmt_for_operand);
|
| 1436 |
|
|
gcc_assert (def_stmt_info);
|
| 1437 |
|
|
vec_stmt_for_operand = STMT_VINFO_RELATED_STMT (def_stmt_info);
|
| 1438 |
|
|
gcc_assert (vec_stmt_for_operand);
|
| 1439 |
|
|
vec_oprnd = gimple_get_lhs (vec_stmt_for_operand);
|
| 1440 |
|
|
if (gimple_code (vec_stmt_for_operand) == GIMPLE_PHI)
|
| 1441 |
|
|
vec_oprnd = PHI_RESULT (vec_stmt_for_operand);
|
| 1442 |
|
|
else
|
| 1443 |
|
|
vec_oprnd = gimple_get_lhs (vec_stmt_for_operand);
|
| 1444 |
|
|
return vec_oprnd;
|
| 1445 |
|
|
}
|
| 1446 |
|
|
|
| 1447 |
|
|
|
| 1448 |
|
|
/* Get vectorized definitions for the operands to create a copy of an original
|
| 1449 |
|
|
stmt. See vect_get_vec_def_for_stmt_copy () for details. */
|
| 1450 |
|
|
|
| 1451 |
|
|
static void
|
| 1452 |
|
|
vect_get_vec_defs_for_stmt_copy (enum vect_def_type *dt,
|
| 1453 |
|
|
VEC(tree,heap) **vec_oprnds0,
|
| 1454 |
|
|
VEC(tree,heap) **vec_oprnds1)
|
| 1455 |
|
|
{
|
| 1456 |
|
|
tree vec_oprnd = VEC_pop (tree, *vec_oprnds0);
|
| 1457 |
|
|
|
| 1458 |
|
|
vec_oprnd = vect_get_vec_def_for_stmt_copy (dt[0], vec_oprnd);
|
| 1459 |
|
|
VEC_quick_push (tree, *vec_oprnds0, vec_oprnd);
|
| 1460 |
|
|
|
| 1461 |
|
|
if (vec_oprnds1 && *vec_oprnds1)
|
| 1462 |
|
|
{
|
| 1463 |
|
|
vec_oprnd = VEC_pop (tree, *vec_oprnds1);
|
| 1464 |
|
|
vec_oprnd = vect_get_vec_def_for_stmt_copy (dt[1], vec_oprnd);
|
| 1465 |
|
|
VEC_quick_push (tree, *vec_oprnds1, vec_oprnd);
|
| 1466 |
|
|
}
|
| 1467 |
|
|
}
|
| 1468 |
|
|
|
| 1469 |
|
|
|
| 1470 |
|
|
/* Get vectorized definitions for OP0 and OP1.
|
| 1471 |
|
|
REDUC_INDEX is the index of reduction operand in case of reduction,
|
| 1472 |
|
|
and -1 otherwise. */
|
| 1473 |
|
|
|
| 1474 |
|
|
void
|
| 1475 |
|
|
vect_get_vec_defs (tree op0, tree op1, gimple stmt,
|
| 1476 |
|
|
VEC (tree, heap) **vec_oprnds0,
|
| 1477 |
|
|
VEC (tree, heap) **vec_oprnds1,
|
| 1478 |
|
|
slp_tree slp_node, int reduc_index)
|
| 1479 |
|
|
{
|
| 1480 |
|
|
if (slp_node)
|
| 1481 |
|
|
{
|
| 1482 |
|
|
int nops = (op1 == NULL_TREE) ? 1 : 2;
|
| 1483 |
|
|
VEC (tree, heap) *ops = VEC_alloc (tree, heap, nops);
|
| 1484 |
|
|
VEC (slp_void_p, heap) *vec_defs = VEC_alloc (slp_void_p, heap, nops);
|
| 1485 |
|
|
|
| 1486 |
|
|
VEC_quick_push (tree, ops, op0);
|
| 1487 |
|
|
if (op1)
|
| 1488 |
|
|
VEC_quick_push (tree, ops, op1);
|
| 1489 |
|
|
|
| 1490 |
|
|
vect_get_slp_defs (ops, slp_node, &vec_defs, reduc_index);
|
| 1491 |
|
|
|
| 1492 |
|
|
*vec_oprnds0 = (VEC (tree, heap) *) VEC_index (slp_void_p, vec_defs, 0);
|
| 1493 |
|
|
if (op1)
|
| 1494 |
|
|
*vec_oprnds1 = (VEC (tree, heap) *) VEC_index (slp_void_p, vec_defs, 1);
|
| 1495 |
|
|
|
| 1496 |
|
|
VEC_free (tree, heap, ops);
|
| 1497 |
|
|
VEC_free (slp_void_p, heap, vec_defs);
|
| 1498 |
|
|
}
|
| 1499 |
|
|
else
|
| 1500 |
|
|
{
|
| 1501 |
|
|
tree vec_oprnd;
|
| 1502 |
|
|
|
| 1503 |
|
|
*vec_oprnds0 = VEC_alloc (tree, heap, 1);
|
| 1504 |
|
|
vec_oprnd = vect_get_vec_def_for_operand (op0, stmt, NULL);
|
| 1505 |
|
|
VEC_quick_push (tree, *vec_oprnds0, vec_oprnd);
|
| 1506 |
|
|
|
| 1507 |
|
|
if (op1)
|
| 1508 |
|
|
{
|
| 1509 |
|
|
*vec_oprnds1 = VEC_alloc (tree, heap, 1);
|
| 1510 |
|
|
vec_oprnd = vect_get_vec_def_for_operand (op1, stmt, NULL);
|
| 1511 |
|
|
VEC_quick_push (tree, *vec_oprnds1, vec_oprnd);
|
| 1512 |
|
|
}
|
| 1513 |
|
|
}
|
| 1514 |
|
|
}
|
| 1515 |
|
|
|
| 1516 |
|
|
|
| 1517 |
|
|
/* Function vect_finish_stmt_generation.
|
| 1518 |
|
|
|
| 1519 |
|
|
Insert a new stmt. */
|
| 1520 |
|
|
|
| 1521 |
|
|
void
|
| 1522 |
|
|
vect_finish_stmt_generation (gimple stmt, gimple vec_stmt,
|
| 1523 |
|
|
gimple_stmt_iterator *gsi)
|
| 1524 |
|
|
{
|
| 1525 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
| 1526 |
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
| 1527 |
|
|
bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
|
| 1528 |
|
|
|
| 1529 |
|
|
gcc_assert (gimple_code (stmt) != GIMPLE_LABEL);
|
| 1530 |
|
|
|
| 1531 |
|
|
gsi_insert_before (gsi, vec_stmt, GSI_SAME_STMT);
|
| 1532 |
|
|
|
| 1533 |
|
|
set_vinfo_for_stmt (vec_stmt, new_stmt_vec_info (vec_stmt, loop_vinfo,
|
| 1534 |
|
|
bb_vinfo));
|
| 1535 |
|
|
|
| 1536 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 1537 |
|
|
{
|
| 1538 |
|
|
fprintf (vect_dump, "add new stmt: ");
|
| 1539 |
|
|
print_gimple_stmt (vect_dump, vec_stmt, 0, TDF_SLIM);
|
| 1540 |
|
|
}
|
| 1541 |
|
|
|
| 1542 |
|
|
gimple_set_location (vec_stmt, gimple_location (stmt));
|
| 1543 |
|
|
}
|
| 1544 |
|
|
|
| 1545 |
|
|
/* Checks if CALL can be vectorized in type VECTYPE. Returns
|
| 1546 |
|
|
a function declaration if the target has a vectorized version
|
| 1547 |
|
|
of the function, or NULL_TREE if the function cannot be vectorized. */
|
| 1548 |
|
|
|
| 1549 |
|
|
tree
|
| 1550 |
|
|
vectorizable_function (gimple call, tree vectype_out, tree vectype_in)
|
| 1551 |
|
|
{
|
| 1552 |
|
|
tree fndecl = gimple_call_fndecl (call);
|
| 1553 |
|
|
|
| 1554 |
|
|
/* We only handle functions that do not read or clobber memory -- i.e.
|
| 1555 |
|
|
const or novops ones. */
|
| 1556 |
|
|
if (!(gimple_call_flags (call) & (ECF_CONST | ECF_NOVOPS)))
|
| 1557 |
|
|
return NULL_TREE;
|
| 1558 |
|
|
|
| 1559 |
|
|
if (!fndecl
|
| 1560 |
|
|
|| TREE_CODE (fndecl) != FUNCTION_DECL
|
| 1561 |
|
|
|| !DECL_BUILT_IN (fndecl))
|
| 1562 |
|
|
return NULL_TREE;
|
| 1563 |
|
|
|
| 1564 |
|
|
return targetm.vectorize.builtin_vectorized_function (fndecl, vectype_out,
|
| 1565 |
|
|
vectype_in);
|
| 1566 |
|
|
}
|
| 1567 |
|
|
|
| 1568 |
|
|
/* Function vectorizable_call.
|
| 1569 |
|
|
|
| 1570 |
|
|
Check if STMT performs a function call that can be vectorized.
|
| 1571 |
|
|
If VEC_STMT is also passed, vectorize the STMT: create a vectorized
|
| 1572 |
|
|
stmt to replace it, put it in VEC_STMT, and insert it at BSI.
|
| 1573 |
|
|
Return FALSE if not a vectorizable STMT, TRUE otherwise. */
|
| 1574 |
|
|
|
| 1575 |
|
|
static bool
|
| 1576 |
|
|
vectorizable_call (gimple stmt, gimple_stmt_iterator *gsi, gimple *vec_stmt,
|
| 1577 |
|
|
slp_tree slp_node)
|
| 1578 |
|
|
{
|
| 1579 |
|
|
tree vec_dest;
|
| 1580 |
|
|
tree scalar_dest;
|
| 1581 |
|
|
tree op, type;
|
| 1582 |
|
|
tree vec_oprnd0 = NULL_TREE, vec_oprnd1 = NULL_TREE;
|
| 1583 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt), prev_stmt_info;
|
| 1584 |
|
|
tree vectype_out, vectype_in;
|
| 1585 |
|
|
int nunits_in;
|
| 1586 |
|
|
int nunits_out;
|
| 1587 |
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
| 1588 |
|
|
bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
|
| 1589 |
|
|
tree fndecl, new_temp, def, rhs_type;
|
| 1590 |
|
|
gimple def_stmt;
|
| 1591 |
|
|
enum vect_def_type dt[3]
|
| 1592 |
|
|
= {vect_unknown_def_type, vect_unknown_def_type, vect_unknown_def_type};
|
| 1593 |
|
|
gimple new_stmt = NULL;
|
| 1594 |
|
|
int ncopies, j;
|
| 1595 |
|
|
VEC(tree, heap) *vargs = NULL;
|
| 1596 |
|
|
enum { NARROW, NONE, WIDEN } modifier;
|
| 1597 |
|
|
size_t i, nargs;
|
| 1598 |
|
|
tree lhs;
|
| 1599 |
|
|
|
| 1600 |
|
|
if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
|
| 1601 |
|
|
return false;
|
| 1602 |
|
|
|
| 1603 |
|
|
if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
|
| 1604 |
|
|
return false;
|
| 1605 |
|
|
|
| 1606 |
|
|
/* Is STMT a vectorizable call? */
|
| 1607 |
|
|
if (!is_gimple_call (stmt))
|
| 1608 |
|
|
return false;
|
| 1609 |
|
|
|
| 1610 |
|
|
if (TREE_CODE (gimple_call_lhs (stmt)) != SSA_NAME)
|
| 1611 |
|
|
return false;
|
| 1612 |
|
|
|
| 1613 |
|
|
if (stmt_can_throw_internal (stmt))
|
| 1614 |
|
|
return false;
|
| 1615 |
|
|
|
| 1616 |
|
|
vectype_out = STMT_VINFO_VECTYPE (stmt_info);
|
| 1617 |
|
|
|
| 1618 |
|
|
/* Process function arguments. */
|
| 1619 |
|
|
rhs_type = NULL_TREE;
|
| 1620 |
|
|
vectype_in = NULL_TREE;
|
| 1621 |
|
|
nargs = gimple_call_num_args (stmt);
|
| 1622 |
|
|
|
| 1623 |
|
|
/* Bail out if the function has more than three arguments, we do not have
|
| 1624 |
|
|
interesting builtin functions to vectorize with more than two arguments
|
| 1625 |
|
|
except for fma. No arguments is also not good. */
|
| 1626 |
|
|
if (nargs == 0 || nargs > 3)
|
| 1627 |
|
|
return false;
|
| 1628 |
|
|
|
| 1629 |
|
|
for (i = 0; i < nargs; i++)
|
| 1630 |
|
|
{
|
| 1631 |
|
|
tree opvectype;
|
| 1632 |
|
|
|
| 1633 |
|
|
op = gimple_call_arg (stmt, i);
|
| 1634 |
|
|
|
| 1635 |
|
|
/* We can only handle calls with arguments of the same type. */
|
| 1636 |
|
|
if (rhs_type
|
| 1637 |
|
|
&& !types_compatible_p (rhs_type, TREE_TYPE (op)))
|
| 1638 |
|
|
{
|
| 1639 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 1640 |
|
|
fprintf (vect_dump, "argument types differ.");
|
| 1641 |
|
|
return false;
|
| 1642 |
|
|
}
|
| 1643 |
|
|
if (!rhs_type)
|
| 1644 |
|
|
rhs_type = TREE_TYPE (op);
|
| 1645 |
|
|
|
| 1646 |
|
|
if (!vect_is_simple_use_1 (op, stmt, loop_vinfo, bb_vinfo,
|
| 1647 |
|
|
&def_stmt, &def, &dt[i], &opvectype))
|
| 1648 |
|
|
{
|
| 1649 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 1650 |
|
|
fprintf (vect_dump, "use not simple.");
|
| 1651 |
|
|
return false;
|
| 1652 |
|
|
}
|
| 1653 |
|
|
|
| 1654 |
|
|
if (!vectype_in)
|
| 1655 |
|
|
vectype_in = opvectype;
|
| 1656 |
|
|
else if (opvectype
|
| 1657 |
|
|
&& opvectype != vectype_in)
|
| 1658 |
|
|
{
|
| 1659 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 1660 |
|
|
fprintf (vect_dump, "argument vector types differ.");
|
| 1661 |
|
|
return false;
|
| 1662 |
|
|
}
|
| 1663 |
|
|
}
|
| 1664 |
|
|
/* If all arguments are external or constant defs use a vector type with
|
| 1665 |
|
|
the same size as the output vector type. */
|
| 1666 |
|
|
if (!vectype_in)
|
| 1667 |
|
|
vectype_in = get_same_sized_vectype (rhs_type, vectype_out);
|
| 1668 |
|
|
if (vec_stmt)
|
| 1669 |
|
|
gcc_assert (vectype_in);
|
| 1670 |
|
|
if (!vectype_in)
|
| 1671 |
|
|
{
|
| 1672 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 1673 |
|
|
{
|
| 1674 |
|
|
fprintf (vect_dump, "no vectype for scalar type ");
|
| 1675 |
|
|
print_generic_expr (vect_dump, rhs_type, TDF_SLIM);
|
| 1676 |
|
|
}
|
| 1677 |
|
|
|
| 1678 |
|
|
return false;
|
| 1679 |
|
|
}
|
| 1680 |
|
|
|
| 1681 |
|
|
/* FORNOW */
|
| 1682 |
|
|
nunits_in = TYPE_VECTOR_SUBPARTS (vectype_in);
|
| 1683 |
|
|
nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out);
|
| 1684 |
|
|
if (nunits_in == nunits_out / 2)
|
| 1685 |
|
|
modifier = NARROW;
|
| 1686 |
|
|
else if (nunits_out == nunits_in)
|
| 1687 |
|
|
modifier = NONE;
|
| 1688 |
|
|
else if (nunits_out == nunits_in / 2)
|
| 1689 |
|
|
modifier = WIDEN;
|
| 1690 |
|
|
else
|
| 1691 |
|
|
return false;
|
| 1692 |
|
|
|
| 1693 |
|
|
/* For now, we only vectorize functions if a target specific builtin
|
| 1694 |
|
|
is available. TODO -- in some cases, it might be profitable to
|
| 1695 |
|
|
insert the calls for pieces of the vector, in order to be able
|
| 1696 |
|
|
to vectorize other operations in the loop. */
|
| 1697 |
|
|
fndecl = vectorizable_function (stmt, vectype_out, vectype_in);
|
| 1698 |
|
|
if (fndecl == NULL_TREE)
|
| 1699 |
|
|
{
|
| 1700 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 1701 |
|
|
fprintf (vect_dump, "function is not vectorizable.");
|
| 1702 |
|
|
|
| 1703 |
|
|
return false;
|
| 1704 |
|
|
}
|
| 1705 |
|
|
|
| 1706 |
|
|
gcc_assert (!gimple_vuse (stmt));
|
| 1707 |
|
|
|
| 1708 |
|
|
if (slp_node || PURE_SLP_STMT (stmt_info))
|
| 1709 |
|
|
ncopies = 1;
|
| 1710 |
|
|
else if (modifier == NARROW)
|
| 1711 |
|
|
ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_out;
|
| 1712 |
|
|
else
|
| 1713 |
|
|
ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_in;
|
| 1714 |
|
|
|
| 1715 |
|
|
/* Sanity check: make sure that at least one copy of the vectorized stmt
|
| 1716 |
|
|
needs to be generated. */
|
| 1717 |
|
|
gcc_assert (ncopies >= 1);
|
| 1718 |
|
|
|
| 1719 |
|
|
if (!vec_stmt) /* transformation not required. */
|
| 1720 |
|
|
{
|
| 1721 |
|
|
STMT_VINFO_TYPE (stmt_info) = call_vec_info_type;
|
| 1722 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 1723 |
|
|
fprintf (vect_dump, "=== vectorizable_call ===");
|
| 1724 |
|
|
vect_model_simple_cost (stmt_info, ncopies, dt, NULL);
|
| 1725 |
|
|
return true;
|
| 1726 |
|
|
}
|
| 1727 |
|
|
|
| 1728 |
|
|
/** Transform. **/
|
| 1729 |
|
|
|
| 1730 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 1731 |
|
|
fprintf (vect_dump, "transform call.");
|
| 1732 |
|
|
|
| 1733 |
|
|
/* Handle def. */
|
| 1734 |
|
|
scalar_dest = gimple_call_lhs (stmt);
|
| 1735 |
|
|
vec_dest = vect_create_destination_var (scalar_dest, vectype_out);
|
| 1736 |
|
|
|
| 1737 |
|
|
prev_stmt_info = NULL;
|
| 1738 |
|
|
switch (modifier)
|
| 1739 |
|
|
{
|
| 1740 |
|
|
case NONE:
|
| 1741 |
|
|
for (j = 0; j < ncopies; ++j)
|
| 1742 |
|
|
{
|
| 1743 |
|
|
/* Build argument list for the vectorized call. */
|
| 1744 |
|
|
if (j == 0)
|
| 1745 |
|
|
vargs = VEC_alloc (tree, heap, nargs);
|
| 1746 |
|
|
else
|
| 1747 |
|
|
VEC_truncate (tree, vargs, 0);
|
| 1748 |
|
|
|
| 1749 |
|
|
if (slp_node)
|
| 1750 |
|
|
{
|
| 1751 |
|
|
VEC (slp_void_p, heap) *vec_defs
|
| 1752 |
|
|
= VEC_alloc (slp_void_p, heap, nargs);
|
| 1753 |
|
|
VEC (tree, heap) *vec_oprnds0;
|
| 1754 |
|
|
|
| 1755 |
|
|
for (i = 0; i < nargs; i++)
|
| 1756 |
|
|
VEC_quick_push (tree, vargs, gimple_call_arg (stmt, i));
|
| 1757 |
|
|
vect_get_slp_defs (vargs, slp_node, &vec_defs, -1);
|
| 1758 |
|
|
vec_oprnds0
|
| 1759 |
|
|
= (VEC (tree, heap) *) VEC_index (slp_void_p, vec_defs, 0);
|
| 1760 |
|
|
|
| 1761 |
|
|
/* Arguments are ready. Create the new vector stmt. */
|
| 1762 |
|
|
FOR_EACH_VEC_ELT (tree, vec_oprnds0, i, vec_oprnd0)
|
| 1763 |
|
|
{
|
| 1764 |
|
|
size_t k;
|
| 1765 |
|
|
for (k = 0; k < nargs; k++)
|
| 1766 |
|
|
{
|
| 1767 |
|
|
VEC (tree, heap) *vec_oprndsk
|
| 1768 |
|
|
= (VEC (tree, heap) *)
|
| 1769 |
|
|
VEC_index (slp_void_p, vec_defs, k);
|
| 1770 |
|
|
VEC_replace (tree, vargs, k,
|
| 1771 |
|
|
VEC_index (tree, vec_oprndsk, i));
|
| 1772 |
|
|
}
|
| 1773 |
|
|
new_stmt = gimple_build_call_vec (fndecl, vargs);
|
| 1774 |
|
|
new_temp = make_ssa_name (vec_dest, new_stmt);
|
| 1775 |
|
|
gimple_call_set_lhs (new_stmt, new_temp);
|
| 1776 |
|
|
vect_finish_stmt_generation (stmt, new_stmt, gsi);
|
| 1777 |
|
|
mark_symbols_for_renaming (new_stmt);
|
| 1778 |
|
|
VEC_quick_push (gimple, SLP_TREE_VEC_STMTS (slp_node),
|
| 1779 |
|
|
new_stmt);
|
| 1780 |
|
|
}
|
| 1781 |
|
|
|
| 1782 |
|
|
for (i = 0; i < nargs; i++)
|
| 1783 |
|
|
{
|
| 1784 |
|
|
VEC (tree, heap) *vec_oprndsi
|
| 1785 |
|
|
= (VEC (tree, heap) *)
|
| 1786 |
|
|
VEC_index (slp_void_p, vec_defs, i);
|
| 1787 |
|
|
VEC_free (tree, heap, vec_oprndsi);
|
| 1788 |
|
|
}
|
| 1789 |
|
|
VEC_free (slp_void_p, heap, vec_defs);
|
| 1790 |
|
|
continue;
|
| 1791 |
|
|
}
|
| 1792 |
|
|
|
| 1793 |
|
|
for (i = 0; i < nargs; i++)
|
| 1794 |
|
|
{
|
| 1795 |
|
|
op = gimple_call_arg (stmt, i);
|
| 1796 |
|
|
if (j == 0)
|
| 1797 |
|
|
vec_oprnd0
|
| 1798 |
|
|
= vect_get_vec_def_for_operand (op, stmt, NULL);
|
| 1799 |
|
|
else
|
| 1800 |
|
|
{
|
| 1801 |
|
|
vec_oprnd0 = gimple_call_arg (new_stmt, i);
|
| 1802 |
|
|
vec_oprnd0
|
| 1803 |
|
|
= vect_get_vec_def_for_stmt_copy (dt[i], vec_oprnd0);
|
| 1804 |
|
|
}
|
| 1805 |
|
|
|
| 1806 |
|
|
VEC_quick_push (tree, vargs, vec_oprnd0);
|
| 1807 |
|
|
}
|
| 1808 |
|
|
|
| 1809 |
|
|
new_stmt = gimple_build_call_vec (fndecl, vargs);
|
| 1810 |
|
|
new_temp = make_ssa_name (vec_dest, new_stmt);
|
| 1811 |
|
|
gimple_call_set_lhs (new_stmt, new_temp);
|
| 1812 |
|
|
|
| 1813 |
|
|
vect_finish_stmt_generation (stmt, new_stmt, gsi);
|
| 1814 |
|
|
mark_symbols_for_renaming (new_stmt);
|
| 1815 |
|
|
|
| 1816 |
|
|
if (j == 0)
|
| 1817 |
|
|
STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
|
| 1818 |
|
|
else
|
| 1819 |
|
|
STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
|
| 1820 |
|
|
|
| 1821 |
|
|
prev_stmt_info = vinfo_for_stmt (new_stmt);
|
| 1822 |
|
|
}
|
| 1823 |
|
|
|
| 1824 |
|
|
break;
|
| 1825 |
|
|
|
| 1826 |
|
|
case NARROW:
|
| 1827 |
|
|
for (j = 0; j < ncopies; ++j)
|
| 1828 |
|
|
{
|
| 1829 |
|
|
/* Build argument list for the vectorized call. */
|
| 1830 |
|
|
if (j == 0)
|
| 1831 |
|
|
vargs = VEC_alloc (tree, heap, nargs * 2);
|
| 1832 |
|
|
else
|
| 1833 |
|
|
VEC_truncate (tree, vargs, 0);
|
| 1834 |
|
|
|
| 1835 |
|
|
if (slp_node)
|
| 1836 |
|
|
{
|
| 1837 |
|
|
VEC (slp_void_p, heap) *vec_defs
|
| 1838 |
|
|
= VEC_alloc (slp_void_p, heap, nargs);
|
| 1839 |
|
|
VEC (tree, heap) *vec_oprnds0;
|
| 1840 |
|
|
|
| 1841 |
|
|
for (i = 0; i < nargs; i++)
|
| 1842 |
|
|
VEC_quick_push (tree, vargs, gimple_call_arg (stmt, i));
|
| 1843 |
|
|
vect_get_slp_defs (vargs, slp_node, &vec_defs, -1);
|
| 1844 |
|
|
vec_oprnds0
|
| 1845 |
|
|
= (VEC (tree, heap) *) VEC_index (slp_void_p, vec_defs, 0);
|
| 1846 |
|
|
|
| 1847 |
|
|
/* Arguments are ready. Create the new vector stmt. */
|
| 1848 |
|
|
for (i = 0; VEC_iterate (tree, vec_oprnds0, i, vec_oprnd0);
|
| 1849 |
|
|
i += 2)
|
| 1850 |
|
|
{
|
| 1851 |
|
|
size_t k;
|
| 1852 |
|
|
VEC_truncate (tree, vargs, 0);
|
| 1853 |
|
|
for (k = 0; k < nargs; k++)
|
| 1854 |
|
|
{
|
| 1855 |
|
|
VEC (tree, heap) *vec_oprndsk
|
| 1856 |
|
|
= (VEC (tree, heap) *)
|
| 1857 |
|
|
VEC_index (slp_void_p, vec_defs, k);
|
| 1858 |
|
|
VEC_quick_push (tree, vargs,
|
| 1859 |
|
|
VEC_index (tree, vec_oprndsk, i));
|
| 1860 |
|
|
VEC_quick_push (tree, vargs,
|
| 1861 |
|
|
VEC_index (tree, vec_oprndsk, i + 1));
|
| 1862 |
|
|
}
|
| 1863 |
|
|
new_stmt = gimple_build_call_vec (fndecl, vargs);
|
| 1864 |
|
|
new_temp = make_ssa_name (vec_dest, new_stmt);
|
| 1865 |
|
|
gimple_call_set_lhs (new_stmt, new_temp);
|
| 1866 |
|
|
vect_finish_stmt_generation (stmt, new_stmt, gsi);
|
| 1867 |
|
|
mark_symbols_for_renaming (new_stmt);
|
| 1868 |
|
|
VEC_quick_push (gimple, SLP_TREE_VEC_STMTS (slp_node),
|
| 1869 |
|
|
new_stmt);
|
| 1870 |
|
|
}
|
| 1871 |
|
|
|
| 1872 |
|
|
for (i = 0; i < nargs; i++)
|
| 1873 |
|
|
{
|
| 1874 |
|
|
VEC (tree, heap) *vec_oprndsi
|
| 1875 |
|
|
= (VEC (tree, heap) *)
|
| 1876 |
|
|
VEC_index (slp_void_p, vec_defs, i);
|
| 1877 |
|
|
VEC_free (tree, heap, vec_oprndsi);
|
| 1878 |
|
|
}
|
| 1879 |
|
|
VEC_free (slp_void_p, heap, vec_defs);
|
| 1880 |
|
|
continue;
|
| 1881 |
|
|
}
|
| 1882 |
|
|
|
| 1883 |
|
|
for (i = 0; i < nargs; i++)
|
| 1884 |
|
|
{
|
| 1885 |
|
|
op = gimple_call_arg (stmt, i);
|
| 1886 |
|
|
if (j == 0)
|
| 1887 |
|
|
{
|
| 1888 |
|
|
vec_oprnd0
|
| 1889 |
|
|
= vect_get_vec_def_for_operand (op, stmt, NULL);
|
| 1890 |
|
|
vec_oprnd1
|
| 1891 |
|
|
= vect_get_vec_def_for_stmt_copy (dt[i], vec_oprnd0);
|
| 1892 |
|
|
}
|
| 1893 |
|
|
else
|
| 1894 |
|
|
{
|
| 1895 |
|
|
vec_oprnd1 = gimple_call_arg (new_stmt, 2*i + 1);
|
| 1896 |
|
|
vec_oprnd0
|
| 1897 |
|
|
= vect_get_vec_def_for_stmt_copy (dt[i], vec_oprnd1);
|
| 1898 |
|
|
vec_oprnd1
|
| 1899 |
|
|
= vect_get_vec_def_for_stmt_copy (dt[i], vec_oprnd0);
|
| 1900 |
|
|
}
|
| 1901 |
|
|
|
| 1902 |
|
|
VEC_quick_push (tree, vargs, vec_oprnd0);
|
| 1903 |
|
|
VEC_quick_push (tree, vargs, vec_oprnd1);
|
| 1904 |
|
|
}
|
| 1905 |
|
|
|
| 1906 |
|
|
new_stmt = gimple_build_call_vec (fndecl, vargs);
|
| 1907 |
|
|
new_temp = make_ssa_name (vec_dest, new_stmt);
|
| 1908 |
|
|
gimple_call_set_lhs (new_stmt, new_temp);
|
| 1909 |
|
|
|
| 1910 |
|
|
vect_finish_stmt_generation (stmt, new_stmt, gsi);
|
| 1911 |
|
|
mark_symbols_for_renaming (new_stmt);
|
| 1912 |
|
|
|
| 1913 |
|
|
if (j == 0)
|
| 1914 |
|
|
STMT_VINFO_VEC_STMT (stmt_info) = new_stmt;
|
| 1915 |
|
|
else
|
| 1916 |
|
|
STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
|
| 1917 |
|
|
|
| 1918 |
|
|
prev_stmt_info = vinfo_for_stmt (new_stmt);
|
| 1919 |
|
|
}
|
| 1920 |
|
|
|
| 1921 |
|
|
*vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
|
| 1922 |
|
|
|
| 1923 |
|
|
break;
|
| 1924 |
|
|
|
| 1925 |
|
|
case WIDEN:
|
| 1926 |
|
|
/* No current target implements this case. */
|
| 1927 |
|
|
return false;
|
| 1928 |
|
|
}
|
| 1929 |
|
|
|
| 1930 |
|
|
VEC_free (tree, heap, vargs);
|
| 1931 |
|
|
|
| 1932 |
|
|
/* Update the exception handling table with the vector stmt if necessary. */
|
| 1933 |
|
|
if (maybe_clean_or_replace_eh_stmt (stmt, *vec_stmt))
|
| 1934 |
|
|
gimple_purge_dead_eh_edges (gimple_bb (stmt));
|
| 1935 |
|
|
|
| 1936 |
|
|
/* The call in STMT might prevent it from being removed in dce.
|
| 1937 |
|
|
We however cannot remove it here, due to the way the ssa name
|
| 1938 |
|
|
it defines is mapped to the new definition. So just replace
|
| 1939 |
|
|
rhs of the statement with something harmless. */
|
| 1940 |
|
|
|
| 1941 |
|
|
if (slp_node)
|
| 1942 |
|
|
return true;
|
| 1943 |
|
|
|
| 1944 |
|
|
type = TREE_TYPE (scalar_dest);
|
| 1945 |
|
|
if (is_pattern_stmt_p (stmt_info))
|
| 1946 |
|
|
lhs = gimple_call_lhs (STMT_VINFO_RELATED_STMT (stmt_info));
|
| 1947 |
|
|
else
|
| 1948 |
|
|
lhs = gimple_call_lhs (stmt);
|
| 1949 |
|
|
new_stmt = gimple_build_assign (lhs, build_zero_cst (type));
|
| 1950 |
|
|
set_vinfo_for_stmt (new_stmt, stmt_info);
|
| 1951 |
|
|
set_vinfo_for_stmt (stmt, NULL);
|
| 1952 |
|
|
STMT_VINFO_STMT (stmt_info) = new_stmt;
|
| 1953 |
|
|
gsi_replace (gsi, new_stmt, false);
|
| 1954 |
|
|
SSA_NAME_DEF_STMT (gimple_assign_lhs (new_stmt)) = new_stmt;
|
| 1955 |
|
|
|
| 1956 |
|
|
return true;
|
| 1957 |
|
|
}
|
| 1958 |
|
|
|
| 1959 |
|
|
|
| 1960 |
|
|
/* Function vect_gen_widened_results_half
|
| 1961 |
|
|
|
| 1962 |
|
|
Create a vector stmt whose code, type, number of arguments, and result
|
| 1963 |
|
|
variable are CODE, OP_TYPE, and VEC_DEST, and its arguments are
|
| 1964 |
|
|
VEC_OPRND0 and VEC_OPRND1. The new vector stmt is to be inserted at BSI.
|
| 1965 |
|
|
In the case that CODE is a CALL_EXPR, this means that a call to DECL
|
| 1966 |
|
|
needs to be created (DECL is a function-decl of a target-builtin).
|
| 1967 |
|
|
STMT is the original scalar stmt that we are vectorizing. */
|
| 1968 |
|
|
|
| 1969 |
|
|
static gimple
|
| 1970 |
|
|
vect_gen_widened_results_half (enum tree_code code,
|
| 1971 |
|
|
tree decl,
|
| 1972 |
|
|
tree vec_oprnd0, tree vec_oprnd1, int op_type,
|
| 1973 |
|
|
tree vec_dest, gimple_stmt_iterator *gsi,
|
| 1974 |
|
|
gimple stmt)
|
| 1975 |
|
|
{
|
| 1976 |
|
|
gimple new_stmt;
|
| 1977 |
|
|
tree new_temp;
|
| 1978 |
|
|
|
| 1979 |
|
|
/* Generate half of the widened result: */
|
| 1980 |
|
|
if (code == CALL_EXPR)
|
| 1981 |
|
|
{
|
| 1982 |
|
|
/* Target specific support */
|
| 1983 |
|
|
if (op_type == binary_op)
|
| 1984 |
|
|
new_stmt = gimple_build_call (decl, 2, vec_oprnd0, vec_oprnd1);
|
| 1985 |
|
|
else
|
| 1986 |
|
|
new_stmt = gimple_build_call (decl, 1, vec_oprnd0);
|
| 1987 |
|
|
new_temp = make_ssa_name (vec_dest, new_stmt);
|
| 1988 |
|
|
gimple_call_set_lhs (new_stmt, new_temp);
|
| 1989 |
|
|
}
|
| 1990 |
|
|
else
|
| 1991 |
|
|
{
|
| 1992 |
|
|
/* Generic support */
|
| 1993 |
|
|
gcc_assert (op_type == TREE_CODE_LENGTH (code));
|
| 1994 |
|
|
if (op_type != binary_op)
|
| 1995 |
|
|
vec_oprnd1 = NULL;
|
| 1996 |
|
|
new_stmt = gimple_build_assign_with_ops (code, vec_dest, vec_oprnd0,
|
| 1997 |
|
|
vec_oprnd1);
|
| 1998 |
|
|
new_temp = make_ssa_name (vec_dest, new_stmt);
|
| 1999 |
|
|
gimple_assign_set_lhs (new_stmt, new_temp);
|
| 2000 |
|
|
}
|
| 2001 |
|
|
vect_finish_stmt_generation (stmt, new_stmt, gsi);
|
| 2002 |
|
|
|
| 2003 |
|
|
return new_stmt;
|
| 2004 |
|
|
}
|
| 2005 |
|
|
|
| 2006 |
|
|
|
| 2007 |
|
|
/* Get vectorized definitions for loop-based vectorization. For the first
|
| 2008 |
|
|
operand we call vect_get_vec_def_for_operand() (with OPRND containing
|
| 2009 |
|
|
scalar operand), and for the rest we get a copy with
|
| 2010 |
|
|
vect_get_vec_def_for_stmt_copy() using the previous vector definition
|
| 2011 |
|
|
(stored in OPRND). See vect_get_vec_def_for_stmt_copy() for details.
|
| 2012 |
|
|
The vectors are collected into VEC_OPRNDS. */
|
| 2013 |
|
|
|
| 2014 |
|
|
static void
|
| 2015 |
|
|
vect_get_loop_based_defs (tree *oprnd, gimple stmt, enum vect_def_type dt,
|
| 2016 |
|
|
VEC (tree, heap) **vec_oprnds, int multi_step_cvt)
|
| 2017 |
|
|
{
|
| 2018 |
|
|
tree vec_oprnd;
|
| 2019 |
|
|
|
| 2020 |
|
|
/* Get first vector operand. */
|
| 2021 |
|
|
/* All the vector operands except the very first one (that is scalar oprnd)
|
| 2022 |
|
|
are stmt copies. */
|
| 2023 |
|
|
if (TREE_CODE (TREE_TYPE (*oprnd)) != VECTOR_TYPE)
|
| 2024 |
|
|
vec_oprnd = vect_get_vec_def_for_operand (*oprnd, stmt, NULL);
|
| 2025 |
|
|
else
|
| 2026 |
|
|
vec_oprnd = vect_get_vec_def_for_stmt_copy (dt, *oprnd);
|
| 2027 |
|
|
|
| 2028 |
|
|
VEC_quick_push (tree, *vec_oprnds, vec_oprnd);
|
| 2029 |
|
|
|
| 2030 |
|
|
/* Get second vector operand. */
|
| 2031 |
|
|
vec_oprnd = vect_get_vec_def_for_stmt_copy (dt, vec_oprnd);
|
| 2032 |
|
|
VEC_quick_push (tree, *vec_oprnds, vec_oprnd);
|
| 2033 |
|
|
|
| 2034 |
|
|
*oprnd = vec_oprnd;
|
| 2035 |
|
|
|
| 2036 |
|
|
/* For conversion in multiple steps, continue to get operands
|
| 2037 |
|
|
recursively. */
|
| 2038 |
|
|
if (multi_step_cvt)
|
| 2039 |
|
|
vect_get_loop_based_defs (oprnd, stmt, dt, vec_oprnds, multi_step_cvt - 1);
|
| 2040 |
|
|
}
|
| 2041 |
|
|
|
| 2042 |
|
|
|
| 2043 |
|
|
/* Create vectorized demotion statements for vector operands from VEC_OPRNDS.
|
| 2044 |
|
|
For multi-step conversions store the resulting vectors and call the function
|
| 2045 |
|
|
recursively. */
|
| 2046 |
|
|
|
| 2047 |
|
|
static void
|
| 2048 |
|
|
vect_create_vectorized_demotion_stmts (VEC (tree, heap) **vec_oprnds,
|
| 2049 |
|
|
int multi_step_cvt, gimple stmt,
|
| 2050 |
|
|
VEC (tree, heap) *vec_dsts,
|
| 2051 |
|
|
gimple_stmt_iterator *gsi,
|
| 2052 |
|
|
slp_tree slp_node, enum tree_code code,
|
| 2053 |
|
|
stmt_vec_info *prev_stmt_info)
|
| 2054 |
|
|
{
|
| 2055 |
|
|
unsigned int i;
|
| 2056 |
|
|
tree vop0, vop1, new_tmp, vec_dest;
|
| 2057 |
|
|
gimple new_stmt;
|
| 2058 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
| 2059 |
|
|
|
| 2060 |
|
|
vec_dest = VEC_pop (tree, vec_dsts);
|
| 2061 |
|
|
|
| 2062 |
|
|
for (i = 0; i < VEC_length (tree, *vec_oprnds); i += 2)
|
| 2063 |
|
|
{
|
| 2064 |
|
|
/* Create demotion operation. */
|
| 2065 |
|
|
vop0 = VEC_index (tree, *vec_oprnds, i);
|
| 2066 |
|
|
vop1 = VEC_index (tree, *vec_oprnds, i + 1);
|
| 2067 |
|
|
new_stmt = gimple_build_assign_with_ops (code, vec_dest, vop0, vop1);
|
| 2068 |
|
|
new_tmp = make_ssa_name (vec_dest, new_stmt);
|
| 2069 |
|
|
gimple_assign_set_lhs (new_stmt, new_tmp);
|
| 2070 |
|
|
vect_finish_stmt_generation (stmt, new_stmt, gsi);
|
| 2071 |
|
|
|
| 2072 |
|
|
if (multi_step_cvt)
|
| 2073 |
|
|
/* Store the resulting vector for next recursive call. */
|
| 2074 |
|
|
VEC_replace (tree, *vec_oprnds, i/2, new_tmp);
|
| 2075 |
|
|
else
|
| 2076 |
|
|
{
|
| 2077 |
|
|
/* This is the last step of the conversion sequence. Store the
|
| 2078 |
|
|
vectors in SLP_NODE or in vector info of the scalar statement
|
| 2079 |
|
|
(or in STMT_VINFO_RELATED_STMT chain). */
|
| 2080 |
|
|
if (slp_node)
|
| 2081 |
|
|
VEC_quick_push (gimple, SLP_TREE_VEC_STMTS (slp_node), new_stmt);
|
| 2082 |
|
|
else
|
| 2083 |
|
|
{
|
| 2084 |
|
|
if (!*prev_stmt_info)
|
| 2085 |
|
|
STMT_VINFO_VEC_STMT (stmt_info) = new_stmt;
|
| 2086 |
|
|
else
|
| 2087 |
|
|
STMT_VINFO_RELATED_STMT (*prev_stmt_info) = new_stmt;
|
| 2088 |
|
|
|
| 2089 |
|
|
*prev_stmt_info = vinfo_for_stmt (new_stmt);
|
| 2090 |
|
|
}
|
| 2091 |
|
|
}
|
| 2092 |
|
|
}
|
| 2093 |
|
|
|
| 2094 |
|
|
/* For multi-step demotion operations we first generate demotion operations
|
| 2095 |
|
|
from the source type to the intermediate types, and then combine the
|
| 2096 |
|
|
results (stored in VEC_OPRNDS) in demotion operation to the destination
|
| 2097 |
|
|
type. */
|
| 2098 |
|
|
if (multi_step_cvt)
|
| 2099 |
|
|
{
|
| 2100 |
|
|
/* At each level of recursion we have half of the operands we had at the
|
| 2101 |
|
|
previous level. */
|
| 2102 |
|
|
VEC_truncate (tree, *vec_oprnds, (i+1)/2);
|
| 2103 |
|
|
vect_create_vectorized_demotion_stmts (vec_oprnds, multi_step_cvt - 1,
|
| 2104 |
|
|
stmt, vec_dsts, gsi, slp_node,
|
| 2105 |
|
|
VEC_PACK_TRUNC_EXPR,
|
| 2106 |
|
|
prev_stmt_info);
|
| 2107 |
|
|
}
|
| 2108 |
|
|
|
| 2109 |
|
|
VEC_quick_push (tree, vec_dsts, vec_dest);
|
| 2110 |
|
|
}
|
| 2111 |
|
|
|
| 2112 |
|
|
|
| 2113 |
|
|
/* Create vectorized promotion statements for vector operands from VEC_OPRNDS0
|
| 2114 |
|
|
and VEC_OPRNDS1 (for binary operations). For multi-step conversions store
|
| 2115 |
|
|
the resulting vectors and call the function recursively. */
|
| 2116 |
|
|
|
| 2117 |
|
|
static void
|
| 2118 |
|
|
vect_create_vectorized_promotion_stmts (VEC (tree, heap) **vec_oprnds0,
|
| 2119 |
|
|
VEC (tree, heap) **vec_oprnds1,
|
| 2120 |
|
|
gimple stmt, tree vec_dest,
|
| 2121 |
|
|
gimple_stmt_iterator *gsi,
|
| 2122 |
|
|
enum tree_code code1,
|
| 2123 |
|
|
enum tree_code code2, tree decl1,
|
| 2124 |
|
|
tree decl2, int op_type)
|
| 2125 |
|
|
{
|
| 2126 |
|
|
int i;
|
| 2127 |
|
|
tree vop0, vop1, new_tmp1, new_tmp2;
|
| 2128 |
|
|
gimple new_stmt1, new_stmt2;
|
| 2129 |
|
|
VEC (tree, heap) *vec_tmp = NULL;
|
| 2130 |
|
|
|
| 2131 |
|
|
vec_tmp = VEC_alloc (tree, heap, VEC_length (tree, *vec_oprnds0) * 2);
|
| 2132 |
|
|
FOR_EACH_VEC_ELT (tree, *vec_oprnds0, i, vop0)
|
| 2133 |
|
|
{
|
| 2134 |
|
|
if (op_type == binary_op)
|
| 2135 |
|
|
vop1 = VEC_index (tree, *vec_oprnds1, i);
|
| 2136 |
|
|
else
|
| 2137 |
|
|
vop1 = NULL_TREE;
|
| 2138 |
|
|
|
| 2139 |
|
|
/* Generate the two halves of promotion operation. */
|
| 2140 |
|
|
new_stmt1 = vect_gen_widened_results_half (code1, decl1, vop0, vop1,
|
| 2141 |
|
|
op_type, vec_dest, gsi, stmt);
|
| 2142 |
|
|
new_stmt2 = vect_gen_widened_results_half (code2, decl2, vop0, vop1,
|
| 2143 |
|
|
op_type, vec_dest, gsi, stmt);
|
| 2144 |
|
|
if (is_gimple_call (new_stmt1))
|
| 2145 |
|
|
{
|
| 2146 |
|
|
new_tmp1 = gimple_call_lhs (new_stmt1);
|
| 2147 |
|
|
new_tmp2 = gimple_call_lhs (new_stmt2);
|
| 2148 |
|
|
}
|
| 2149 |
|
|
else
|
| 2150 |
|
|
{
|
| 2151 |
|
|
new_tmp1 = gimple_assign_lhs (new_stmt1);
|
| 2152 |
|
|
new_tmp2 = gimple_assign_lhs (new_stmt2);
|
| 2153 |
|
|
}
|
| 2154 |
|
|
|
| 2155 |
|
|
/* Store the results for the next step. */
|
| 2156 |
|
|
VEC_quick_push (tree, vec_tmp, new_tmp1);
|
| 2157 |
|
|
VEC_quick_push (tree, vec_tmp, new_tmp2);
|
| 2158 |
|
|
}
|
| 2159 |
|
|
|
| 2160 |
|
|
VEC_free (tree, heap, *vec_oprnds0);
|
| 2161 |
|
|
*vec_oprnds0 = vec_tmp;
|
| 2162 |
|
|
}
|
| 2163 |
|
|
|
| 2164 |
|
|
|
| 2165 |
|
|
/* Check if STMT performs a conversion operation, that can be vectorized.
|
| 2166 |
|
|
If VEC_STMT is also passed, vectorize the STMT: create a vectorized
|
| 2167 |
|
|
stmt to replace it, put it in VEC_STMT, and insert it at GSI.
|
| 2168 |
|
|
Return FALSE if not a vectorizable STMT, TRUE otherwise. */
|
| 2169 |
|
|
|
| 2170 |
|
|
static bool
|
| 2171 |
|
|
vectorizable_conversion (gimple stmt, gimple_stmt_iterator *gsi,
|
| 2172 |
|
|
gimple *vec_stmt, slp_tree slp_node)
|
| 2173 |
|
|
{
|
| 2174 |
|
|
tree vec_dest;
|
| 2175 |
|
|
tree scalar_dest;
|
| 2176 |
|
|
tree op0, op1 = NULL_TREE;
|
| 2177 |
|
|
tree vec_oprnd0 = NULL_TREE, vec_oprnd1 = NULL_TREE;
|
| 2178 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
| 2179 |
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
| 2180 |
|
|
enum tree_code code, code1 = ERROR_MARK, code2 = ERROR_MARK;
|
| 2181 |
|
|
enum tree_code codecvt1 = ERROR_MARK, codecvt2 = ERROR_MARK;
|
| 2182 |
|
|
tree decl1 = NULL_TREE, decl2 = NULL_TREE;
|
| 2183 |
|
|
tree new_temp;
|
| 2184 |
|
|
tree def;
|
| 2185 |
|
|
gimple def_stmt;
|
| 2186 |
|
|
enum vect_def_type dt[2] = {vect_unknown_def_type, vect_unknown_def_type};
|
| 2187 |
|
|
gimple new_stmt = NULL;
|
| 2188 |
|
|
stmt_vec_info prev_stmt_info;
|
| 2189 |
|
|
int nunits_in;
|
| 2190 |
|
|
int nunits_out;
|
| 2191 |
|
|
tree vectype_out, vectype_in;
|
| 2192 |
|
|
int ncopies, i, j;
|
| 2193 |
|
|
tree lhs_type, rhs_type;
|
| 2194 |
|
|
enum { NARROW, NONE, WIDEN } modifier;
|
| 2195 |
|
|
VEC (tree,heap) *vec_oprnds0 = NULL, *vec_oprnds1 = NULL;
|
| 2196 |
|
|
tree vop0;
|
| 2197 |
|
|
bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
|
| 2198 |
|
|
int multi_step_cvt = 0;
|
| 2199 |
|
|
VEC (tree, heap) *vec_dsts = NULL, *interm_types = NULL;
|
| 2200 |
|
|
tree last_oprnd, intermediate_type, cvt_type = NULL_TREE;
|
| 2201 |
|
|
int op_type;
|
| 2202 |
|
|
enum machine_mode rhs_mode;
|
| 2203 |
|
|
unsigned short fltsz;
|
| 2204 |
|
|
|
| 2205 |
|
|
/* Is STMT a vectorizable conversion? */
|
| 2206 |
|
|
|
| 2207 |
|
|
if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
|
| 2208 |
|
|
return false;
|
| 2209 |
|
|
|
| 2210 |
|
|
if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
|
| 2211 |
|
|
return false;
|
| 2212 |
|
|
|
| 2213 |
|
|
if (!is_gimple_assign (stmt))
|
| 2214 |
|
|
return false;
|
| 2215 |
|
|
|
| 2216 |
|
|
if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
|
| 2217 |
|
|
return false;
|
| 2218 |
|
|
|
| 2219 |
|
|
code = gimple_assign_rhs_code (stmt);
|
| 2220 |
|
|
if (!CONVERT_EXPR_CODE_P (code)
|
| 2221 |
|
|
&& code != FIX_TRUNC_EXPR
|
| 2222 |
|
|
&& code != FLOAT_EXPR
|
| 2223 |
|
|
&& code != WIDEN_MULT_EXPR
|
| 2224 |
|
|
&& code != WIDEN_LSHIFT_EXPR)
|
| 2225 |
|
|
return false;
|
| 2226 |
|
|
|
| 2227 |
|
|
op_type = TREE_CODE_LENGTH (code);
|
| 2228 |
|
|
|
| 2229 |
|
|
/* Check types of lhs and rhs. */
|
| 2230 |
|
|
scalar_dest = gimple_assign_lhs (stmt);
|
| 2231 |
|
|
lhs_type = TREE_TYPE (scalar_dest);
|
| 2232 |
|
|
vectype_out = STMT_VINFO_VECTYPE (stmt_info);
|
| 2233 |
|
|
|
| 2234 |
|
|
op0 = gimple_assign_rhs1 (stmt);
|
| 2235 |
|
|
rhs_type = TREE_TYPE (op0);
|
| 2236 |
|
|
|
| 2237 |
|
|
if ((code != FIX_TRUNC_EXPR && code != FLOAT_EXPR)
|
| 2238 |
|
|
&& !((INTEGRAL_TYPE_P (lhs_type)
|
| 2239 |
|
|
&& INTEGRAL_TYPE_P (rhs_type))
|
| 2240 |
|
|
|| (SCALAR_FLOAT_TYPE_P (lhs_type)
|
| 2241 |
|
|
&& SCALAR_FLOAT_TYPE_P (rhs_type))))
|
| 2242 |
|
|
return false;
|
| 2243 |
|
|
|
| 2244 |
|
|
if ((INTEGRAL_TYPE_P (lhs_type)
|
| 2245 |
|
|
&& (TYPE_PRECISION (lhs_type)
|
| 2246 |
|
|
!= GET_MODE_PRECISION (TYPE_MODE (lhs_type))))
|
| 2247 |
|
|
|| (INTEGRAL_TYPE_P (rhs_type)
|
| 2248 |
|
|
&& (TYPE_PRECISION (rhs_type)
|
| 2249 |
|
|
!= GET_MODE_PRECISION (TYPE_MODE (rhs_type)))))
|
| 2250 |
|
|
{
|
| 2251 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 2252 |
|
|
fprintf (vect_dump,
|
| 2253 |
|
|
"type conversion to/from bit-precision unsupported.");
|
| 2254 |
|
|
return false;
|
| 2255 |
|
|
}
|
| 2256 |
|
|
|
| 2257 |
|
|
/* Check the operands of the operation. */
|
| 2258 |
|
|
if (!vect_is_simple_use_1 (op0, stmt, loop_vinfo, bb_vinfo,
|
| 2259 |
|
|
&def_stmt, &def, &dt[0], &vectype_in))
|
| 2260 |
|
|
{
|
| 2261 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 2262 |
|
|
fprintf (vect_dump, "use not simple.");
|
| 2263 |
|
|
return false;
|
| 2264 |
|
|
}
|
| 2265 |
|
|
if (op_type == binary_op)
|
| 2266 |
|
|
{
|
| 2267 |
|
|
bool ok;
|
| 2268 |
|
|
|
| 2269 |
|
|
op1 = gimple_assign_rhs2 (stmt);
|
| 2270 |
|
|
gcc_assert (code == WIDEN_MULT_EXPR || code == WIDEN_LSHIFT_EXPR);
|
| 2271 |
|
|
/* For WIDEN_MULT_EXPR, if OP0 is a constant, use the type of
|
| 2272 |
|
|
OP1. */
|
| 2273 |
|
|
if (CONSTANT_CLASS_P (op0))
|
| 2274 |
|
|
ok = vect_is_simple_use_1 (op1, stmt, loop_vinfo, NULL,
|
| 2275 |
|
|
&def_stmt, &def, &dt[1], &vectype_in);
|
| 2276 |
|
|
else
|
| 2277 |
|
|
ok = vect_is_simple_use (op1, stmt, loop_vinfo, NULL, &def_stmt,
|
| 2278 |
|
|
&def, &dt[1]);
|
| 2279 |
|
|
|
| 2280 |
|
|
if (!ok)
|
| 2281 |
|
|
{
|
| 2282 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 2283 |
|
|
fprintf (vect_dump, "use not simple.");
|
| 2284 |
|
|
return false;
|
| 2285 |
|
|
}
|
| 2286 |
|
|
}
|
| 2287 |
|
|
|
| 2288 |
|
|
/* If op0 is an external or constant defs use a vector type of
|
| 2289 |
|
|
the same size as the output vector type. */
|
| 2290 |
|
|
if (!vectype_in)
|
| 2291 |
|
|
vectype_in = get_same_sized_vectype (rhs_type, vectype_out);
|
| 2292 |
|
|
if (vec_stmt)
|
| 2293 |
|
|
gcc_assert (vectype_in);
|
| 2294 |
|
|
if (!vectype_in)
|
| 2295 |
|
|
{
|
| 2296 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 2297 |
|
|
{
|
| 2298 |
|
|
fprintf (vect_dump, "no vectype for scalar type ");
|
| 2299 |
|
|
print_generic_expr (vect_dump, rhs_type, TDF_SLIM);
|
| 2300 |
|
|
}
|
| 2301 |
|
|
|
| 2302 |
|
|
return false;
|
| 2303 |
|
|
}
|
| 2304 |
|
|
|
| 2305 |
|
|
nunits_in = TYPE_VECTOR_SUBPARTS (vectype_in);
|
| 2306 |
|
|
nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out);
|
| 2307 |
|
|
if (nunits_in < nunits_out)
|
| 2308 |
|
|
modifier = NARROW;
|
| 2309 |
|
|
else if (nunits_out == nunits_in)
|
| 2310 |
|
|
modifier = NONE;
|
| 2311 |
|
|
else
|
| 2312 |
|
|
modifier = WIDEN;
|
| 2313 |
|
|
|
| 2314 |
|
|
/* Multiple types in SLP are handled by creating the appropriate number of
|
| 2315 |
|
|
vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
|
| 2316 |
|
|
case of SLP. */
|
| 2317 |
|
|
if (slp_node || PURE_SLP_STMT (stmt_info))
|
| 2318 |
|
|
ncopies = 1;
|
| 2319 |
|
|
else if (modifier == NARROW)
|
| 2320 |
|
|
ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_out;
|
| 2321 |
|
|
else
|
| 2322 |
|
|
ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_in;
|
| 2323 |
|
|
|
| 2324 |
|
|
/* Sanity check: make sure that at least one copy of the vectorized stmt
|
| 2325 |
|
|
needs to be generated. */
|
| 2326 |
|
|
gcc_assert (ncopies >= 1);
|
| 2327 |
|
|
|
| 2328 |
|
|
/* Supportable by target? */
|
| 2329 |
|
|
switch (modifier)
|
| 2330 |
|
|
{
|
| 2331 |
|
|
case NONE:
|
| 2332 |
|
|
if (code != FIX_TRUNC_EXPR && code != FLOAT_EXPR)
|
| 2333 |
|
|
return false;
|
| 2334 |
|
|
if (supportable_convert_operation (code, vectype_out, vectype_in,
|
| 2335 |
|
|
&decl1, &code1))
|
| 2336 |
|
|
break;
|
| 2337 |
|
|
/* FALLTHRU */
|
| 2338 |
|
|
unsupported:
|
| 2339 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 2340 |
|
|
fprintf (vect_dump, "conversion not supported by target.");
|
| 2341 |
|
|
return false;
|
| 2342 |
|
|
|
| 2343 |
|
|
case WIDEN:
|
| 2344 |
|
|
if (supportable_widening_operation (code, stmt, vectype_out, vectype_in,
|
| 2345 |
|
|
&decl1, &decl2, &code1, &code2,
|
| 2346 |
|
|
&multi_step_cvt, &interm_types))
|
| 2347 |
|
|
{
|
| 2348 |
|
|
/* Binary widening operation can only be supported directly by the
|
| 2349 |
|
|
architecture. */
|
| 2350 |
|
|
gcc_assert (!(multi_step_cvt && op_type == binary_op));
|
| 2351 |
|
|
break;
|
| 2352 |
|
|
}
|
| 2353 |
|
|
|
| 2354 |
|
|
if (code != FLOAT_EXPR
|
| 2355 |
|
|
|| (GET_MODE_SIZE (TYPE_MODE (lhs_type))
|
| 2356 |
|
|
<= GET_MODE_SIZE (TYPE_MODE (rhs_type))))
|
| 2357 |
|
|
goto unsupported;
|
| 2358 |
|
|
|
| 2359 |
|
|
rhs_mode = TYPE_MODE (rhs_type);
|
| 2360 |
|
|
fltsz = GET_MODE_SIZE (TYPE_MODE (lhs_type));
|
| 2361 |
|
|
for (rhs_mode = GET_MODE_2XWIDER_MODE (TYPE_MODE (rhs_type));
|
| 2362 |
|
|
rhs_mode != VOIDmode && GET_MODE_SIZE (rhs_mode) <= fltsz;
|
| 2363 |
|
|
rhs_mode = GET_MODE_2XWIDER_MODE (rhs_mode))
|
| 2364 |
|
|
{
|
| 2365 |
|
|
cvt_type
|
| 2366 |
|
|
= build_nonstandard_integer_type (GET_MODE_BITSIZE (rhs_mode), 0);
|
| 2367 |
|
|
cvt_type = get_same_sized_vectype (cvt_type, vectype_in);
|
| 2368 |
|
|
if (cvt_type == NULL_TREE)
|
| 2369 |
|
|
goto unsupported;
|
| 2370 |
|
|
|
| 2371 |
|
|
if (GET_MODE_SIZE (rhs_mode) == fltsz)
|
| 2372 |
|
|
{
|
| 2373 |
|
|
if (!supportable_convert_operation (code, vectype_out,
|
| 2374 |
|
|
cvt_type, &decl1, &codecvt1))
|
| 2375 |
|
|
goto unsupported;
|
| 2376 |
|
|
}
|
| 2377 |
|
|
else if (!supportable_widening_operation (code, stmt, vectype_out,
|
| 2378 |
|
|
cvt_type, &decl1, &decl2,
|
| 2379 |
|
|
&codecvt1, &codecvt2,
|
| 2380 |
|
|
&multi_step_cvt,
|
| 2381 |
|
|
&interm_types))
|
| 2382 |
|
|
continue;
|
| 2383 |
|
|
else
|
| 2384 |
|
|
gcc_assert (multi_step_cvt == 0);
|
| 2385 |
|
|
|
| 2386 |
|
|
if (supportable_widening_operation (NOP_EXPR, stmt, cvt_type,
|
| 2387 |
|
|
vectype_in, NULL, NULL, &code1,
|
| 2388 |
|
|
&code2, &multi_step_cvt,
|
| 2389 |
|
|
&interm_types))
|
| 2390 |
|
|
break;
|
| 2391 |
|
|
}
|
| 2392 |
|
|
|
| 2393 |
|
|
if (rhs_mode == VOIDmode || GET_MODE_SIZE (rhs_mode) > fltsz)
|
| 2394 |
|
|
goto unsupported;
|
| 2395 |
|
|
|
| 2396 |
|
|
if (GET_MODE_SIZE (rhs_mode) == fltsz)
|
| 2397 |
|
|
codecvt2 = ERROR_MARK;
|
| 2398 |
|
|
else
|
| 2399 |
|
|
{
|
| 2400 |
|
|
multi_step_cvt++;
|
| 2401 |
|
|
VEC_safe_push (tree, heap, interm_types, cvt_type);
|
| 2402 |
|
|
cvt_type = NULL_TREE;
|
| 2403 |
|
|
}
|
| 2404 |
|
|
break;
|
| 2405 |
|
|
|
| 2406 |
|
|
case NARROW:
|
| 2407 |
|
|
gcc_assert (op_type == unary_op);
|
| 2408 |
|
|
if (supportable_narrowing_operation (code, vectype_out, vectype_in,
|
| 2409 |
|
|
&code1, &multi_step_cvt,
|
| 2410 |
|
|
&interm_types))
|
| 2411 |
|
|
break;
|
| 2412 |
|
|
|
| 2413 |
|
|
if (code != FIX_TRUNC_EXPR
|
| 2414 |
|
|
|| (GET_MODE_SIZE (TYPE_MODE (lhs_type))
|
| 2415 |
|
|
>= GET_MODE_SIZE (TYPE_MODE (rhs_type))))
|
| 2416 |
|
|
goto unsupported;
|
| 2417 |
|
|
|
| 2418 |
|
|
rhs_mode = TYPE_MODE (rhs_type);
|
| 2419 |
|
|
cvt_type
|
| 2420 |
|
|
= build_nonstandard_integer_type (GET_MODE_BITSIZE (rhs_mode), 0);
|
| 2421 |
|
|
cvt_type = get_same_sized_vectype (cvt_type, vectype_in);
|
| 2422 |
|
|
if (cvt_type == NULL_TREE)
|
| 2423 |
|
|
goto unsupported;
|
| 2424 |
|
|
if (!supportable_convert_operation (code, cvt_type, vectype_in,
|
| 2425 |
|
|
&decl1, &codecvt1))
|
| 2426 |
|
|
goto unsupported;
|
| 2427 |
|
|
if (supportable_narrowing_operation (NOP_EXPR, vectype_out, cvt_type,
|
| 2428 |
|
|
&code1, &multi_step_cvt,
|
| 2429 |
|
|
&interm_types))
|
| 2430 |
|
|
break;
|
| 2431 |
|
|
goto unsupported;
|
| 2432 |
|
|
|
| 2433 |
|
|
default:
|
| 2434 |
|
|
gcc_unreachable ();
|
| 2435 |
|
|
}
|
| 2436 |
|
|
|
| 2437 |
|
|
if (!vec_stmt) /* transformation not required. */
|
| 2438 |
|
|
{
|
| 2439 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 2440 |
|
|
fprintf (vect_dump, "=== vectorizable_conversion ===");
|
| 2441 |
|
|
if (code == FIX_TRUNC_EXPR || code == FLOAT_EXPR)
|
| 2442 |
|
|
{
|
| 2443 |
|
|
STMT_VINFO_TYPE (stmt_info) = type_conversion_vec_info_type;
|
| 2444 |
|
|
vect_model_simple_cost (stmt_info, ncopies, dt, NULL);
|
| 2445 |
|
|
}
|
| 2446 |
|
|
else if (modifier == NARROW)
|
| 2447 |
|
|
{
|
| 2448 |
|
|
STMT_VINFO_TYPE (stmt_info) = type_demotion_vec_info_type;
|
| 2449 |
|
|
vect_model_promotion_demotion_cost (stmt_info, dt, multi_step_cvt);
|
| 2450 |
|
|
}
|
| 2451 |
|
|
else
|
| 2452 |
|
|
{
|
| 2453 |
|
|
STMT_VINFO_TYPE (stmt_info) = type_promotion_vec_info_type;
|
| 2454 |
|
|
vect_model_promotion_demotion_cost (stmt_info, dt, multi_step_cvt);
|
| 2455 |
|
|
}
|
| 2456 |
|
|
VEC_free (tree, heap, interm_types);
|
| 2457 |
|
|
return true;
|
| 2458 |
|
|
}
|
| 2459 |
|
|
|
| 2460 |
|
|
/** Transform. **/
|
| 2461 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 2462 |
|
|
fprintf (vect_dump, "transform conversion. ncopies = %d.", ncopies);
|
| 2463 |
|
|
|
| 2464 |
|
|
if (op_type == binary_op)
|
| 2465 |
|
|
{
|
| 2466 |
|
|
if (CONSTANT_CLASS_P (op0))
|
| 2467 |
|
|
op0 = fold_convert (TREE_TYPE (op1), op0);
|
| 2468 |
|
|
else if (CONSTANT_CLASS_P (op1))
|
| 2469 |
|
|
op1 = fold_convert (TREE_TYPE (op0), op1);
|
| 2470 |
|
|
}
|
| 2471 |
|
|
|
| 2472 |
|
|
/* In case of multi-step conversion, we first generate conversion operations
|
| 2473 |
|
|
to the intermediate types, and then from that types to the final one.
|
| 2474 |
|
|
We create vector destinations for the intermediate type (TYPES) received
|
| 2475 |
|
|
from supportable_*_operation, and store them in the correct order
|
| 2476 |
|
|
for future use in vect_create_vectorized_*_stmts (). */
|
| 2477 |
|
|
vec_dsts = VEC_alloc (tree, heap, multi_step_cvt + 1);
|
| 2478 |
|
|
vec_dest = vect_create_destination_var (scalar_dest,
|
| 2479 |
|
|
(cvt_type && modifier == WIDEN)
|
| 2480 |
|
|
? cvt_type : vectype_out);
|
| 2481 |
|
|
VEC_quick_push (tree, vec_dsts, vec_dest);
|
| 2482 |
|
|
|
| 2483 |
|
|
if (multi_step_cvt)
|
| 2484 |
|
|
{
|
| 2485 |
|
|
for (i = VEC_length (tree, interm_types) - 1;
|
| 2486 |
|
|
VEC_iterate (tree, interm_types, i, intermediate_type); i--)
|
| 2487 |
|
|
{
|
| 2488 |
|
|
vec_dest = vect_create_destination_var (scalar_dest,
|
| 2489 |
|
|
intermediate_type);
|
| 2490 |
|
|
VEC_quick_push (tree, vec_dsts, vec_dest);
|
| 2491 |
|
|
}
|
| 2492 |
|
|
}
|
| 2493 |
|
|
|
| 2494 |
|
|
if (cvt_type)
|
| 2495 |
|
|
vec_dest = vect_create_destination_var (scalar_dest,
|
| 2496 |
|
|
modifier == WIDEN
|
| 2497 |
|
|
? vectype_out : cvt_type);
|
| 2498 |
|
|
|
| 2499 |
|
|
if (!slp_node)
|
| 2500 |
|
|
{
|
| 2501 |
|
|
if (modifier == NONE)
|
| 2502 |
|
|
vec_oprnds0 = VEC_alloc (tree, heap, 1);
|
| 2503 |
|
|
else if (modifier == WIDEN)
|
| 2504 |
|
|
{
|
| 2505 |
|
|
vec_oprnds0 = VEC_alloc (tree, heap,
|
| 2506 |
|
|
(multi_step_cvt
|
| 2507 |
|
|
? vect_pow2 (multi_step_cvt) : 1));
|
| 2508 |
|
|
if (op_type == binary_op)
|
| 2509 |
|
|
vec_oprnds1 = VEC_alloc (tree, heap, 1);
|
| 2510 |
|
|
}
|
| 2511 |
|
|
else
|
| 2512 |
|
|
vec_oprnds0 = VEC_alloc (tree, heap,
|
| 2513 |
|
|
2 * (multi_step_cvt
|
| 2514 |
|
|
? vect_pow2 (multi_step_cvt) : 1));
|
| 2515 |
|
|
}
|
| 2516 |
|
|
else if (code == WIDEN_LSHIFT_EXPR)
|
| 2517 |
|
|
vec_oprnds1 = VEC_alloc (tree, heap, slp_node->vec_stmts_size);
|
| 2518 |
|
|
|
| 2519 |
|
|
last_oprnd = op0;
|
| 2520 |
|
|
prev_stmt_info = NULL;
|
| 2521 |
|
|
switch (modifier)
|
| 2522 |
|
|
{
|
| 2523 |
|
|
case NONE:
|
| 2524 |
|
|
for (j = 0; j < ncopies; j++)
|
| 2525 |
|
|
{
|
| 2526 |
|
|
if (j == 0)
|
| 2527 |
|
|
vect_get_vec_defs (op0, NULL, stmt, &vec_oprnds0, NULL, slp_node,
|
| 2528 |
|
|
-1);
|
| 2529 |
|
|
else
|
| 2530 |
|
|
vect_get_vec_defs_for_stmt_copy (dt, &vec_oprnds0, NULL);
|
| 2531 |
|
|
|
| 2532 |
|
|
FOR_EACH_VEC_ELT (tree, vec_oprnds0, i, vop0)
|
| 2533 |
|
|
{
|
| 2534 |
|
|
/* Arguments are ready, create the new vector stmt. */
|
| 2535 |
|
|
if (code1 == CALL_EXPR)
|
| 2536 |
|
|
{
|
| 2537 |
|
|
new_stmt = gimple_build_call (decl1, 1, vop0);
|
| 2538 |
|
|
new_temp = make_ssa_name (vec_dest, new_stmt);
|
| 2539 |
|
|
gimple_call_set_lhs (new_stmt, new_temp);
|
| 2540 |
|
|
}
|
| 2541 |
|
|
else
|
| 2542 |
|
|
{
|
| 2543 |
|
|
gcc_assert (TREE_CODE_LENGTH (code1) == unary_op);
|
| 2544 |
|
|
new_stmt = gimple_build_assign_with_ops (code1, vec_dest,
|
| 2545 |
|
|
vop0, NULL);
|
| 2546 |
|
|
new_temp = make_ssa_name (vec_dest, new_stmt);
|
| 2547 |
|
|
gimple_assign_set_lhs (new_stmt, new_temp);
|
| 2548 |
|
|
}
|
| 2549 |
|
|
|
| 2550 |
|
|
vect_finish_stmt_generation (stmt, new_stmt, gsi);
|
| 2551 |
|
|
if (slp_node)
|
| 2552 |
|
|
VEC_quick_push (gimple, SLP_TREE_VEC_STMTS (slp_node),
|
| 2553 |
|
|
new_stmt);
|
| 2554 |
|
|
}
|
| 2555 |
|
|
|
| 2556 |
|
|
if (j == 0)
|
| 2557 |
|
|
STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
|
| 2558 |
|
|
else
|
| 2559 |
|
|
STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
|
| 2560 |
|
|
prev_stmt_info = vinfo_for_stmt (new_stmt);
|
| 2561 |
|
|
}
|
| 2562 |
|
|
break;
|
| 2563 |
|
|
|
| 2564 |
|
|
case WIDEN:
|
| 2565 |
|
|
/* In case the vectorization factor (VF) is bigger than the number
|
| 2566 |
|
|
of elements that we can fit in a vectype (nunits), we have to
|
| 2567 |
|
|
generate more than one vector stmt - i.e - we need to "unroll"
|
| 2568 |
|
|
the vector stmt by a factor VF/nunits. */
|
| 2569 |
|
|
for (j = 0; j < ncopies; j++)
|
| 2570 |
|
|
{
|
| 2571 |
|
|
/* Handle uses. */
|
| 2572 |
|
|
if (j == 0)
|
| 2573 |
|
|
{
|
| 2574 |
|
|
if (slp_node)
|
| 2575 |
|
|
{
|
| 2576 |
|
|
if (code == WIDEN_LSHIFT_EXPR)
|
| 2577 |
|
|
{
|
| 2578 |
|
|
unsigned int k;
|
| 2579 |
|
|
|
| 2580 |
|
|
vec_oprnd1 = op1;
|
| 2581 |
|
|
/* Store vec_oprnd1 for every vector stmt to be created
|
| 2582 |
|
|
for SLP_NODE. We check during the analysis that all
|
| 2583 |
|
|
the shift arguments are the same. */
|
| 2584 |
|
|
for (k = 0; k < slp_node->vec_stmts_size - 1; k++)
|
| 2585 |
|
|
VEC_quick_push (tree, vec_oprnds1, vec_oprnd1);
|
| 2586 |
|
|
|
| 2587 |
|
|
vect_get_vec_defs (op0, NULL_TREE, stmt, &vec_oprnds0, NULL,
|
| 2588 |
|
|
slp_node, -1);
|
| 2589 |
|
|
}
|
| 2590 |
|
|
else
|
| 2591 |
|
|
vect_get_vec_defs (op0, op1, stmt, &vec_oprnds0,
|
| 2592 |
|
|
&vec_oprnds1, slp_node, -1);
|
| 2593 |
|
|
}
|
| 2594 |
|
|
else
|
| 2595 |
|
|
{
|
| 2596 |
|
|
vec_oprnd0 = vect_get_vec_def_for_operand (op0, stmt, NULL);
|
| 2597 |
|
|
VEC_quick_push (tree, vec_oprnds0, vec_oprnd0);
|
| 2598 |
|
|
if (op_type == binary_op)
|
| 2599 |
|
|
{
|
| 2600 |
|
|
if (code == WIDEN_LSHIFT_EXPR)
|
| 2601 |
|
|
vec_oprnd1 = op1;
|
| 2602 |
|
|
else
|
| 2603 |
|
|
vec_oprnd1 = vect_get_vec_def_for_operand (op1, stmt,
|
| 2604 |
|
|
NULL);
|
| 2605 |
|
|
VEC_quick_push (tree, vec_oprnds1, vec_oprnd1);
|
| 2606 |
|
|
}
|
| 2607 |
|
|
}
|
| 2608 |
|
|
}
|
| 2609 |
|
|
else
|
| 2610 |
|
|
{
|
| 2611 |
|
|
vec_oprnd0 = vect_get_vec_def_for_stmt_copy (dt[0], vec_oprnd0);
|
| 2612 |
|
|
VEC_truncate (tree, vec_oprnds0, 0);
|
| 2613 |
|
|
VEC_quick_push (tree, vec_oprnds0, vec_oprnd0);
|
| 2614 |
|
|
if (op_type == binary_op)
|
| 2615 |
|
|
{
|
| 2616 |
|
|
if (code == WIDEN_LSHIFT_EXPR)
|
| 2617 |
|
|
vec_oprnd1 = op1;
|
| 2618 |
|
|
else
|
| 2619 |
|
|
vec_oprnd1 = vect_get_vec_def_for_stmt_copy (dt[1],
|
| 2620 |
|
|
vec_oprnd1);
|
| 2621 |
|
|
VEC_truncate (tree, vec_oprnds1, 0);
|
| 2622 |
|
|
VEC_quick_push (tree, vec_oprnds1, vec_oprnd1);
|
| 2623 |
|
|
}
|
| 2624 |
|
|
}
|
| 2625 |
|
|
|
| 2626 |
|
|
/* Arguments are ready. Create the new vector stmts. */
|
| 2627 |
|
|
for (i = multi_step_cvt; i >= 0; i--)
|
| 2628 |
|
|
{
|
| 2629 |
|
|
tree this_dest = VEC_index (tree, vec_dsts, i);
|
| 2630 |
|
|
enum tree_code c1 = code1, c2 = code2;
|
| 2631 |
|
|
if (i == 0 && codecvt2 != ERROR_MARK)
|
| 2632 |
|
|
{
|
| 2633 |
|
|
c1 = codecvt1;
|
| 2634 |
|
|
c2 = codecvt2;
|
| 2635 |
|
|
}
|
| 2636 |
|
|
vect_create_vectorized_promotion_stmts (&vec_oprnds0,
|
| 2637 |
|
|
&vec_oprnds1,
|
| 2638 |
|
|
stmt, this_dest, gsi,
|
| 2639 |
|
|
c1, c2, decl1, decl2,
|
| 2640 |
|
|
op_type);
|
| 2641 |
|
|
}
|
| 2642 |
|
|
|
| 2643 |
|
|
FOR_EACH_VEC_ELT (tree, vec_oprnds0, i, vop0)
|
| 2644 |
|
|
{
|
| 2645 |
|
|
if (cvt_type)
|
| 2646 |
|
|
{
|
| 2647 |
|
|
if (codecvt1 == CALL_EXPR)
|
| 2648 |
|
|
{
|
| 2649 |
|
|
new_stmt = gimple_build_call (decl1, 1, vop0);
|
| 2650 |
|
|
new_temp = make_ssa_name (vec_dest, new_stmt);
|
| 2651 |
|
|
gimple_call_set_lhs (new_stmt, new_temp);
|
| 2652 |
|
|
}
|
| 2653 |
|
|
else
|
| 2654 |
|
|
{
|
| 2655 |
|
|
gcc_assert (TREE_CODE_LENGTH (codecvt1) == unary_op);
|
| 2656 |
|
|
new_temp = make_ssa_name (vec_dest, NULL);
|
| 2657 |
|
|
new_stmt = gimple_build_assign_with_ops (codecvt1,
|
| 2658 |
|
|
new_temp,
|
| 2659 |
|
|
vop0, NULL);
|
| 2660 |
|
|
}
|
| 2661 |
|
|
|
| 2662 |
|
|
vect_finish_stmt_generation (stmt, new_stmt, gsi);
|
| 2663 |
|
|
}
|
| 2664 |
|
|
else
|
| 2665 |
|
|
new_stmt = SSA_NAME_DEF_STMT (vop0);
|
| 2666 |
|
|
|
| 2667 |
|
|
if (slp_node)
|
| 2668 |
|
|
VEC_quick_push (gimple, SLP_TREE_VEC_STMTS (slp_node),
|
| 2669 |
|
|
new_stmt);
|
| 2670 |
|
|
else
|
| 2671 |
|
|
{
|
| 2672 |
|
|
if (!prev_stmt_info)
|
| 2673 |
|
|
STMT_VINFO_VEC_STMT (stmt_info) = new_stmt;
|
| 2674 |
|
|
else
|
| 2675 |
|
|
STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
|
| 2676 |
|
|
prev_stmt_info = vinfo_for_stmt (new_stmt);
|
| 2677 |
|
|
}
|
| 2678 |
|
|
}
|
| 2679 |
|
|
}
|
| 2680 |
|
|
|
| 2681 |
|
|
*vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
|
| 2682 |
|
|
break;
|
| 2683 |
|
|
|
| 2684 |
|
|
case NARROW:
|
| 2685 |
|
|
/* In case the vectorization factor (VF) is bigger than the number
|
| 2686 |
|
|
of elements that we can fit in a vectype (nunits), we have to
|
| 2687 |
|
|
generate more than one vector stmt - i.e - we need to "unroll"
|
| 2688 |
|
|
the vector stmt by a factor VF/nunits. */
|
| 2689 |
|
|
for (j = 0; j < ncopies; j++)
|
| 2690 |
|
|
{
|
| 2691 |
|
|
/* Handle uses. */
|
| 2692 |
|
|
if (slp_node)
|
| 2693 |
|
|
vect_get_vec_defs (op0, NULL_TREE, stmt, &vec_oprnds0, NULL,
|
| 2694 |
|
|
slp_node, -1);
|
| 2695 |
|
|
else
|
| 2696 |
|
|
{
|
| 2697 |
|
|
VEC_truncate (tree, vec_oprnds0, 0);
|
| 2698 |
|
|
vect_get_loop_based_defs (&last_oprnd, stmt, dt[0], &vec_oprnds0,
|
| 2699 |
|
|
vect_pow2 (multi_step_cvt) - 1);
|
| 2700 |
|
|
}
|
| 2701 |
|
|
|
| 2702 |
|
|
/* Arguments are ready. Create the new vector stmts. */
|
| 2703 |
|
|
if (cvt_type)
|
| 2704 |
|
|
FOR_EACH_VEC_ELT (tree, vec_oprnds0, i, vop0)
|
| 2705 |
|
|
{
|
| 2706 |
|
|
if (codecvt1 == CALL_EXPR)
|
| 2707 |
|
|
{
|
| 2708 |
|
|
new_stmt = gimple_build_call (decl1, 1, vop0);
|
| 2709 |
|
|
new_temp = make_ssa_name (vec_dest, new_stmt);
|
| 2710 |
|
|
gimple_call_set_lhs (new_stmt, new_temp);
|
| 2711 |
|
|
}
|
| 2712 |
|
|
else
|
| 2713 |
|
|
{
|
| 2714 |
|
|
gcc_assert (TREE_CODE_LENGTH (codecvt1) == unary_op);
|
| 2715 |
|
|
new_temp = make_ssa_name (vec_dest, NULL);
|
| 2716 |
|
|
new_stmt = gimple_build_assign_with_ops (codecvt1, new_temp,
|
| 2717 |
|
|
vop0, NULL);
|
| 2718 |
|
|
}
|
| 2719 |
|
|
|
| 2720 |
|
|
vect_finish_stmt_generation (stmt, new_stmt, gsi);
|
| 2721 |
|
|
VEC_replace (tree, vec_oprnds0, i, new_temp);
|
| 2722 |
|
|
}
|
| 2723 |
|
|
|
| 2724 |
|
|
vect_create_vectorized_demotion_stmts (&vec_oprnds0, multi_step_cvt,
|
| 2725 |
|
|
stmt, vec_dsts, gsi,
|
| 2726 |
|
|
slp_node, code1,
|
| 2727 |
|
|
&prev_stmt_info);
|
| 2728 |
|
|
}
|
| 2729 |
|
|
|
| 2730 |
|
|
*vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
|
| 2731 |
|
|
break;
|
| 2732 |
|
|
}
|
| 2733 |
|
|
|
| 2734 |
|
|
VEC_free (tree, heap, vec_oprnds0);
|
| 2735 |
|
|
VEC_free (tree, heap, vec_oprnds1);
|
| 2736 |
|
|
VEC_free (tree, heap, vec_dsts);
|
| 2737 |
|
|
VEC_free (tree, heap, interm_types);
|
| 2738 |
|
|
|
| 2739 |
|
|
return true;
|
| 2740 |
|
|
}
|
| 2741 |
|
|
|
| 2742 |
|
|
|
| 2743 |
|
|
/* Function vectorizable_assignment.
|
| 2744 |
|
|
|
| 2745 |
|
|
Check if STMT performs an assignment (copy) that can be vectorized.
|
| 2746 |
|
|
If VEC_STMT is also passed, vectorize the STMT: create a vectorized
|
| 2747 |
|
|
stmt to replace it, put it in VEC_STMT, and insert it at BSI.
|
| 2748 |
|
|
Return FALSE if not a vectorizable STMT, TRUE otherwise. */
|
| 2749 |
|
|
|
| 2750 |
|
|
static bool
|
| 2751 |
|
|
vectorizable_assignment (gimple stmt, gimple_stmt_iterator *gsi,
|
| 2752 |
|
|
gimple *vec_stmt, slp_tree slp_node)
|
| 2753 |
|
|
{
|
| 2754 |
|
|
tree vec_dest;
|
| 2755 |
|
|
tree scalar_dest;
|
| 2756 |
|
|
tree op;
|
| 2757 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
| 2758 |
|
|
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
|
| 2759 |
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
| 2760 |
|
|
tree new_temp;
|
| 2761 |
|
|
tree def;
|
| 2762 |
|
|
gimple def_stmt;
|
| 2763 |
|
|
enum vect_def_type dt[2] = {vect_unknown_def_type, vect_unknown_def_type};
|
| 2764 |
|
|
unsigned int nunits = TYPE_VECTOR_SUBPARTS (vectype);
|
| 2765 |
|
|
int ncopies;
|
| 2766 |
|
|
int i, j;
|
| 2767 |
|
|
VEC(tree,heap) *vec_oprnds = NULL;
|
| 2768 |
|
|
tree vop;
|
| 2769 |
|
|
bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
|
| 2770 |
|
|
gimple new_stmt = NULL;
|
| 2771 |
|
|
stmt_vec_info prev_stmt_info = NULL;
|
| 2772 |
|
|
enum tree_code code;
|
| 2773 |
|
|
tree vectype_in;
|
| 2774 |
|
|
|
| 2775 |
|
|
/* Multiple types in SLP are handled by creating the appropriate number of
|
| 2776 |
|
|
vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
|
| 2777 |
|
|
case of SLP. */
|
| 2778 |
|
|
if (slp_node || PURE_SLP_STMT (stmt_info))
|
| 2779 |
|
|
ncopies = 1;
|
| 2780 |
|
|
else
|
| 2781 |
|
|
ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
|
| 2782 |
|
|
|
| 2783 |
|
|
gcc_assert (ncopies >= 1);
|
| 2784 |
|
|
|
| 2785 |
|
|
if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
|
| 2786 |
|
|
return false;
|
| 2787 |
|
|
|
| 2788 |
|
|
if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
|
| 2789 |
|
|
return false;
|
| 2790 |
|
|
|
| 2791 |
|
|
/* Is vectorizable assignment? */
|
| 2792 |
|
|
if (!is_gimple_assign (stmt))
|
| 2793 |
|
|
return false;
|
| 2794 |
|
|
|
| 2795 |
|
|
scalar_dest = gimple_assign_lhs (stmt);
|
| 2796 |
|
|
if (TREE_CODE (scalar_dest) != SSA_NAME)
|
| 2797 |
|
|
return false;
|
| 2798 |
|
|
|
| 2799 |
|
|
code = gimple_assign_rhs_code (stmt);
|
| 2800 |
|
|
if (gimple_assign_single_p (stmt)
|
| 2801 |
|
|
|| code == PAREN_EXPR
|
| 2802 |
|
|
|| CONVERT_EXPR_CODE_P (code))
|
| 2803 |
|
|
op = gimple_assign_rhs1 (stmt);
|
| 2804 |
|
|
else
|
| 2805 |
|
|
return false;
|
| 2806 |
|
|
|
| 2807 |
|
|
if (code == VIEW_CONVERT_EXPR)
|
| 2808 |
|
|
op = TREE_OPERAND (op, 0);
|
| 2809 |
|
|
|
| 2810 |
|
|
if (!vect_is_simple_use_1 (op, stmt, loop_vinfo, bb_vinfo,
|
| 2811 |
|
|
&def_stmt, &def, &dt[0], &vectype_in))
|
| 2812 |
|
|
{
|
| 2813 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 2814 |
|
|
fprintf (vect_dump, "use not simple.");
|
| 2815 |
|
|
return false;
|
| 2816 |
|
|
}
|
| 2817 |
|
|
|
| 2818 |
|
|
/* We can handle NOP_EXPR conversions that do not change the number
|
| 2819 |
|
|
of elements or the vector size. */
|
| 2820 |
|
|
if ((CONVERT_EXPR_CODE_P (code)
|
| 2821 |
|
|
|| code == VIEW_CONVERT_EXPR)
|
| 2822 |
|
|
&& (!vectype_in
|
| 2823 |
|
|
|| TYPE_VECTOR_SUBPARTS (vectype_in) != nunits
|
| 2824 |
|
|
|| (GET_MODE_SIZE (TYPE_MODE (vectype))
|
| 2825 |
|
|
!= GET_MODE_SIZE (TYPE_MODE (vectype_in)))))
|
| 2826 |
|
|
return false;
|
| 2827 |
|
|
|
| 2828 |
|
|
/* We do not handle bit-precision changes. */
|
| 2829 |
|
|
if ((CONVERT_EXPR_CODE_P (code)
|
| 2830 |
|
|
|| code == VIEW_CONVERT_EXPR)
|
| 2831 |
|
|
&& INTEGRAL_TYPE_P (TREE_TYPE (scalar_dest))
|
| 2832 |
|
|
&& ((TYPE_PRECISION (TREE_TYPE (scalar_dest))
|
| 2833 |
|
|
!= GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (scalar_dest))))
|
| 2834 |
|
|
|| ((TYPE_PRECISION (TREE_TYPE (op))
|
| 2835 |
|
|
!= GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (op))))))
|
| 2836 |
|
|
/* But a conversion that does not change the bit-pattern is ok. */
|
| 2837 |
|
|
&& !((TYPE_PRECISION (TREE_TYPE (scalar_dest))
|
| 2838 |
|
|
> TYPE_PRECISION (TREE_TYPE (op)))
|
| 2839 |
|
|
&& TYPE_UNSIGNED (TREE_TYPE (op))))
|
| 2840 |
|
|
{
|
| 2841 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 2842 |
|
|
fprintf (vect_dump, "type conversion to/from bit-precision "
|
| 2843 |
|
|
"unsupported.");
|
| 2844 |
|
|
return false;
|
| 2845 |
|
|
}
|
| 2846 |
|
|
|
| 2847 |
|
|
if (!vec_stmt) /* transformation not required. */
|
| 2848 |
|
|
{
|
| 2849 |
|
|
STMT_VINFO_TYPE (stmt_info) = assignment_vec_info_type;
|
| 2850 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 2851 |
|
|
fprintf (vect_dump, "=== vectorizable_assignment ===");
|
| 2852 |
|
|
vect_model_simple_cost (stmt_info, ncopies, dt, NULL);
|
| 2853 |
|
|
return true;
|
| 2854 |
|
|
}
|
| 2855 |
|
|
|
| 2856 |
|
|
/** Transform. **/
|
| 2857 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 2858 |
|
|
fprintf (vect_dump, "transform assignment.");
|
| 2859 |
|
|
|
| 2860 |
|
|
/* Handle def. */
|
| 2861 |
|
|
vec_dest = vect_create_destination_var (scalar_dest, vectype);
|
| 2862 |
|
|
|
| 2863 |
|
|
/* Handle use. */
|
| 2864 |
|
|
for (j = 0; j < ncopies; j++)
|
| 2865 |
|
|
{
|
| 2866 |
|
|
/* Handle uses. */
|
| 2867 |
|
|
if (j == 0)
|
| 2868 |
|
|
vect_get_vec_defs (op, NULL, stmt, &vec_oprnds, NULL, slp_node, -1);
|
| 2869 |
|
|
else
|
| 2870 |
|
|
vect_get_vec_defs_for_stmt_copy (dt, &vec_oprnds, NULL);
|
| 2871 |
|
|
|
| 2872 |
|
|
/* Arguments are ready. create the new vector stmt. */
|
| 2873 |
|
|
FOR_EACH_VEC_ELT (tree, vec_oprnds, i, vop)
|
| 2874 |
|
|
{
|
| 2875 |
|
|
if (CONVERT_EXPR_CODE_P (code)
|
| 2876 |
|
|
|| code == VIEW_CONVERT_EXPR)
|
| 2877 |
|
|
vop = build1 (VIEW_CONVERT_EXPR, vectype, vop);
|
| 2878 |
|
|
new_stmt = gimple_build_assign (vec_dest, vop);
|
| 2879 |
|
|
new_temp = make_ssa_name (vec_dest, new_stmt);
|
| 2880 |
|
|
gimple_assign_set_lhs (new_stmt, new_temp);
|
| 2881 |
|
|
vect_finish_stmt_generation (stmt, new_stmt, gsi);
|
| 2882 |
|
|
if (slp_node)
|
| 2883 |
|
|
VEC_quick_push (gimple, SLP_TREE_VEC_STMTS (slp_node), new_stmt);
|
| 2884 |
|
|
}
|
| 2885 |
|
|
|
| 2886 |
|
|
if (slp_node)
|
| 2887 |
|
|
continue;
|
| 2888 |
|
|
|
| 2889 |
|
|
if (j == 0)
|
| 2890 |
|
|
STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
|
| 2891 |
|
|
else
|
| 2892 |
|
|
STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
|
| 2893 |
|
|
|
| 2894 |
|
|
prev_stmt_info = vinfo_for_stmt (new_stmt);
|
| 2895 |
|
|
}
|
| 2896 |
|
|
|
| 2897 |
|
|
VEC_free (tree, heap, vec_oprnds);
|
| 2898 |
|
|
return true;
|
| 2899 |
|
|
}
|
| 2900 |
|
|
|
| 2901 |
|
|
|
| 2902 |
|
|
/* Return TRUE if CODE (a shift operation) is supported for SCALAR_TYPE
|
| 2903 |
|
|
either as shift by a scalar or by a vector. */
|
| 2904 |
|
|
|
| 2905 |
|
|
bool
|
| 2906 |
|
|
vect_supportable_shift (enum tree_code code, tree scalar_type)
|
| 2907 |
|
|
{
|
| 2908 |
|
|
|
| 2909 |
|
|
enum machine_mode vec_mode;
|
| 2910 |
|
|
optab optab;
|
| 2911 |
|
|
int icode;
|
| 2912 |
|
|
tree vectype;
|
| 2913 |
|
|
|
| 2914 |
|
|
vectype = get_vectype_for_scalar_type (scalar_type);
|
| 2915 |
|
|
if (!vectype)
|
| 2916 |
|
|
return false;
|
| 2917 |
|
|
|
| 2918 |
|
|
optab = optab_for_tree_code (code, vectype, optab_scalar);
|
| 2919 |
|
|
if (!optab
|
| 2920 |
|
|
|| optab_handler (optab, TYPE_MODE (vectype)) == CODE_FOR_nothing)
|
| 2921 |
|
|
{
|
| 2922 |
|
|
optab = optab_for_tree_code (code, vectype, optab_vector);
|
| 2923 |
|
|
if (!optab
|
| 2924 |
|
|
|| (optab_handler (optab, TYPE_MODE (vectype))
|
| 2925 |
|
|
== CODE_FOR_nothing))
|
| 2926 |
|
|
return false;
|
| 2927 |
|
|
}
|
| 2928 |
|
|
|
| 2929 |
|
|
vec_mode = TYPE_MODE (vectype);
|
| 2930 |
|
|
icode = (int) optab_handler (optab, vec_mode);
|
| 2931 |
|
|
if (icode == CODE_FOR_nothing)
|
| 2932 |
|
|
return false;
|
| 2933 |
|
|
|
| 2934 |
|
|
return true;
|
| 2935 |
|
|
}
|
| 2936 |
|
|
|
| 2937 |
|
|
|
| 2938 |
|
|
/* Function vectorizable_shift.
|
| 2939 |
|
|
|
| 2940 |
|
|
Check if STMT performs a shift operation that can be vectorized.
|
| 2941 |
|
|
If VEC_STMT is also passed, vectorize the STMT: create a vectorized
|
| 2942 |
|
|
stmt to replace it, put it in VEC_STMT, and insert it at BSI.
|
| 2943 |
|
|
Return FALSE if not a vectorizable STMT, TRUE otherwise. */
|
| 2944 |
|
|
|
| 2945 |
|
|
static bool
|
| 2946 |
|
|
vectorizable_shift (gimple stmt, gimple_stmt_iterator *gsi,
|
| 2947 |
|
|
gimple *vec_stmt, slp_tree slp_node)
|
| 2948 |
|
|
{
|
| 2949 |
|
|
tree vec_dest;
|
| 2950 |
|
|
tree scalar_dest;
|
| 2951 |
|
|
tree op0, op1 = NULL;
|
| 2952 |
|
|
tree vec_oprnd1 = NULL_TREE;
|
| 2953 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
| 2954 |
|
|
tree vectype;
|
| 2955 |
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
| 2956 |
|
|
enum tree_code code;
|
| 2957 |
|
|
enum machine_mode vec_mode;
|
| 2958 |
|
|
tree new_temp;
|
| 2959 |
|
|
optab optab;
|
| 2960 |
|
|
int icode;
|
| 2961 |
|
|
enum machine_mode optab_op2_mode;
|
| 2962 |
|
|
tree def;
|
| 2963 |
|
|
gimple def_stmt;
|
| 2964 |
|
|
enum vect_def_type dt[2] = {vect_unknown_def_type, vect_unknown_def_type};
|
| 2965 |
|
|
gimple new_stmt = NULL;
|
| 2966 |
|
|
stmt_vec_info prev_stmt_info;
|
| 2967 |
|
|
int nunits_in;
|
| 2968 |
|
|
int nunits_out;
|
| 2969 |
|
|
tree vectype_out;
|
| 2970 |
|
|
tree op1_vectype;
|
| 2971 |
|
|
int ncopies;
|
| 2972 |
|
|
int j, i;
|
| 2973 |
|
|
VEC (tree, heap) *vec_oprnds0 = NULL, *vec_oprnds1 = NULL;
|
| 2974 |
|
|
tree vop0, vop1;
|
| 2975 |
|
|
unsigned int k;
|
| 2976 |
|
|
bool scalar_shift_arg = true;
|
| 2977 |
|
|
bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
|
| 2978 |
|
|
int vf;
|
| 2979 |
|
|
|
| 2980 |
|
|
if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
|
| 2981 |
|
|
return false;
|
| 2982 |
|
|
|
| 2983 |
|
|
if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
|
| 2984 |
|
|
return false;
|
| 2985 |
|
|
|
| 2986 |
|
|
/* Is STMT a vectorizable binary/unary operation? */
|
| 2987 |
|
|
if (!is_gimple_assign (stmt))
|
| 2988 |
|
|
return false;
|
| 2989 |
|
|
|
| 2990 |
|
|
if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
|
| 2991 |
|
|
return false;
|
| 2992 |
|
|
|
| 2993 |
|
|
code = gimple_assign_rhs_code (stmt);
|
| 2994 |
|
|
|
| 2995 |
|
|
if (!(code == LSHIFT_EXPR || code == RSHIFT_EXPR || code == LROTATE_EXPR
|
| 2996 |
|
|
|| code == RROTATE_EXPR))
|
| 2997 |
|
|
return false;
|
| 2998 |
|
|
|
| 2999 |
|
|
scalar_dest = gimple_assign_lhs (stmt);
|
| 3000 |
|
|
vectype_out = STMT_VINFO_VECTYPE (stmt_info);
|
| 3001 |
|
|
if (TYPE_PRECISION (TREE_TYPE (scalar_dest))
|
| 3002 |
|
|
!= GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (scalar_dest))))
|
| 3003 |
|
|
{
|
| 3004 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 3005 |
|
|
fprintf (vect_dump, "bit-precision shifts not supported.");
|
| 3006 |
|
|
return false;
|
| 3007 |
|
|
}
|
| 3008 |
|
|
|
| 3009 |
|
|
op0 = gimple_assign_rhs1 (stmt);
|
| 3010 |
|
|
if (!vect_is_simple_use_1 (op0, stmt, loop_vinfo, bb_vinfo,
|
| 3011 |
|
|
&def_stmt, &def, &dt[0], &vectype))
|
| 3012 |
|
|
{
|
| 3013 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 3014 |
|
|
fprintf (vect_dump, "use not simple.");
|
| 3015 |
|
|
return false;
|
| 3016 |
|
|
}
|
| 3017 |
|
|
/* If op0 is an external or constant def use a vector type with
|
| 3018 |
|
|
the same size as the output vector type. */
|
| 3019 |
|
|
if (!vectype)
|
| 3020 |
|
|
vectype = get_same_sized_vectype (TREE_TYPE (op0), vectype_out);
|
| 3021 |
|
|
if (vec_stmt)
|
| 3022 |
|
|
gcc_assert (vectype);
|
| 3023 |
|
|
if (!vectype)
|
| 3024 |
|
|
{
|
| 3025 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 3026 |
|
|
{
|
| 3027 |
|
|
fprintf (vect_dump, "no vectype for scalar type ");
|
| 3028 |
|
|
print_generic_expr (vect_dump, TREE_TYPE (op0), TDF_SLIM);
|
| 3029 |
|
|
}
|
| 3030 |
|
|
|
| 3031 |
|
|
return false;
|
| 3032 |
|
|
}
|
| 3033 |
|
|
|
| 3034 |
|
|
nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out);
|
| 3035 |
|
|
nunits_in = TYPE_VECTOR_SUBPARTS (vectype);
|
| 3036 |
|
|
if (nunits_out != nunits_in)
|
| 3037 |
|
|
return false;
|
| 3038 |
|
|
|
| 3039 |
|
|
op1 = gimple_assign_rhs2 (stmt);
|
| 3040 |
|
|
if (!vect_is_simple_use_1 (op1, stmt, loop_vinfo, bb_vinfo, &def_stmt,
|
| 3041 |
|
|
&def, &dt[1], &op1_vectype))
|
| 3042 |
|
|
{
|
| 3043 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 3044 |
|
|
fprintf (vect_dump, "use not simple.");
|
| 3045 |
|
|
return false;
|
| 3046 |
|
|
}
|
| 3047 |
|
|
|
| 3048 |
|
|
if (loop_vinfo)
|
| 3049 |
|
|
vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
|
| 3050 |
|
|
else
|
| 3051 |
|
|
vf = 1;
|
| 3052 |
|
|
|
| 3053 |
|
|
/* Multiple types in SLP are handled by creating the appropriate number of
|
| 3054 |
|
|
vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
|
| 3055 |
|
|
case of SLP. */
|
| 3056 |
|
|
if (slp_node || PURE_SLP_STMT (stmt_info))
|
| 3057 |
|
|
ncopies = 1;
|
| 3058 |
|
|
else
|
| 3059 |
|
|
ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_in;
|
| 3060 |
|
|
|
| 3061 |
|
|
gcc_assert (ncopies >= 1);
|
| 3062 |
|
|
|
| 3063 |
|
|
/* Determine whether the shift amount is a vector, or scalar. If the
|
| 3064 |
|
|
shift/rotate amount is a vector, use the vector/vector shift optabs. */
|
| 3065 |
|
|
|
| 3066 |
|
|
if (dt[1] == vect_internal_def && !slp_node)
|
| 3067 |
|
|
scalar_shift_arg = false;
|
| 3068 |
|
|
else if (dt[1] == vect_constant_def
|
| 3069 |
|
|
|| dt[1] == vect_external_def
|
| 3070 |
|
|
|| dt[1] == vect_internal_def)
|
| 3071 |
|
|
{
|
| 3072 |
|
|
/* In SLP, need to check whether the shift count is the same,
|
| 3073 |
|
|
in loops if it is a constant or invariant, it is always
|
| 3074 |
|
|
a scalar shift. */
|
| 3075 |
|
|
if (slp_node)
|
| 3076 |
|
|
{
|
| 3077 |
|
|
VEC (gimple, heap) *stmts = SLP_TREE_SCALAR_STMTS (slp_node);
|
| 3078 |
|
|
gimple slpstmt;
|
| 3079 |
|
|
|
| 3080 |
|
|
FOR_EACH_VEC_ELT (gimple, stmts, k, slpstmt)
|
| 3081 |
|
|
if (!operand_equal_p (gimple_assign_rhs2 (slpstmt), op1, 0))
|
| 3082 |
|
|
scalar_shift_arg = false;
|
| 3083 |
|
|
}
|
| 3084 |
|
|
}
|
| 3085 |
|
|
else
|
| 3086 |
|
|
{
|
| 3087 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 3088 |
|
|
fprintf (vect_dump, "operand mode requires invariant argument.");
|
| 3089 |
|
|
return false;
|
| 3090 |
|
|
}
|
| 3091 |
|
|
|
| 3092 |
|
|
/* Vector shifted by vector. */
|
| 3093 |
|
|
if (!scalar_shift_arg)
|
| 3094 |
|
|
{
|
| 3095 |
|
|
optab = optab_for_tree_code (code, vectype, optab_vector);
|
| 3096 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 3097 |
|
|
fprintf (vect_dump, "vector/vector shift/rotate found.");
|
| 3098 |
|
|
if (!op1_vectype)
|
| 3099 |
|
|
op1_vectype = get_same_sized_vectype (TREE_TYPE (op1), vectype_out);
|
| 3100 |
|
|
if (op1_vectype == NULL_TREE
|
| 3101 |
|
|
|| TYPE_MODE (op1_vectype) != TYPE_MODE (vectype))
|
| 3102 |
|
|
{
|
| 3103 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 3104 |
|
|
fprintf (vect_dump, "unusable type for last operand in"
|
| 3105 |
|
|
" vector/vector shift/rotate.");
|
| 3106 |
|
|
return false;
|
| 3107 |
|
|
}
|
| 3108 |
|
|
}
|
| 3109 |
|
|
/* See if the machine has a vector shifted by scalar insn and if not
|
| 3110 |
|
|
then see if it has a vector shifted by vector insn. */
|
| 3111 |
|
|
else
|
| 3112 |
|
|
{
|
| 3113 |
|
|
optab = optab_for_tree_code (code, vectype, optab_scalar);
|
| 3114 |
|
|
if (optab
|
| 3115 |
|
|
&& optab_handler (optab, TYPE_MODE (vectype)) != CODE_FOR_nothing)
|
| 3116 |
|
|
{
|
| 3117 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 3118 |
|
|
fprintf (vect_dump, "vector/scalar shift/rotate found.");
|
| 3119 |
|
|
}
|
| 3120 |
|
|
else
|
| 3121 |
|
|
{
|
| 3122 |
|
|
optab = optab_for_tree_code (code, vectype, optab_vector);
|
| 3123 |
|
|
if (optab
|
| 3124 |
|
|
&& (optab_handler (optab, TYPE_MODE (vectype))
|
| 3125 |
|
|
!= CODE_FOR_nothing))
|
| 3126 |
|
|
{
|
| 3127 |
|
|
scalar_shift_arg = false;
|
| 3128 |
|
|
|
| 3129 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 3130 |
|
|
fprintf (vect_dump, "vector/vector shift/rotate found.");
|
| 3131 |
|
|
|
| 3132 |
|
|
/* Unlike the other binary operators, shifts/rotates have
|
| 3133 |
|
|
the rhs being int, instead of the same type as the lhs,
|
| 3134 |
|
|
so make sure the scalar is the right type if we are
|
| 3135 |
|
|
dealing with vectors of long long/long/short/char. */
|
| 3136 |
|
|
if (dt[1] == vect_constant_def)
|
| 3137 |
|
|
op1 = fold_convert (TREE_TYPE (vectype), op1);
|
| 3138 |
|
|
else if (!useless_type_conversion_p (TREE_TYPE (vectype),
|
| 3139 |
|
|
TREE_TYPE (op1)))
|
| 3140 |
|
|
{
|
| 3141 |
|
|
if (slp_node
|
| 3142 |
|
|
&& TYPE_MODE (TREE_TYPE (vectype))
|
| 3143 |
|
|
!= TYPE_MODE (TREE_TYPE (op1)))
|
| 3144 |
|
|
{
|
| 3145 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 3146 |
|
|
fprintf (vect_dump, "unusable type for last operand in"
|
| 3147 |
|
|
" vector/vector shift/rotate.");
|
| 3148 |
|
|
return false;
|
| 3149 |
|
|
}
|
| 3150 |
|
|
if (vec_stmt && !slp_node)
|
| 3151 |
|
|
{
|
| 3152 |
|
|
op1 = fold_convert (TREE_TYPE (vectype), op1);
|
| 3153 |
|
|
op1 = vect_init_vector (stmt, op1,
|
| 3154 |
|
|
TREE_TYPE (vectype), NULL);
|
| 3155 |
|
|
}
|
| 3156 |
|
|
}
|
| 3157 |
|
|
}
|
| 3158 |
|
|
}
|
| 3159 |
|
|
}
|
| 3160 |
|
|
|
| 3161 |
|
|
/* Supportable by target? */
|
| 3162 |
|
|
if (!optab)
|
| 3163 |
|
|
{
|
| 3164 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 3165 |
|
|
fprintf (vect_dump, "no optab.");
|
| 3166 |
|
|
return false;
|
| 3167 |
|
|
}
|
| 3168 |
|
|
vec_mode = TYPE_MODE (vectype);
|
| 3169 |
|
|
icode = (int) optab_handler (optab, vec_mode);
|
| 3170 |
|
|
if (icode == CODE_FOR_nothing)
|
| 3171 |
|
|
{
|
| 3172 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 3173 |
|
|
fprintf (vect_dump, "op not supported by target.");
|
| 3174 |
|
|
/* Check only during analysis. */
|
| 3175 |
|
|
if (GET_MODE_SIZE (vec_mode) != UNITS_PER_WORD
|
| 3176 |
|
|
|| (vf < vect_min_worthwhile_factor (code)
|
| 3177 |
|
|
&& !vec_stmt))
|
| 3178 |
|
|
return false;
|
| 3179 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 3180 |
|
|
fprintf (vect_dump, "proceeding using word mode.");
|
| 3181 |
|
|
}
|
| 3182 |
|
|
|
| 3183 |
|
|
/* Worthwhile without SIMD support? Check only during analysis. */
|
| 3184 |
|
|
if (!VECTOR_MODE_P (TYPE_MODE (vectype))
|
| 3185 |
|
|
&& vf < vect_min_worthwhile_factor (code)
|
| 3186 |
|
|
&& !vec_stmt)
|
| 3187 |
|
|
{
|
| 3188 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 3189 |
|
|
fprintf (vect_dump, "not worthwhile without SIMD support.");
|
| 3190 |
|
|
return false;
|
| 3191 |
|
|
}
|
| 3192 |
|
|
|
| 3193 |
|
|
if (!vec_stmt) /* transformation not required. */
|
| 3194 |
|
|
{
|
| 3195 |
|
|
STMT_VINFO_TYPE (stmt_info) = shift_vec_info_type;
|
| 3196 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 3197 |
|
|
fprintf (vect_dump, "=== vectorizable_shift ===");
|
| 3198 |
|
|
vect_model_simple_cost (stmt_info, ncopies, dt, NULL);
|
| 3199 |
|
|
return true;
|
| 3200 |
|
|
}
|
| 3201 |
|
|
|
| 3202 |
|
|
/** Transform. **/
|
| 3203 |
|
|
|
| 3204 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 3205 |
|
|
fprintf (vect_dump, "transform binary/unary operation.");
|
| 3206 |
|
|
|
| 3207 |
|
|
/* Handle def. */
|
| 3208 |
|
|
vec_dest = vect_create_destination_var (scalar_dest, vectype);
|
| 3209 |
|
|
|
| 3210 |
|
|
/* Allocate VECs for vector operands. In case of SLP, vector operands are
|
| 3211 |
|
|
created in the previous stages of the recursion, so no allocation is
|
| 3212 |
|
|
needed, except for the case of shift with scalar shift argument. In that
|
| 3213 |
|
|
case we store the scalar operand in VEC_OPRNDS1 for every vector stmt to
|
| 3214 |
|
|
be created to vectorize the SLP group, i.e., SLP_NODE->VEC_STMTS_SIZE.
|
| 3215 |
|
|
In case of loop-based vectorization we allocate VECs of size 1. We
|
| 3216 |
|
|
allocate VEC_OPRNDS1 only in case of binary operation. */
|
| 3217 |
|
|
if (!slp_node)
|
| 3218 |
|
|
{
|
| 3219 |
|
|
vec_oprnds0 = VEC_alloc (tree, heap, 1);
|
| 3220 |
|
|
vec_oprnds1 = VEC_alloc (tree, heap, 1);
|
| 3221 |
|
|
}
|
| 3222 |
|
|
else if (scalar_shift_arg)
|
| 3223 |
|
|
vec_oprnds1 = VEC_alloc (tree, heap, slp_node->vec_stmts_size);
|
| 3224 |
|
|
|
| 3225 |
|
|
prev_stmt_info = NULL;
|
| 3226 |
|
|
for (j = 0; j < ncopies; j++)
|
| 3227 |
|
|
{
|
| 3228 |
|
|
/* Handle uses. */
|
| 3229 |
|
|
if (j == 0)
|
| 3230 |
|
|
{
|
| 3231 |
|
|
if (scalar_shift_arg)
|
| 3232 |
|
|
{
|
| 3233 |
|
|
/* Vector shl and shr insn patterns can be defined with scalar
|
| 3234 |
|
|
operand 2 (shift operand). In this case, use constant or loop
|
| 3235 |
|
|
invariant op1 directly, without extending it to vector mode
|
| 3236 |
|
|
first. */
|
| 3237 |
|
|
optab_op2_mode = insn_data[icode].operand[2].mode;
|
| 3238 |
|
|
if (!VECTOR_MODE_P (optab_op2_mode))
|
| 3239 |
|
|
{
|
| 3240 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 3241 |
|
|
fprintf (vect_dump, "operand 1 using scalar mode.");
|
| 3242 |
|
|
vec_oprnd1 = op1;
|
| 3243 |
|
|
VEC_quick_push (tree, vec_oprnds1, vec_oprnd1);
|
| 3244 |
|
|
if (slp_node)
|
| 3245 |
|
|
{
|
| 3246 |
|
|
/* Store vec_oprnd1 for every vector stmt to be created
|
| 3247 |
|
|
for SLP_NODE. We check during the analysis that all
|
| 3248 |
|
|
the shift arguments are the same.
|
| 3249 |
|
|
TODO: Allow different constants for different vector
|
| 3250 |
|
|
stmts generated for an SLP instance. */
|
| 3251 |
|
|
for (k = 0; k < slp_node->vec_stmts_size - 1; k++)
|
| 3252 |
|
|
VEC_quick_push (tree, vec_oprnds1, vec_oprnd1);
|
| 3253 |
|
|
}
|
| 3254 |
|
|
}
|
| 3255 |
|
|
}
|
| 3256 |
|
|
|
| 3257 |
|
|
/* vec_oprnd1 is available if operand 1 should be of a scalar-type
|
| 3258 |
|
|
(a special case for certain kind of vector shifts); otherwise,
|
| 3259 |
|
|
operand 1 should be of a vector type (the usual case). */
|
| 3260 |
|
|
if (vec_oprnd1)
|
| 3261 |
|
|
vect_get_vec_defs (op0, NULL_TREE, stmt, &vec_oprnds0, NULL,
|
| 3262 |
|
|
slp_node, -1);
|
| 3263 |
|
|
else
|
| 3264 |
|
|
vect_get_vec_defs (op0, op1, stmt, &vec_oprnds0, &vec_oprnds1,
|
| 3265 |
|
|
slp_node, -1);
|
| 3266 |
|
|
}
|
| 3267 |
|
|
else
|
| 3268 |
|
|
vect_get_vec_defs_for_stmt_copy (dt, &vec_oprnds0, &vec_oprnds1);
|
| 3269 |
|
|
|
| 3270 |
|
|
/* Arguments are ready. Create the new vector stmt. */
|
| 3271 |
|
|
FOR_EACH_VEC_ELT (tree, vec_oprnds0, i, vop0)
|
| 3272 |
|
|
{
|
| 3273 |
|
|
vop1 = VEC_index (tree, vec_oprnds1, i);
|
| 3274 |
|
|
new_stmt = gimple_build_assign_with_ops (code, vec_dest, vop0, vop1);
|
| 3275 |
|
|
new_temp = make_ssa_name (vec_dest, new_stmt);
|
| 3276 |
|
|
gimple_assign_set_lhs (new_stmt, new_temp);
|
| 3277 |
|
|
vect_finish_stmt_generation (stmt, new_stmt, gsi);
|
| 3278 |
|
|
if (slp_node)
|
| 3279 |
|
|
VEC_quick_push (gimple, SLP_TREE_VEC_STMTS (slp_node), new_stmt);
|
| 3280 |
|
|
}
|
| 3281 |
|
|
|
| 3282 |
|
|
if (slp_node)
|
| 3283 |
|
|
continue;
|
| 3284 |
|
|
|
| 3285 |
|
|
if (j == 0)
|
| 3286 |
|
|
STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
|
| 3287 |
|
|
else
|
| 3288 |
|
|
STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
|
| 3289 |
|
|
prev_stmt_info = vinfo_for_stmt (new_stmt);
|
| 3290 |
|
|
}
|
| 3291 |
|
|
|
| 3292 |
|
|
VEC_free (tree, heap, vec_oprnds0);
|
| 3293 |
|
|
VEC_free (tree, heap, vec_oprnds1);
|
| 3294 |
|
|
|
| 3295 |
|
|
return true;
|
| 3296 |
|
|
}
|
| 3297 |
|
|
|
| 3298 |
|
|
|
| 3299 |
|
|
/* Function vectorizable_operation.
|
| 3300 |
|
|
|
| 3301 |
|
|
Check if STMT performs a binary, unary or ternary operation that can
|
| 3302 |
|
|
be vectorized.
|
| 3303 |
|
|
If VEC_STMT is also passed, vectorize the STMT: create a vectorized
|
| 3304 |
|
|
stmt to replace it, put it in VEC_STMT, and insert it at BSI.
|
| 3305 |
|
|
Return FALSE if not a vectorizable STMT, TRUE otherwise. */
|
| 3306 |
|
|
|
| 3307 |
|
|
static bool
|
| 3308 |
|
|
vectorizable_operation (gimple stmt, gimple_stmt_iterator *gsi,
|
| 3309 |
|
|
gimple *vec_stmt, slp_tree slp_node)
|
| 3310 |
|
|
{
|
| 3311 |
|
|
tree vec_dest;
|
| 3312 |
|
|
tree scalar_dest;
|
| 3313 |
|
|
tree op0, op1 = NULL_TREE, op2 = NULL_TREE;
|
| 3314 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
| 3315 |
|
|
tree vectype;
|
| 3316 |
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
| 3317 |
|
|
enum tree_code code;
|
| 3318 |
|
|
enum machine_mode vec_mode;
|
| 3319 |
|
|
tree new_temp;
|
| 3320 |
|
|
int op_type;
|
| 3321 |
|
|
optab optab;
|
| 3322 |
|
|
int icode;
|
| 3323 |
|
|
tree def;
|
| 3324 |
|
|
gimple def_stmt;
|
| 3325 |
|
|
enum vect_def_type dt[3]
|
| 3326 |
|
|
= {vect_unknown_def_type, vect_unknown_def_type, vect_unknown_def_type};
|
| 3327 |
|
|
gimple new_stmt = NULL;
|
| 3328 |
|
|
stmt_vec_info prev_stmt_info;
|
| 3329 |
|
|
int nunits_in;
|
| 3330 |
|
|
int nunits_out;
|
| 3331 |
|
|
tree vectype_out;
|
| 3332 |
|
|
int ncopies;
|
| 3333 |
|
|
int j, i;
|
| 3334 |
|
|
VEC(tree,heap) *vec_oprnds0 = NULL, *vec_oprnds1 = NULL, *vec_oprnds2 = NULL;
|
| 3335 |
|
|
tree vop0, vop1, vop2;
|
| 3336 |
|
|
bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
|
| 3337 |
|
|
int vf;
|
| 3338 |
|
|
|
| 3339 |
|
|
if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
|
| 3340 |
|
|
return false;
|
| 3341 |
|
|
|
| 3342 |
|
|
if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
|
| 3343 |
|
|
return false;
|
| 3344 |
|
|
|
| 3345 |
|
|
/* Is STMT a vectorizable binary/unary operation? */
|
| 3346 |
|
|
if (!is_gimple_assign (stmt))
|
| 3347 |
|
|
return false;
|
| 3348 |
|
|
|
| 3349 |
|
|
if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
|
| 3350 |
|
|
return false;
|
| 3351 |
|
|
|
| 3352 |
|
|
code = gimple_assign_rhs_code (stmt);
|
| 3353 |
|
|
|
| 3354 |
|
|
/* For pointer addition, we should use the normal plus for
|
| 3355 |
|
|
the vector addition. */
|
| 3356 |
|
|
if (code == POINTER_PLUS_EXPR)
|
| 3357 |
|
|
code = PLUS_EXPR;
|
| 3358 |
|
|
|
| 3359 |
|
|
/* Support only unary or binary operations. */
|
| 3360 |
|
|
op_type = TREE_CODE_LENGTH (code);
|
| 3361 |
|
|
if (op_type != unary_op && op_type != binary_op && op_type != ternary_op)
|
| 3362 |
|
|
{
|
| 3363 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 3364 |
|
|
fprintf (vect_dump, "num. args = %d (not unary/binary/ternary op).",
|
| 3365 |
|
|
op_type);
|
| 3366 |
|
|
return false;
|
| 3367 |
|
|
}
|
| 3368 |
|
|
|
| 3369 |
|
|
scalar_dest = gimple_assign_lhs (stmt);
|
| 3370 |
|
|
vectype_out = STMT_VINFO_VECTYPE (stmt_info);
|
| 3371 |
|
|
|
| 3372 |
|
|
/* Most operations cannot handle bit-precision types without extra
|
| 3373 |
|
|
truncations. */
|
| 3374 |
|
|
if ((TYPE_PRECISION (TREE_TYPE (scalar_dest))
|
| 3375 |
|
|
!= GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (scalar_dest))))
|
| 3376 |
|
|
/* Exception are bitwise binary operations. */
|
| 3377 |
|
|
&& code != BIT_IOR_EXPR
|
| 3378 |
|
|
&& code != BIT_XOR_EXPR
|
| 3379 |
|
|
&& code != BIT_AND_EXPR)
|
| 3380 |
|
|
{
|
| 3381 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 3382 |
|
|
fprintf (vect_dump, "bit-precision arithmetic not supported.");
|
| 3383 |
|
|
return false;
|
| 3384 |
|
|
}
|
| 3385 |
|
|
|
| 3386 |
|
|
op0 = gimple_assign_rhs1 (stmt);
|
| 3387 |
|
|
if (!vect_is_simple_use_1 (op0, stmt, loop_vinfo, bb_vinfo,
|
| 3388 |
|
|
&def_stmt, &def, &dt[0], &vectype))
|
| 3389 |
|
|
{
|
| 3390 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 3391 |
|
|
fprintf (vect_dump, "use not simple.");
|
| 3392 |
|
|
return false;
|
| 3393 |
|
|
}
|
| 3394 |
|
|
/* If op0 is an external or constant def use a vector type with
|
| 3395 |
|
|
the same size as the output vector type. */
|
| 3396 |
|
|
if (!vectype)
|
| 3397 |
|
|
vectype = get_same_sized_vectype (TREE_TYPE (op0), vectype_out);
|
| 3398 |
|
|
if (vec_stmt)
|
| 3399 |
|
|
gcc_assert (vectype);
|
| 3400 |
|
|
if (!vectype)
|
| 3401 |
|
|
{
|
| 3402 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 3403 |
|
|
{
|
| 3404 |
|
|
fprintf (vect_dump, "no vectype for scalar type ");
|
| 3405 |
|
|
print_generic_expr (vect_dump, TREE_TYPE (op0), TDF_SLIM);
|
| 3406 |
|
|
}
|
| 3407 |
|
|
|
| 3408 |
|
|
return false;
|
| 3409 |
|
|
}
|
| 3410 |
|
|
|
| 3411 |
|
|
nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out);
|
| 3412 |
|
|
nunits_in = TYPE_VECTOR_SUBPARTS (vectype);
|
| 3413 |
|
|
if (nunits_out != nunits_in)
|
| 3414 |
|
|
return false;
|
| 3415 |
|
|
|
| 3416 |
|
|
if (op_type == binary_op || op_type == ternary_op)
|
| 3417 |
|
|
{
|
| 3418 |
|
|
op1 = gimple_assign_rhs2 (stmt);
|
| 3419 |
|
|
if (!vect_is_simple_use (op1, stmt, loop_vinfo, bb_vinfo, &def_stmt,
|
| 3420 |
|
|
&def, &dt[1]))
|
| 3421 |
|
|
{
|
| 3422 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 3423 |
|
|
fprintf (vect_dump, "use not simple.");
|
| 3424 |
|
|
return false;
|
| 3425 |
|
|
}
|
| 3426 |
|
|
}
|
| 3427 |
|
|
if (op_type == ternary_op)
|
| 3428 |
|
|
{
|
| 3429 |
|
|
op2 = gimple_assign_rhs3 (stmt);
|
| 3430 |
|
|
if (!vect_is_simple_use (op2, stmt, loop_vinfo, bb_vinfo, &def_stmt,
|
| 3431 |
|
|
&def, &dt[2]))
|
| 3432 |
|
|
{
|
| 3433 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 3434 |
|
|
fprintf (vect_dump, "use not simple.");
|
| 3435 |
|
|
return false;
|
| 3436 |
|
|
}
|
| 3437 |
|
|
}
|
| 3438 |
|
|
|
| 3439 |
|
|
if (loop_vinfo)
|
| 3440 |
|
|
vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
|
| 3441 |
|
|
else
|
| 3442 |
|
|
vf = 1;
|
| 3443 |
|
|
|
| 3444 |
|
|
/* Multiple types in SLP are handled by creating the appropriate number of
|
| 3445 |
|
|
vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
|
| 3446 |
|
|
case of SLP. */
|
| 3447 |
|
|
if (slp_node || PURE_SLP_STMT (stmt_info))
|
| 3448 |
|
|
ncopies = 1;
|
| 3449 |
|
|
else
|
| 3450 |
|
|
ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_in;
|
| 3451 |
|
|
|
| 3452 |
|
|
gcc_assert (ncopies >= 1);
|
| 3453 |
|
|
|
| 3454 |
|
|
/* Shifts are handled in vectorizable_shift (). */
|
| 3455 |
|
|
if (code == LSHIFT_EXPR || code == RSHIFT_EXPR || code == LROTATE_EXPR
|
| 3456 |
|
|
|| code == RROTATE_EXPR)
|
| 3457 |
|
|
return false;
|
| 3458 |
|
|
|
| 3459 |
|
|
optab = optab_for_tree_code (code, vectype, optab_default);
|
| 3460 |
|
|
|
| 3461 |
|
|
/* Supportable by target? */
|
| 3462 |
|
|
if (!optab)
|
| 3463 |
|
|
{
|
| 3464 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 3465 |
|
|
fprintf (vect_dump, "no optab.");
|
| 3466 |
|
|
return false;
|
| 3467 |
|
|
}
|
| 3468 |
|
|
vec_mode = TYPE_MODE (vectype);
|
| 3469 |
|
|
icode = (int) optab_handler (optab, vec_mode);
|
| 3470 |
|
|
if (icode == CODE_FOR_nothing)
|
| 3471 |
|
|
{
|
| 3472 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 3473 |
|
|
fprintf (vect_dump, "op not supported by target.");
|
| 3474 |
|
|
/* Check only during analysis. */
|
| 3475 |
|
|
if (GET_MODE_SIZE (vec_mode) != UNITS_PER_WORD
|
| 3476 |
|
|
|| (vf < vect_min_worthwhile_factor (code)
|
| 3477 |
|
|
&& !vec_stmt))
|
| 3478 |
|
|
return false;
|
| 3479 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 3480 |
|
|
fprintf (vect_dump, "proceeding using word mode.");
|
| 3481 |
|
|
}
|
| 3482 |
|
|
|
| 3483 |
|
|
/* Worthwhile without SIMD support? Check only during analysis. */
|
| 3484 |
|
|
if (!VECTOR_MODE_P (TYPE_MODE (vectype))
|
| 3485 |
|
|
&& vf < vect_min_worthwhile_factor (code)
|
| 3486 |
|
|
&& !vec_stmt)
|
| 3487 |
|
|
{
|
| 3488 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 3489 |
|
|
fprintf (vect_dump, "not worthwhile without SIMD support.");
|
| 3490 |
|
|
return false;
|
| 3491 |
|
|
}
|
| 3492 |
|
|
|
| 3493 |
|
|
if (!vec_stmt) /* transformation not required. */
|
| 3494 |
|
|
{
|
| 3495 |
|
|
STMT_VINFO_TYPE (stmt_info) = op_vec_info_type;
|
| 3496 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 3497 |
|
|
fprintf (vect_dump, "=== vectorizable_operation ===");
|
| 3498 |
|
|
vect_model_simple_cost (stmt_info, ncopies, dt, NULL);
|
| 3499 |
|
|
return true;
|
| 3500 |
|
|
}
|
| 3501 |
|
|
|
| 3502 |
|
|
/** Transform. **/
|
| 3503 |
|
|
|
| 3504 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 3505 |
|
|
fprintf (vect_dump, "transform binary/unary operation.");
|
| 3506 |
|
|
|
| 3507 |
|
|
/* Handle def. */
|
| 3508 |
|
|
vec_dest = vect_create_destination_var (scalar_dest, vectype);
|
| 3509 |
|
|
|
| 3510 |
|
|
/* Allocate VECs for vector operands. In case of SLP, vector operands are
|
| 3511 |
|
|
created in the previous stages of the recursion, so no allocation is
|
| 3512 |
|
|
needed, except for the case of shift with scalar shift argument. In that
|
| 3513 |
|
|
case we store the scalar operand in VEC_OPRNDS1 for every vector stmt to
|
| 3514 |
|
|
be created to vectorize the SLP group, i.e., SLP_NODE->VEC_STMTS_SIZE.
|
| 3515 |
|
|
In case of loop-based vectorization we allocate VECs of size 1. We
|
| 3516 |
|
|
allocate VEC_OPRNDS1 only in case of binary operation. */
|
| 3517 |
|
|
if (!slp_node)
|
| 3518 |
|
|
{
|
| 3519 |
|
|
vec_oprnds0 = VEC_alloc (tree, heap, 1);
|
| 3520 |
|
|
if (op_type == binary_op || op_type == ternary_op)
|
| 3521 |
|
|
vec_oprnds1 = VEC_alloc (tree, heap, 1);
|
| 3522 |
|
|
if (op_type == ternary_op)
|
| 3523 |
|
|
vec_oprnds2 = VEC_alloc (tree, heap, 1);
|
| 3524 |
|
|
}
|
| 3525 |
|
|
|
| 3526 |
|
|
/* In case the vectorization factor (VF) is bigger than the number
|
| 3527 |
|
|
of elements that we can fit in a vectype (nunits), we have to generate
|
| 3528 |
|
|
more than one vector stmt - i.e - we need to "unroll" the
|
| 3529 |
|
|
vector stmt by a factor VF/nunits. In doing so, we record a pointer
|
| 3530 |
|
|
from one copy of the vector stmt to the next, in the field
|
| 3531 |
|
|
STMT_VINFO_RELATED_STMT. This is necessary in order to allow following
|
| 3532 |
|
|
stages to find the correct vector defs to be used when vectorizing
|
| 3533 |
|
|
stmts that use the defs of the current stmt. The example below
|
| 3534 |
|
|
illustrates the vectorization process when VF=16 and nunits=4 (i.e.,
|
| 3535 |
|
|
we need to create 4 vectorized stmts):
|
| 3536 |
|
|
|
| 3537 |
|
|
before vectorization:
|
| 3538 |
|
|
RELATED_STMT VEC_STMT
|
| 3539 |
|
|
S1: x = memref - -
|
| 3540 |
|
|
S2: z = x + 1 - -
|
| 3541 |
|
|
|
| 3542 |
|
|
step 1: vectorize stmt S1 (done in vectorizable_load. See more details
|
| 3543 |
|
|
there):
|
| 3544 |
|
|
RELATED_STMT VEC_STMT
|
| 3545 |
|
|
VS1_0: vx0 = memref0 VS1_1 -
|
| 3546 |
|
|
VS1_1: vx1 = memref1 VS1_2 -
|
| 3547 |
|
|
VS1_2: vx2 = memref2 VS1_3 -
|
| 3548 |
|
|
VS1_3: vx3 = memref3 - -
|
| 3549 |
|
|
S1: x = load - VS1_0
|
| 3550 |
|
|
S2: z = x + 1 - -
|
| 3551 |
|
|
|
| 3552 |
|
|
step2: vectorize stmt S2 (done here):
|
| 3553 |
|
|
To vectorize stmt S2 we first need to find the relevant vector
|
| 3554 |
|
|
def for the first operand 'x'. This is, as usual, obtained from
|
| 3555 |
|
|
the vector stmt recorded in the STMT_VINFO_VEC_STMT of the stmt
|
| 3556 |
|
|
that defines 'x' (S1). This way we find the stmt VS1_0, and the
|
| 3557 |
|
|
relevant vector def 'vx0'. Having found 'vx0' we can generate
|
| 3558 |
|
|
the vector stmt VS2_0, and as usual, record it in the
|
| 3559 |
|
|
STMT_VINFO_VEC_STMT of stmt S2.
|
| 3560 |
|
|
When creating the second copy (VS2_1), we obtain the relevant vector
|
| 3561 |
|
|
def from the vector stmt recorded in the STMT_VINFO_RELATED_STMT of
|
| 3562 |
|
|
stmt VS1_0. This way we find the stmt VS1_1 and the relevant
|
| 3563 |
|
|
vector def 'vx1'. Using 'vx1' we create stmt VS2_1 and record a
|
| 3564 |
|
|
pointer to it in the STMT_VINFO_RELATED_STMT of the vector stmt VS2_0.
|
| 3565 |
|
|
Similarly when creating stmts VS2_2 and VS2_3. This is the resulting
|
| 3566 |
|
|
chain of stmts and pointers:
|
| 3567 |
|
|
RELATED_STMT VEC_STMT
|
| 3568 |
|
|
VS1_0: vx0 = memref0 VS1_1 -
|
| 3569 |
|
|
VS1_1: vx1 = memref1 VS1_2 -
|
| 3570 |
|
|
VS1_2: vx2 = memref2 VS1_3 -
|
| 3571 |
|
|
VS1_3: vx3 = memref3 - -
|
| 3572 |
|
|
S1: x = load - VS1_0
|
| 3573 |
|
|
VS2_0: vz0 = vx0 + v1 VS2_1 -
|
| 3574 |
|
|
VS2_1: vz1 = vx1 + v1 VS2_2 -
|
| 3575 |
|
|
VS2_2: vz2 = vx2 + v1 VS2_3 -
|
| 3576 |
|
|
VS2_3: vz3 = vx3 + v1 - -
|
| 3577 |
|
|
S2: z = x + 1 - VS2_0 */
|
| 3578 |
|
|
|
| 3579 |
|
|
prev_stmt_info = NULL;
|
| 3580 |
|
|
for (j = 0; j < ncopies; j++)
|
| 3581 |
|
|
{
|
| 3582 |
|
|
/* Handle uses. */
|
| 3583 |
|
|
if (j == 0)
|
| 3584 |
|
|
{
|
| 3585 |
|
|
if (op_type == binary_op || op_type == ternary_op)
|
| 3586 |
|
|
vect_get_vec_defs (op0, op1, stmt, &vec_oprnds0, &vec_oprnds1,
|
| 3587 |
|
|
slp_node, -1);
|
| 3588 |
|
|
else
|
| 3589 |
|
|
vect_get_vec_defs (op0, NULL_TREE, stmt, &vec_oprnds0, NULL,
|
| 3590 |
|
|
slp_node, -1);
|
| 3591 |
|
|
if (op_type == ternary_op)
|
| 3592 |
|
|
{
|
| 3593 |
|
|
vec_oprnds2 = VEC_alloc (tree, heap, 1);
|
| 3594 |
|
|
VEC_quick_push (tree, vec_oprnds2,
|
| 3595 |
|
|
vect_get_vec_def_for_operand (op2, stmt, NULL));
|
| 3596 |
|
|
}
|
| 3597 |
|
|
}
|
| 3598 |
|
|
else
|
| 3599 |
|
|
{
|
| 3600 |
|
|
vect_get_vec_defs_for_stmt_copy (dt, &vec_oprnds0, &vec_oprnds1);
|
| 3601 |
|
|
if (op_type == ternary_op)
|
| 3602 |
|
|
{
|
| 3603 |
|
|
tree vec_oprnd = VEC_pop (tree, vec_oprnds2);
|
| 3604 |
|
|
VEC_quick_push (tree, vec_oprnds2,
|
| 3605 |
|
|
vect_get_vec_def_for_stmt_copy (dt[2],
|
| 3606 |
|
|
vec_oprnd));
|
| 3607 |
|
|
}
|
| 3608 |
|
|
}
|
| 3609 |
|
|
|
| 3610 |
|
|
/* Arguments are ready. Create the new vector stmt. */
|
| 3611 |
|
|
FOR_EACH_VEC_ELT (tree, vec_oprnds0, i, vop0)
|
| 3612 |
|
|
{
|
| 3613 |
|
|
vop1 = ((op_type == binary_op || op_type == ternary_op)
|
| 3614 |
|
|
? VEC_index (tree, vec_oprnds1, i) : NULL_TREE);
|
| 3615 |
|
|
vop2 = ((op_type == ternary_op)
|
| 3616 |
|
|
? VEC_index (tree, vec_oprnds2, i) : NULL_TREE);
|
| 3617 |
|
|
new_stmt = gimple_build_assign_with_ops3 (code, vec_dest,
|
| 3618 |
|
|
vop0, vop1, vop2);
|
| 3619 |
|
|
new_temp = make_ssa_name (vec_dest, new_stmt);
|
| 3620 |
|
|
gimple_assign_set_lhs (new_stmt, new_temp);
|
| 3621 |
|
|
vect_finish_stmt_generation (stmt, new_stmt, gsi);
|
| 3622 |
|
|
if (slp_node)
|
| 3623 |
|
|
VEC_quick_push (gimple, SLP_TREE_VEC_STMTS (slp_node), new_stmt);
|
| 3624 |
|
|
}
|
| 3625 |
|
|
|
| 3626 |
|
|
if (slp_node)
|
| 3627 |
|
|
continue;
|
| 3628 |
|
|
|
| 3629 |
|
|
if (j == 0)
|
| 3630 |
|
|
STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
|
| 3631 |
|
|
else
|
| 3632 |
|
|
STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
|
| 3633 |
|
|
prev_stmt_info = vinfo_for_stmt (new_stmt);
|
| 3634 |
|
|
}
|
| 3635 |
|
|
|
| 3636 |
|
|
VEC_free (tree, heap, vec_oprnds0);
|
| 3637 |
|
|
if (vec_oprnds1)
|
| 3638 |
|
|
VEC_free (tree, heap, vec_oprnds1);
|
| 3639 |
|
|
if (vec_oprnds2)
|
| 3640 |
|
|
VEC_free (tree, heap, vec_oprnds2);
|
| 3641 |
|
|
|
| 3642 |
|
|
return true;
|
| 3643 |
|
|
}
|
| 3644 |
|
|
|
| 3645 |
|
|
|
| 3646 |
|
|
/* Function vectorizable_store.
|
| 3647 |
|
|
|
| 3648 |
|
|
Check if STMT defines a non scalar data-ref (array/pointer/structure) that
|
| 3649 |
|
|
can be vectorized.
|
| 3650 |
|
|
If VEC_STMT is also passed, vectorize the STMT: create a vectorized
|
| 3651 |
|
|
stmt to replace it, put it in VEC_STMT, and insert it at BSI.
|
| 3652 |
|
|
Return FALSE if not a vectorizable STMT, TRUE otherwise. */
|
| 3653 |
|
|
|
| 3654 |
|
|
static bool
|
| 3655 |
|
|
vectorizable_store (gimple stmt, gimple_stmt_iterator *gsi, gimple *vec_stmt,
|
| 3656 |
|
|
slp_tree slp_node)
|
| 3657 |
|
|
{
|
| 3658 |
|
|
tree scalar_dest;
|
| 3659 |
|
|
tree data_ref;
|
| 3660 |
|
|
tree op;
|
| 3661 |
|
|
tree vec_oprnd = NULL_TREE;
|
| 3662 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
| 3663 |
|
|
struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info), *first_dr = NULL;
|
| 3664 |
|
|
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
|
| 3665 |
|
|
tree elem_type;
|
| 3666 |
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
| 3667 |
|
|
struct loop *loop = NULL;
|
| 3668 |
|
|
enum machine_mode vec_mode;
|
| 3669 |
|
|
tree dummy;
|
| 3670 |
|
|
enum dr_alignment_support alignment_support_scheme;
|
| 3671 |
|
|
tree def;
|
| 3672 |
|
|
gimple def_stmt;
|
| 3673 |
|
|
enum vect_def_type dt;
|
| 3674 |
|
|
stmt_vec_info prev_stmt_info = NULL;
|
| 3675 |
|
|
tree dataref_ptr = NULL_TREE;
|
| 3676 |
|
|
int nunits = TYPE_VECTOR_SUBPARTS (vectype);
|
| 3677 |
|
|
int ncopies;
|
| 3678 |
|
|
int j;
|
| 3679 |
|
|
gimple next_stmt, first_stmt = NULL;
|
| 3680 |
|
|
bool strided_store = false;
|
| 3681 |
|
|
bool store_lanes_p = false;
|
| 3682 |
|
|
unsigned int group_size, i;
|
| 3683 |
|
|
VEC(tree,heap) *dr_chain = NULL, *oprnds = NULL, *result_chain = NULL;
|
| 3684 |
|
|
bool inv_p;
|
| 3685 |
|
|
VEC(tree,heap) *vec_oprnds = NULL;
|
| 3686 |
|
|
bool slp = (slp_node != NULL);
|
| 3687 |
|
|
unsigned int vec_num;
|
| 3688 |
|
|
bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
|
| 3689 |
|
|
tree aggr_type;
|
| 3690 |
|
|
|
| 3691 |
|
|
if (loop_vinfo)
|
| 3692 |
|
|
loop = LOOP_VINFO_LOOP (loop_vinfo);
|
| 3693 |
|
|
|
| 3694 |
|
|
/* Multiple types in SLP are handled by creating the appropriate number of
|
| 3695 |
|
|
vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
|
| 3696 |
|
|
case of SLP. */
|
| 3697 |
|
|
if (slp || PURE_SLP_STMT (stmt_info))
|
| 3698 |
|
|
ncopies = 1;
|
| 3699 |
|
|
else
|
| 3700 |
|
|
ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
|
| 3701 |
|
|
|
| 3702 |
|
|
gcc_assert (ncopies >= 1);
|
| 3703 |
|
|
|
| 3704 |
|
|
/* FORNOW. This restriction should be relaxed. */
|
| 3705 |
|
|
if (loop && nested_in_vect_loop_p (loop, stmt) && ncopies > 1)
|
| 3706 |
|
|
{
|
| 3707 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 3708 |
|
|
fprintf (vect_dump, "multiple types in nested loop.");
|
| 3709 |
|
|
return false;
|
| 3710 |
|
|
}
|
| 3711 |
|
|
|
| 3712 |
|
|
if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
|
| 3713 |
|
|
return false;
|
| 3714 |
|
|
|
| 3715 |
|
|
if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
|
| 3716 |
|
|
return false;
|
| 3717 |
|
|
|
| 3718 |
|
|
/* Is vectorizable store? */
|
| 3719 |
|
|
|
| 3720 |
|
|
if (!is_gimple_assign (stmt))
|
| 3721 |
|
|
return false;
|
| 3722 |
|
|
|
| 3723 |
|
|
scalar_dest = gimple_assign_lhs (stmt);
|
| 3724 |
|
|
if (TREE_CODE (scalar_dest) == VIEW_CONVERT_EXPR
|
| 3725 |
|
|
&& is_pattern_stmt_p (stmt_info))
|
| 3726 |
|
|
scalar_dest = TREE_OPERAND (scalar_dest, 0);
|
| 3727 |
|
|
if (TREE_CODE (scalar_dest) != ARRAY_REF
|
| 3728 |
|
|
&& TREE_CODE (scalar_dest) != INDIRECT_REF
|
| 3729 |
|
|
&& TREE_CODE (scalar_dest) != COMPONENT_REF
|
| 3730 |
|
|
&& TREE_CODE (scalar_dest) != IMAGPART_EXPR
|
| 3731 |
|
|
&& TREE_CODE (scalar_dest) != REALPART_EXPR
|
| 3732 |
|
|
&& TREE_CODE (scalar_dest) != MEM_REF)
|
| 3733 |
|
|
return false;
|
| 3734 |
|
|
|
| 3735 |
|
|
gcc_assert (gimple_assign_single_p (stmt));
|
| 3736 |
|
|
op = gimple_assign_rhs1 (stmt);
|
| 3737 |
|
|
if (!vect_is_simple_use (op, stmt, loop_vinfo, bb_vinfo, &def_stmt,
|
| 3738 |
|
|
&def, &dt))
|
| 3739 |
|
|
{
|
| 3740 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 3741 |
|
|
fprintf (vect_dump, "use not simple.");
|
| 3742 |
|
|
return false;
|
| 3743 |
|
|
}
|
| 3744 |
|
|
|
| 3745 |
|
|
elem_type = TREE_TYPE (vectype);
|
| 3746 |
|
|
vec_mode = TYPE_MODE (vectype);
|
| 3747 |
|
|
|
| 3748 |
|
|
/* FORNOW. In some cases can vectorize even if data-type not supported
|
| 3749 |
|
|
(e.g. - array initialization with 0). */
|
| 3750 |
|
|
if (optab_handler (mov_optab, vec_mode) == CODE_FOR_nothing)
|
| 3751 |
|
|
return false;
|
| 3752 |
|
|
|
| 3753 |
|
|
if (!STMT_VINFO_DATA_REF (stmt_info))
|
| 3754 |
|
|
return false;
|
| 3755 |
|
|
|
| 3756 |
|
|
if (tree_int_cst_compare (loop && nested_in_vect_loop_p (loop, stmt)
|
| 3757 |
|
|
? STMT_VINFO_DR_STEP (stmt_info) : DR_STEP (dr),
|
| 3758 |
|
|
size_zero_node) < 0)
|
| 3759 |
|
|
{
|
| 3760 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 3761 |
|
|
fprintf (vect_dump, "negative step for store.");
|
| 3762 |
|
|
return false;
|
| 3763 |
|
|
}
|
| 3764 |
|
|
|
| 3765 |
|
|
if (STMT_VINFO_STRIDED_ACCESS (stmt_info))
|
| 3766 |
|
|
{
|
| 3767 |
|
|
strided_store = true;
|
| 3768 |
|
|
first_stmt = GROUP_FIRST_ELEMENT (stmt_info);
|
| 3769 |
|
|
if (!slp && !PURE_SLP_STMT (stmt_info))
|
| 3770 |
|
|
{
|
| 3771 |
|
|
group_size = GROUP_SIZE (vinfo_for_stmt (first_stmt));
|
| 3772 |
|
|
if (vect_store_lanes_supported (vectype, group_size))
|
| 3773 |
|
|
store_lanes_p = true;
|
| 3774 |
|
|
else if (!vect_strided_store_supported (vectype, group_size))
|
| 3775 |
|
|
return false;
|
| 3776 |
|
|
}
|
| 3777 |
|
|
|
| 3778 |
|
|
if (first_stmt == stmt)
|
| 3779 |
|
|
{
|
| 3780 |
|
|
/* STMT is the leader of the group. Check the operands of all the
|
| 3781 |
|
|
stmts of the group. */
|
| 3782 |
|
|
next_stmt = GROUP_NEXT_ELEMENT (stmt_info);
|
| 3783 |
|
|
while (next_stmt)
|
| 3784 |
|
|
{
|
| 3785 |
|
|
gcc_assert (gimple_assign_single_p (next_stmt));
|
| 3786 |
|
|
op = gimple_assign_rhs1 (next_stmt);
|
| 3787 |
|
|
if (!vect_is_simple_use (op, next_stmt, loop_vinfo, bb_vinfo,
|
| 3788 |
|
|
&def_stmt, &def, &dt))
|
| 3789 |
|
|
{
|
| 3790 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 3791 |
|
|
fprintf (vect_dump, "use not simple.");
|
| 3792 |
|
|
return false;
|
| 3793 |
|
|
}
|
| 3794 |
|
|
next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
|
| 3795 |
|
|
}
|
| 3796 |
|
|
}
|
| 3797 |
|
|
}
|
| 3798 |
|
|
|
| 3799 |
|
|
if (!vec_stmt) /* transformation not required. */
|
| 3800 |
|
|
{
|
| 3801 |
|
|
STMT_VINFO_TYPE (stmt_info) = store_vec_info_type;
|
| 3802 |
|
|
vect_model_store_cost (stmt_info, ncopies, store_lanes_p, dt, NULL);
|
| 3803 |
|
|
return true;
|
| 3804 |
|
|
}
|
| 3805 |
|
|
|
| 3806 |
|
|
/** Transform. **/
|
| 3807 |
|
|
|
| 3808 |
|
|
if (strided_store)
|
| 3809 |
|
|
{
|
| 3810 |
|
|
first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt));
|
| 3811 |
|
|
group_size = GROUP_SIZE (vinfo_for_stmt (first_stmt));
|
| 3812 |
|
|
|
| 3813 |
|
|
GROUP_STORE_COUNT (vinfo_for_stmt (first_stmt))++;
|
| 3814 |
|
|
|
| 3815 |
|
|
/* FORNOW */
|
| 3816 |
|
|
gcc_assert (!loop || !nested_in_vect_loop_p (loop, stmt));
|
| 3817 |
|
|
|
| 3818 |
|
|
/* We vectorize all the stmts of the interleaving group when we
|
| 3819 |
|
|
reach the last stmt in the group. */
|
| 3820 |
|
|
if (GROUP_STORE_COUNT (vinfo_for_stmt (first_stmt))
|
| 3821 |
|
|
< GROUP_SIZE (vinfo_for_stmt (first_stmt))
|
| 3822 |
|
|
&& !slp)
|
| 3823 |
|
|
{
|
| 3824 |
|
|
*vec_stmt = NULL;
|
| 3825 |
|
|
return true;
|
| 3826 |
|
|
}
|
| 3827 |
|
|
|
| 3828 |
|
|
if (slp)
|
| 3829 |
|
|
{
|
| 3830 |
|
|
strided_store = false;
|
| 3831 |
|
|
/* VEC_NUM is the number of vect stmts to be created for this
|
| 3832 |
|
|
group. */
|
| 3833 |
|
|
vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
|
| 3834 |
|
|
first_stmt = VEC_index (gimple, SLP_TREE_SCALAR_STMTS (slp_node), 0);
|
| 3835 |
|
|
first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt));
|
| 3836 |
|
|
op = gimple_assign_rhs1 (first_stmt);
|
| 3837 |
|
|
}
|
| 3838 |
|
|
else
|
| 3839 |
|
|
/* VEC_NUM is the number of vect stmts to be created for this
|
| 3840 |
|
|
group. */
|
| 3841 |
|
|
vec_num = group_size;
|
| 3842 |
|
|
}
|
| 3843 |
|
|
else
|
| 3844 |
|
|
{
|
| 3845 |
|
|
first_stmt = stmt;
|
| 3846 |
|
|
first_dr = dr;
|
| 3847 |
|
|
group_size = vec_num = 1;
|
| 3848 |
|
|
}
|
| 3849 |
|
|
|
| 3850 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 3851 |
|
|
fprintf (vect_dump, "transform store. ncopies = %d",ncopies);
|
| 3852 |
|
|
|
| 3853 |
|
|
dr_chain = VEC_alloc (tree, heap, group_size);
|
| 3854 |
|
|
oprnds = VEC_alloc (tree, heap, group_size);
|
| 3855 |
|
|
|
| 3856 |
|
|
alignment_support_scheme = vect_supportable_dr_alignment (first_dr, false);
|
| 3857 |
|
|
gcc_assert (alignment_support_scheme);
|
| 3858 |
|
|
/* Targets with store-lane instructions must not require explicit
|
| 3859 |
|
|
realignment. */
|
| 3860 |
|
|
gcc_assert (!store_lanes_p
|
| 3861 |
|
|
|| alignment_support_scheme == dr_aligned
|
| 3862 |
|
|
|| alignment_support_scheme == dr_unaligned_supported);
|
| 3863 |
|
|
|
| 3864 |
|
|
if (store_lanes_p)
|
| 3865 |
|
|
aggr_type = build_array_type_nelts (elem_type, vec_num * nunits);
|
| 3866 |
|
|
else
|
| 3867 |
|
|
aggr_type = vectype;
|
| 3868 |
|
|
|
| 3869 |
|
|
/* In case the vectorization factor (VF) is bigger than the number
|
| 3870 |
|
|
of elements that we can fit in a vectype (nunits), we have to generate
|
| 3871 |
|
|
more than one vector stmt - i.e - we need to "unroll" the
|
| 3872 |
|
|
vector stmt by a factor VF/nunits. For more details see documentation in
|
| 3873 |
|
|
vect_get_vec_def_for_copy_stmt. */
|
| 3874 |
|
|
|
| 3875 |
|
|
/* In case of interleaving (non-unit strided access):
|
| 3876 |
|
|
|
| 3877 |
|
|
S1: &base + 2 = x2
|
| 3878 |
|
|
S2: &base = x0
|
| 3879 |
|
|
S3: &base + 1 = x1
|
| 3880 |
|
|
S4: &base + 3 = x3
|
| 3881 |
|
|
|
| 3882 |
|
|
We create vectorized stores starting from base address (the access of the
|
| 3883 |
|
|
first stmt in the chain (S2 in the above example), when the last store stmt
|
| 3884 |
|
|
of the chain (S4) is reached:
|
| 3885 |
|
|
|
| 3886 |
|
|
VS1: &base = vx2
|
| 3887 |
|
|
VS2: &base + vec_size*1 = vx0
|
| 3888 |
|
|
VS3: &base + vec_size*2 = vx1
|
| 3889 |
|
|
VS4: &base + vec_size*3 = vx3
|
| 3890 |
|
|
|
| 3891 |
|
|
Then permutation statements are generated:
|
| 3892 |
|
|
|
| 3893 |
|
|
VS5: vx5 = VEC_PERM_EXPR < vx0, vx3, {0, 8, 1, 9, 2, 10, 3, 11} >
|
| 3894 |
|
|
VS6: vx6 = VEC_PERM_EXPR < vx0, vx3, {4, 12, 5, 13, 6, 14, 7, 15} >
|
| 3895 |
|
|
...
|
| 3896 |
|
|
|
| 3897 |
|
|
And they are put in STMT_VINFO_VEC_STMT of the corresponding scalar stmts
|
| 3898 |
|
|
(the order of the data-refs in the output of vect_permute_store_chain
|
| 3899 |
|
|
corresponds to the order of scalar stmts in the interleaving chain - see
|
| 3900 |
|
|
the documentation of vect_permute_store_chain()).
|
| 3901 |
|
|
|
| 3902 |
|
|
In case of both multiple types and interleaving, above vector stores and
|
| 3903 |
|
|
permutation stmts are created for every copy. The result vector stmts are
|
| 3904 |
|
|
put in STMT_VINFO_VEC_STMT for the first copy and in the corresponding
|
| 3905 |
|
|
STMT_VINFO_RELATED_STMT for the next copies.
|
| 3906 |
|
|
*/
|
| 3907 |
|
|
|
| 3908 |
|
|
prev_stmt_info = NULL;
|
| 3909 |
|
|
for (j = 0; j < ncopies; j++)
|
| 3910 |
|
|
{
|
| 3911 |
|
|
gimple new_stmt;
|
| 3912 |
|
|
gimple ptr_incr;
|
| 3913 |
|
|
|
| 3914 |
|
|
if (j == 0)
|
| 3915 |
|
|
{
|
| 3916 |
|
|
if (slp)
|
| 3917 |
|
|
{
|
| 3918 |
|
|
/* Get vectorized arguments for SLP_NODE. */
|
| 3919 |
|
|
vect_get_vec_defs (op, NULL_TREE, stmt, &vec_oprnds,
|
| 3920 |
|
|
NULL, slp_node, -1);
|
| 3921 |
|
|
|
| 3922 |
|
|
vec_oprnd = VEC_index (tree, vec_oprnds, 0);
|
| 3923 |
|
|
}
|
| 3924 |
|
|
else
|
| 3925 |
|
|
{
|
| 3926 |
|
|
/* For interleaved stores we collect vectorized defs for all the
|
| 3927 |
|
|
stores in the group in DR_CHAIN and OPRNDS. DR_CHAIN is then
|
| 3928 |
|
|
used as an input to vect_permute_store_chain(), and OPRNDS as
|
| 3929 |
|
|
an input to vect_get_vec_def_for_stmt_copy() for the next copy.
|
| 3930 |
|
|
|
| 3931 |
|
|
If the store is not strided, GROUP_SIZE is 1, and DR_CHAIN and
|
| 3932 |
|
|
OPRNDS are of size 1. */
|
| 3933 |
|
|
next_stmt = first_stmt;
|
| 3934 |
|
|
for (i = 0; i < group_size; i++)
|
| 3935 |
|
|
{
|
| 3936 |
|
|
/* Since gaps are not supported for interleaved stores,
|
| 3937 |
|
|
GROUP_SIZE is the exact number of stmts in the chain.
|
| 3938 |
|
|
Therefore, NEXT_STMT can't be NULL_TREE. In case that
|
| 3939 |
|
|
there is no interleaving, GROUP_SIZE is 1, and only one
|
| 3940 |
|
|
iteration of the loop will be executed. */
|
| 3941 |
|
|
gcc_assert (next_stmt
|
| 3942 |
|
|
&& gimple_assign_single_p (next_stmt));
|
| 3943 |
|
|
op = gimple_assign_rhs1 (next_stmt);
|
| 3944 |
|
|
|
| 3945 |
|
|
vec_oprnd = vect_get_vec_def_for_operand (op, next_stmt,
|
| 3946 |
|
|
NULL);
|
| 3947 |
|
|
VEC_quick_push(tree, dr_chain, vec_oprnd);
|
| 3948 |
|
|
VEC_quick_push(tree, oprnds, vec_oprnd);
|
| 3949 |
|
|
next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
|
| 3950 |
|
|
}
|
| 3951 |
|
|
}
|
| 3952 |
|
|
|
| 3953 |
|
|
/* We should have catched mismatched types earlier. */
|
| 3954 |
|
|
gcc_assert (useless_type_conversion_p (vectype,
|
| 3955 |
|
|
TREE_TYPE (vec_oprnd)));
|
| 3956 |
|
|
dataref_ptr = vect_create_data_ref_ptr (first_stmt, aggr_type, NULL,
|
| 3957 |
|
|
NULL_TREE, &dummy, gsi,
|
| 3958 |
|
|
&ptr_incr, false, &inv_p);
|
| 3959 |
|
|
gcc_assert (bb_vinfo || !inv_p);
|
| 3960 |
|
|
}
|
| 3961 |
|
|
else
|
| 3962 |
|
|
{
|
| 3963 |
|
|
/* For interleaved stores we created vectorized defs for all the
|
| 3964 |
|
|
defs stored in OPRNDS in the previous iteration (previous copy).
|
| 3965 |
|
|
DR_CHAIN is then used as an input to vect_permute_store_chain(),
|
| 3966 |
|
|
and OPRNDS as an input to vect_get_vec_def_for_stmt_copy() for the
|
| 3967 |
|
|
next copy.
|
| 3968 |
|
|
If the store is not strided, GROUP_SIZE is 1, and DR_CHAIN and
|
| 3969 |
|
|
OPRNDS are of size 1. */
|
| 3970 |
|
|
for (i = 0; i < group_size; i++)
|
| 3971 |
|
|
{
|
| 3972 |
|
|
op = VEC_index (tree, oprnds, i);
|
| 3973 |
|
|
vect_is_simple_use (op, NULL, loop_vinfo, bb_vinfo, &def_stmt,
|
| 3974 |
|
|
&def, &dt);
|
| 3975 |
|
|
vec_oprnd = vect_get_vec_def_for_stmt_copy (dt, op);
|
| 3976 |
|
|
VEC_replace(tree, dr_chain, i, vec_oprnd);
|
| 3977 |
|
|
VEC_replace(tree, oprnds, i, vec_oprnd);
|
| 3978 |
|
|
}
|
| 3979 |
|
|
dataref_ptr = bump_vector_ptr (dataref_ptr, ptr_incr, gsi, stmt,
|
| 3980 |
|
|
TYPE_SIZE_UNIT (aggr_type));
|
| 3981 |
|
|
}
|
| 3982 |
|
|
|
| 3983 |
|
|
if (store_lanes_p)
|
| 3984 |
|
|
{
|
| 3985 |
|
|
tree vec_array;
|
| 3986 |
|
|
|
| 3987 |
|
|
/* Combine all the vectors into an array. */
|
| 3988 |
|
|
vec_array = create_vector_array (vectype, vec_num);
|
| 3989 |
|
|
for (i = 0; i < vec_num; i++)
|
| 3990 |
|
|
{
|
| 3991 |
|
|
vec_oprnd = VEC_index (tree, dr_chain, i);
|
| 3992 |
|
|
write_vector_array (stmt, gsi, vec_oprnd, vec_array, i);
|
| 3993 |
|
|
}
|
| 3994 |
|
|
|
| 3995 |
|
|
/* Emit:
|
| 3996 |
|
|
MEM_REF[...all elements...] = STORE_LANES (VEC_ARRAY). */
|
| 3997 |
|
|
data_ref = create_array_ref (aggr_type, dataref_ptr, first_dr);
|
| 3998 |
|
|
new_stmt = gimple_build_call_internal (IFN_STORE_LANES, 1, vec_array);
|
| 3999 |
|
|
gimple_call_set_lhs (new_stmt, data_ref);
|
| 4000 |
|
|
vect_finish_stmt_generation (stmt, new_stmt, gsi);
|
| 4001 |
|
|
mark_symbols_for_renaming (new_stmt);
|
| 4002 |
|
|
}
|
| 4003 |
|
|
else
|
| 4004 |
|
|
{
|
| 4005 |
|
|
new_stmt = NULL;
|
| 4006 |
|
|
if (strided_store)
|
| 4007 |
|
|
{
|
| 4008 |
|
|
result_chain = VEC_alloc (tree, heap, group_size);
|
| 4009 |
|
|
/* Permute. */
|
| 4010 |
|
|
vect_permute_store_chain (dr_chain, group_size, stmt, gsi,
|
| 4011 |
|
|
&result_chain);
|
| 4012 |
|
|
}
|
| 4013 |
|
|
|
| 4014 |
|
|
next_stmt = first_stmt;
|
| 4015 |
|
|
for (i = 0; i < vec_num; i++)
|
| 4016 |
|
|
{
|
| 4017 |
|
|
struct ptr_info_def *pi;
|
| 4018 |
|
|
|
| 4019 |
|
|
if (i > 0)
|
| 4020 |
|
|
/* Bump the vector pointer. */
|
| 4021 |
|
|
dataref_ptr = bump_vector_ptr (dataref_ptr, ptr_incr, gsi,
|
| 4022 |
|
|
stmt, NULL_TREE);
|
| 4023 |
|
|
|
| 4024 |
|
|
if (slp)
|
| 4025 |
|
|
vec_oprnd = VEC_index (tree, vec_oprnds, i);
|
| 4026 |
|
|
else if (strided_store)
|
| 4027 |
|
|
/* For strided stores vectorized defs are interleaved in
|
| 4028 |
|
|
vect_permute_store_chain(). */
|
| 4029 |
|
|
vec_oprnd = VEC_index (tree, result_chain, i);
|
| 4030 |
|
|
|
| 4031 |
|
|
data_ref = build2 (MEM_REF, TREE_TYPE (vec_oprnd), dataref_ptr,
|
| 4032 |
|
|
build_int_cst (reference_alias_ptr_type
|
| 4033 |
|
|
(DR_REF (first_dr)), 0));
|
| 4034 |
|
|
pi = get_ptr_info (dataref_ptr);
|
| 4035 |
|
|
pi->align = TYPE_ALIGN_UNIT (vectype);
|
| 4036 |
|
|
if (aligned_access_p (first_dr))
|
| 4037 |
|
|
pi->misalign = 0;
|
| 4038 |
|
|
else if (DR_MISALIGNMENT (first_dr) == -1)
|
| 4039 |
|
|
{
|
| 4040 |
|
|
TREE_TYPE (data_ref)
|
| 4041 |
|
|
= build_aligned_type (TREE_TYPE (data_ref),
|
| 4042 |
|
|
TYPE_ALIGN (elem_type));
|
| 4043 |
|
|
pi->align = TYPE_ALIGN_UNIT (elem_type);
|
| 4044 |
|
|
pi->misalign = 0;
|
| 4045 |
|
|
}
|
| 4046 |
|
|
else
|
| 4047 |
|
|
{
|
| 4048 |
|
|
TREE_TYPE (data_ref)
|
| 4049 |
|
|
= build_aligned_type (TREE_TYPE (data_ref),
|
| 4050 |
|
|
TYPE_ALIGN (elem_type));
|
| 4051 |
|
|
pi->misalign = DR_MISALIGNMENT (first_dr);
|
| 4052 |
|
|
}
|
| 4053 |
|
|
|
| 4054 |
|
|
/* Arguments are ready. Create the new vector stmt. */
|
| 4055 |
|
|
new_stmt = gimple_build_assign (data_ref, vec_oprnd);
|
| 4056 |
|
|
vect_finish_stmt_generation (stmt, new_stmt, gsi);
|
| 4057 |
|
|
mark_symbols_for_renaming (new_stmt);
|
| 4058 |
|
|
|
| 4059 |
|
|
if (slp)
|
| 4060 |
|
|
continue;
|
| 4061 |
|
|
|
| 4062 |
|
|
next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
|
| 4063 |
|
|
if (!next_stmt)
|
| 4064 |
|
|
break;
|
| 4065 |
|
|
}
|
| 4066 |
|
|
}
|
| 4067 |
|
|
if (!slp)
|
| 4068 |
|
|
{
|
| 4069 |
|
|
if (j == 0)
|
| 4070 |
|
|
STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
|
| 4071 |
|
|
else
|
| 4072 |
|
|
STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
|
| 4073 |
|
|
prev_stmt_info = vinfo_for_stmt (new_stmt);
|
| 4074 |
|
|
}
|
| 4075 |
|
|
}
|
| 4076 |
|
|
|
| 4077 |
|
|
VEC_free (tree, heap, dr_chain);
|
| 4078 |
|
|
VEC_free (tree, heap, oprnds);
|
| 4079 |
|
|
if (result_chain)
|
| 4080 |
|
|
VEC_free (tree, heap, result_chain);
|
| 4081 |
|
|
if (vec_oprnds)
|
| 4082 |
|
|
VEC_free (tree, heap, vec_oprnds);
|
| 4083 |
|
|
|
| 4084 |
|
|
return true;
|
| 4085 |
|
|
}
|
| 4086 |
|
|
|
| 4087 |
|
|
/* Given a vector type VECTYPE and permutation SEL returns
|
| 4088 |
|
|
the VECTOR_CST mask that implements the permutation of the
|
| 4089 |
|
|
vector elements. If that is impossible to do, returns NULL. */
|
| 4090 |
|
|
|
| 4091 |
|
|
tree
|
| 4092 |
|
|
vect_gen_perm_mask (tree vectype, unsigned char *sel)
|
| 4093 |
|
|
{
|
| 4094 |
|
|
tree mask_elt_type, mask_type, mask_vec;
|
| 4095 |
|
|
int i, nunits;
|
| 4096 |
|
|
|
| 4097 |
|
|
nunits = TYPE_VECTOR_SUBPARTS (vectype);
|
| 4098 |
|
|
|
| 4099 |
|
|
if (!can_vec_perm_p (TYPE_MODE (vectype), false, sel))
|
| 4100 |
|
|
return NULL;
|
| 4101 |
|
|
|
| 4102 |
|
|
mask_elt_type
|
| 4103 |
|
|
= lang_hooks.types.type_for_size
|
| 4104 |
|
|
(TREE_INT_CST_LOW (TYPE_SIZE (TREE_TYPE (vectype))), 1);
|
| 4105 |
|
|
mask_type = get_vectype_for_scalar_type (mask_elt_type);
|
| 4106 |
|
|
|
| 4107 |
|
|
mask_vec = NULL;
|
| 4108 |
|
|
for (i = nunits - 1; i >= 0; i--)
|
| 4109 |
|
|
mask_vec = tree_cons (NULL, build_int_cst (mask_elt_type, sel[i]),
|
| 4110 |
|
|
mask_vec);
|
| 4111 |
|
|
mask_vec = build_vector (mask_type, mask_vec);
|
| 4112 |
|
|
|
| 4113 |
|
|
return mask_vec;
|
| 4114 |
|
|
}
|
| 4115 |
|
|
|
| 4116 |
|
|
/* Given a vector type VECTYPE returns the VECTOR_CST mask that implements
|
| 4117 |
|
|
reversal of the vector elements. If that is impossible to do,
|
| 4118 |
|
|
returns NULL. */
|
| 4119 |
|
|
|
| 4120 |
|
|
static tree
|
| 4121 |
|
|
perm_mask_for_reverse (tree vectype)
|
| 4122 |
|
|
{
|
| 4123 |
|
|
int i, nunits;
|
| 4124 |
|
|
unsigned char *sel;
|
| 4125 |
|
|
|
| 4126 |
|
|
nunits = TYPE_VECTOR_SUBPARTS (vectype);
|
| 4127 |
|
|
sel = XALLOCAVEC (unsigned char, nunits);
|
| 4128 |
|
|
|
| 4129 |
|
|
for (i = 0; i < nunits; ++i)
|
| 4130 |
|
|
sel[i] = nunits - 1 - i;
|
| 4131 |
|
|
|
| 4132 |
|
|
return vect_gen_perm_mask (vectype, sel);
|
| 4133 |
|
|
}
|
| 4134 |
|
|
|
| 4135 |
|
|
/* Given a vector variable X and Y, that was generated for the scalar
|
| 4136 |
|
|
STMT, generate instructions to permute the vector elements of X and Y
|
| 4137 |
|
|
using permutation mask MASK_VEC, insert them at *GSI and return the
|
| 4138 |
|
|
permuted vector variable. */
|
| 4139 |
|
|
|
| 4140 |
|
|
static tree
|
| 4141 |
|
|
permute_vec_elements (tree x, tree y, tree mask_vec, gimple stmt,
|
| 4142 |
|
|
gimple_stmt_iterator *gsi)
|
| 4143 |
|
|
{
|
| 4144 |
|
|
tree vectype = TREE_TYPE (x);
|
| 4145 |
|
|
tree perm_dest, data_ref;
|
| 4146 |
|
|
gimple perm_stmt;
|
| 4147 |
|
|
|
| 4148 |
|
|
perm_dest = vect_create_destination_var (gimple_assign_lhs (stmt), vectype);
|
| 4149 |
|
|
data_ref = make_ssa_name (perm_dest, NULL);
|
| 4150 |
|
|
|
| 4151 |
|
|
/* Generate the permute statement. */
|
| 4152 |
|
|
perm_stmt = gimple_build_assign_with_ops3 (VEC_PERM_EXPR, data_ref,
|
| 4153 |
|
|
x, y, mask_vec);
|
| 4154 |
|
|
vect_finish_stmt_generation (stmt, perm_stmt, gsi);
|
| 4155 |
|
|
|
| 4156 |
|
|
return data_ref;
|
| 4157 |
|
|
}
|
| 4158 |
|
|
|
| 4159 |
|
|
/* vectorizable_load.
|
| 4160 |
|
|
|
| 4161 |
|
|
Check if STMT reads a non scalar data-ref (array/pointer/structure) that
|
| 4162 |
|
|
can be vectorized.
|
| 4163 |
|
|
If VEC_STMT is also passed, vectorize the STMT: create a vectorized
|
| 4164 |
|
|
stmt to replace it, put it in VEC_STMT, and insert it at BSI.
|
| 4165 |
|
|
Return FALSE if not a vectorizable STMT, TRUE otherwise. */
|
| 4166 |
|
|
|
| 4167 |
|
|
static bool
|
| 4168 |
|
|
vectorizable_load (gimple stmt, gimple_stmt_iterator *gsi, gimple *vec_stmt,
|
| 4169 |
|
|
slp_tree slp_node, slp_instance slp_node_instance)
|
| 4170 |
|
|
{
|
| 4171 |
|
|
tree scalar_dest;
|
| 4172 |
|
|
tree vec_dest = NULL;
|
| 4173 |
|
|
tree data_ref = NULL;
|
| 4174 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
| 4175 |
|
|
stmt_vec_info prev_stmt_info;
|
| 4176 |
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
| 4177 |
|
|
struct loop *loop = NULL;
|
| 4178 |
|
|
struct loop *containing_loop = (gimple_bb (stmt))->loop_father;
|
| 4179 |
|
|
bool nested_in_vect_loop = false;
|
| 4180 |
|
|
struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info), *first_dr;
|
| 4181 |
|
|
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
|
| 4182 |
|
|
tree elem_type;
|
| 4183 |
|
|
tree new_temp;
|
| 4184 |
|
|
enum machine_mode mode;
|
| 4185 |
|
|
gimple new_stmt = NULL;
|
| 4186 |
|
|
tree dummy;
|
| 4187 |
|
|
enum dr_alignment_support alignment_support_scheme;
|
| 4188 |
|
|
tree dataref_ptr = NULL_TREE;
|
| 4189 |
|
|
gimple ptr_incr;
|
| 4190 |
|
|
int nunits = TYPE_VECTOR_SUBPARTS (vectype);
|
| 4191 |
|
|
int ncopies;
|
| 4192 |
|
|
int i, j, group_size;
|
| 4193 |
|
|
tree msq = NULL_TREE, lsq;
|
| 4194 |
|
|
tree offset = NULL_TREE;
|
| 4195 |
|
|
tree realignment_token = NULL_TREE;
|
| 4196 |
|
|
gimple phi = NULL;
|
| 4197 |
|
|
VEC(tree,heap) *dr_chain = NULL;
|
| 4198 |
|
|
bool strided_load = false;
|
| 4199 |
|
|
bool load_lanes_p = false;
|
| 4200 |
|
|
gimple first_stmt;
|
| 4201 |
|
|
bool inv_p;
|
| 4202 |
|
|
bool negative;
|
| 4203 |
|
|
bool compute_in_loop = false;
|
| 4204 |
|
|
struct loop *at_loop;
|
| 4205 |
|
|
int vec_num;
|
| 4206 |
|
|
bool slp = (slp_node != NULL);
|
| 4207 |
|
|
bool slp_perm = false;
|
| 4208 |
|
|
enum tree_code code;
|
| 4209 |
|
|
bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
|
| 4210 |
|
|
int vf;
|
| 4211 |
|
|
tree aggr_type;
|
| 4212 |
|
|
tree gather_base = NULL_TREE, gather_off = NULL_TREE;
|
| 4213 |
|
|
tree gather_off_vectype = NULL_TREE, gather_decl = NULL_TREE;
|
| 4214 |
|
|
int gather_scale = 1;
|
| 4215 |
|
|
enum vect_def_type gather_dt = vect_unknown_def_type;
|
| 4216 |
|
|
|
| 4217 |
|
|
if (loop_vinfo)
|
| 4218 |
|
|
{
|
| 4219 |
|
|
loop = LOOP_VINFO_LOOP (loop_vinfo);
|
| 4220 |
|
|
nested_in_vect_loop = nested_in_vect_loop_p (loop, stmt);
|
| 4221 |
|
|
vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
|
| 4222 |
|
|
}
|
| 4223 |
|
|
else
|
| 4224 |
|
|
vf = 1;
|
| 4225 |
|
|
|
| 4226 |
|
|
/* Multiple types in SLP are handled by creating the appropriate number of
|
| 4227 |
|
|
vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
|
| 4228 |
|
|
case of SLP. */
|
| 4229 |
|
|
if (slp || PURE_SLP_STMT (stmt_info))
|
| 4230 |
|
|
ncopies = 1;
|
| 4231 |
|
|
else
|
| 4232 |
|
|
ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
|
| 4233 |
|
|
|
| 4234 |
|
|
gcc_assert (ncopies >= 1);
|
| 4235 |
|
|
|
| 4236 |
|
|
/* FORNOW. This restriction should be relaxed. */
|
| 4237 |
|
|
if (nested_in_vect_loop && ncopies > 1)
|
| 4238 |
|
|
{
|
| 4239 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 4240 |
|
|
fprintf (vect_dump, "multiple types in nested loop.");
|
| 4241 |
|
|
return false;
|
| 4242 |
|
|
}
|
| 4243 |
|
|
|
| 4244 |
|
|
if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
|
| 4245 |
|
|
return false;
|
| 4246 |
|
|
|
| 4247 |
|
|
if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
|
| 4248 |
|
|
return false;
|
| 4249 |
|
|
|
| 4250 |
|
|
/* Is vectorizable load? */
|
| 4251 |
|
|
if (!is_gimple_assign (stmt))
|
| 4252 |
|
|
return false;
|
| 4253 |
|
|
|
| 4254 |
|
|
scalar_dest = gimple_assign_lhs (stmt);
|
| 4255 |
|
|
if (TREE_CODE (scalar_dest) != SSA_NAME)
|
| 4256 |
|
|
return false;
|
| 4257 |
|
|
|
| 4258 |
|
|
code = gimple_assign_rhs_code (stmt);
|
| 4259 |
|
|
if (code != ARRAY_REF
|
| 4260 |
|
|
&& code != INDIRECT_REF
|
| 4261 |
|
|
&& code != COMPONENT_REF
|
| 4262 |
|
|
&& code != IMAGPART_EXPR
|
| 4263 |
|
|
&& code != REALPART_EXPR
|
| 4264 |
|
|
&& code != MEM_REF
|
| 4265 |
|
|
&& TREE_CODE_CLASS (code) != tcc_declaration)
|
| 4266 |
|
|
return false;
|
| 4267 |
|
|
|
| 4268 |
|
|
if (!STMT_VINFO_DATA_REF (stmt_info))
|
| 4269 |
|
|
return false;
|
| 4270 |
|
|
|
| 4271 |
|
|
negative = tree_int_cst_compare (nested_in_vect_loop
|
| 4272 |
|
|
? STMT_VINFO_DR_STEP (stmt_info)
|
| 4273 |
|
|
: DR_STEP (dr),
|
| 4274 |
|
|
size_zero_node) < 0;
|
| 4275 |
|
|
if (negative && ncopies > 1)
|
| 4276 |
|
|
{
|
| 4277 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 4278 |
|
|
fprintf (vect_dump, "multiple types with negative step.");
|
| 4279 |
|
|
return false;
|
| 4280 |
|
|
}
|
| 4281 |
|
|
|
| 4282 |
|
|
elem_type = TREE_TYPE (vectype);
|
| 4283 |
|
|
mode = TYPE_MODE (vectype);
|
| 4284 |
|
|
|
| 4285 |
|
|
/* FORNOW. In some cases can vectorize even if data-type not supported
|
| 4286 |
|
|
(e.g. - data copies). */
|
| 4287 |
|
|
if (optab_handler (mov_optab, mode) == CODE_FOR_nothing)
|
| 4288 |
|
|
{
|
| 4289 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 4290 |
|
|
fprintf (vect_dump, "Aligned load, but unsupported type.");
|
| 4291 |
|
|
return false;
|
| 4292 |
|
|
}
|
| 4293 |
|
|
|
| 4294 |
|
|
/* Check if the load is a part of an interleaving chain. */
|
| 4295 |
|
|
if (STMT_VINFO_STRIDED_ACCESS (stmt_info))
|
| 4296 |
|
|
{
|
| 4297 |
|
|
strided_load = true;
|
| 4298 |
|
|
/* FORNOW */
|
| 4299 |
|
|
gcc_assert (! nested_in_vect_loop && !STMT_VINFO_GATHER_P (stmt_info));
|
| 4300 |
|
|
|
| 4301 |
|
|
first_stmt = GROUP_FIRST_ELEMENT (stmt_info);
|
| 4302 |
|
|
if (!slp && !PURE_SLP_STMT (stmt_info))
|
| 4303 |
|
|
{
|
| 4304 |
|
|
group_size = GROUP_SIZE (vinfo_for_stmt (first_stmt));
|
| 4305 |
|
|
if (vect_load_lanes_supported (vectype, group_size))
|
| 4306 |
|
|
load_lanes_p = true;
|
| 4307 |
|
|
else if (!vect_strided_load_supported (vectype, group_size))
|
| 4308 |
|
|
return false;
|
| 4309 |
|
|
}
|
| 4310 |
|
|
}
|
| 4311 |
|
|
|
| 4312 |
|
|
if (negative)
|
| 4313 |
|
|
{
|
| 4314 |
|
|
gcc_assert (!strided_load && !STMT_VINFO_GATHER_P (stmt_info));
|
| 4315 |
|
|
alignment_support_scheme = vect_supportable_dr_alignment (dr, false);
|
| 4316 |
|
|
if (alignment_support_scheme != dr_aligned
|
| 4317 |
|
|
&& alignment_support_scheme != dr_unaligned_supported)
|
| 4318 |
|
|
{
|
| 4319 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 4320 |
|
|
fprintf (vect_dump, "negative step but alignment required.");
|
| 4321 |
|
|
return false;
|
| 4322 |
|
|
}
|
| 4323 |
|
|
if (!perm_mask_for_reverse (vectype))
|
| 4324 |
|
|
{
|
| 4325 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 4326 |
|
|
fprintf (vect_dump, "negative step and reversing not supported.");
|
| 4327 |
|
|
return false;
|
| 4328 |
|
|
}
|
| 4329 |
|
|
}
|
| 4330 |
|
|
|
| 4331 |
|
|
if (STMT_VINFO_GATHER_P (stmt_info))
|
| 4332 |
|
|
{
|
| 4333 |
|
|
gimple def_stmt;
|
| 4334 |
|
|
tree def;
|
| 4335 |
|
|
gather_decl = vect_check_gather (stmt, loop_vinfo, &gather_base,
|
| 4336 |
|
|
&gather_off, &gather_scale);
|
| 4337 |
|
|
gcc_assert (gather_decl);
|
| 4338 |
|
|
if (!vect_is_simple_use_1 (gather_off, NULL, loop_vinfo, bb_vinfo,
|
| 4339 |
|
|
&def_stmt, &def, &gather_dt,
|
| 4340 |
|
|
&gather_off_vectype))
|
| 4341 |
|
|
{
|
| 4342 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 4343 |
|
|
fprintf (vect_dump, "gather index use not simple.");
|
| 4344 |
|
|
return false;
|
| 4345 |
|
|
}
|
| 4346 |
|
|
}
|
| 4347 |
|
|
|
| 4348 |
|
|
if (!vec_stmt) /* transformation not required. */
|
| 4349 |
|
|
{
|
| 4350 |
|
|
STMT_VINFO_TYPE (stmt_info) = load_vec_info_type;
|
| 4351 |
|
|
vect_model_load_cost (stmt_info, ncopies, load_lanes_p, NULL);
|
| 4352 |
|
|
return true;
|
| 4353 |
|
|
}
|
| 4354 |
|
|
|
| 4355 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 4356 |
|
|
fprintf (vect_dump, "transform load. ncopies = %d", ncopies);
|
| 4357 |
|
|
|
| 4358 |
|
|
/** Transform. **/
|
| 4359 |
|
|
|
| 4360 |
|
|
if (STMT_VINFO_GATHER_P (stmt_info))
|
| 4361 |
|
|
{
|
| 4362 |
|
|
tree vec_oprnd0 = NULL_TREE, op;
|
| 4363 |
|
|
tree arglist = TYPE_ARG_TYPES (TREE_TYPE (gather_decl));
|
| 4364 |
|
|
tree rettype, srctype, ptrtype, idxtype, masktype, scaletype;
|
| 4365 |
|
|
tree ptr, mask, var, scale, perm_mask = NULL_TREE, prev_res = NULL_TREE;
|
| 4366 |
|
|
edge pe = loop_preheader_edge (loop);
|
| 4367 |
|
|
gimple_seq seq;
|
| 4368 |
|
|
basic_block new_bb;
|
| 4369 |
|
|
enum { NARROW, NONE, WIDEN } modifier;
|
| 4370 |
|
|
int gather_off_nunits = TYPE_VECTOR_SUBPARTS (gather_off_vectype);
|
| 4371 |
|
|
|
| 4372 |
|
|
if (nunits == gather_off_nunits)
|
| 4373 |
|
|
modifier = NONE;
|
| 4374 |
|
|
else if (nunits == gather_off_nunits / 2)
|
| 4375 |
|
|
{
|
| 4376 |
|
|
unsigned char *sel = XALLOCAVEC (unsigned char, gather_off_nunits);
|
| 4377 |
|
|
modifier = WIDEN;
|
| 4378 |
|
|
|
| 4379 |
|
|
for (i = 0; i < gather_off_nunits; ++i)
|
| 4380 |
|
|
sel[i] = i | nunits;
|
| 4381 |
|
|
|
| 4382 |
|
|
perm_mask = vect_gen_perm_mask (gather_off_vectype, sel);
|
| 4383 |
|
|
gcc_assert (perm_mask != NULL_TREE);
|
| 4384 |
|
|
}
|
| 4385 |
|
|
else if (nunits == gather_off_nunits * 2)
|
| 4386 |
|
|
{
|
| 4387 |
|
|
unsigned char *sel = XALLOCAVEC (unsigned char, nunits);
|
| 4388 |
|
|
modifier = NARROW;
|
| 4389 |
|
|
|
| 4390 |
|
|
for (i = 0; i < nunits; ++i)
|
| 4391 |
|
|
sel[i] = i < gather_off_nunits
|
| 4392 |
|
|
? i : i + nunits - gather_off_nunits;
|
| 4393 |
|
|
|
| 4394 |
|
|
perm_mask = vect_gen_perm_mask (vectype, sel);
|
| 4395 |
|
|
gcc_assert (perm_mask != NULL_TREE);
|
| 4396 |
|
|
ncopies *= 2;
|
| 4397 |
|
|
}
|
| 4398 |
|
|
else
|
| 4399 |
|
|
gcc_unreachable ();
|
| 4400 |
|
|
|
| 4401 |
|
|
rettype = TREE_TYPE (TREE_TYPE (gather_decl));
|
| 4402 |
|
|
srctype = TREE_VALUE (arglist); arglist = TREE_CHAIN (arglist);
|
| 4403 |
|
|
ptrtype = TREE_VALUE (arglist); arglist = TREE_CHAIN (arglist);
|
| 4404 |
|
|
idxtype = TREE_VALUE (arglist); arglist = TREE_CHAIN (arglist);
|
| 4405 |
|
|
masktype = TREE_VALUE (arglist); arglist = TREE_CHAIN (arglist);
|
| 4406 |
|
|
scaletype = TREE_VALUE (arglist);
|
| 4407 |
|
|
gcc_checking_assert (types_compatible_p (srctype, rettype)
|
| 4408 |
|
|
&& types_compatible_p (srctype, masktype));
|
| 4409 |
|
|
|
| 4410 |
|
|
vec_dest = vect_create_destination_var (scalar_dest, vectype);
|
| 4411 |
|
|
|
| 4412 |
|
|
ptr = fold_convert (ptrtype, gather_base);
|
| 4413 |
|
|
if (!is_gimple_min_invariant (ptr))
|
| 4414 |
|
|
{
|
| 4415 |
|
|
ptr = force_gimple_operand (ptr, &seq, true, NULL_TREE);
|
| 4416 |
|
|
new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
|
| 4417 |
|
|
gcc_assert (!new_bb);
|
| 4418 |
|
|
}
|
| 4419 |
|
|
|
| 4420 |
|
|
/* Currently we support only unconditional gather loads,
|
| 4421 |
|
|
so mask should be all ones. */
|
| 4422 |
|
|
if (TREE_CODE (TREE_TYPE (masktype)) == INTEGER_TYPE)
|
| 4423 |
|
|
mask = build_int_cst (TREE_TYPE (masktype), -1);
|
| 4424 |
|
|
else if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (masktype)))
|
| 4425 |
|
|
{
|
| 4426 |
|
|
REAL_VALUE_TYPE r;
|
| 4427 |
|
|
long tmp[6];
|
| 4428 |
|
|
for (j = 0; j < 6; ++j)
|
| 4429 |
|
|
tmp[j] = -1;
|
| 4430 |
|
|
real_from_target (&r, tmp, TYPE_MODE (TREE_TYPE (masktype)));
|
| 4431 |
|
|
mask = build_real (TREE_TYPE (masktype), r);
|
| 4432 |
|
|
}
|
| 4433 |
|
|
else
|
| 4434 |
|
|
gcc_unreachable ();
|
| 4435 |
|
|
mask = build_vector_from_val (masktype, mask);
|
| 4436 |
|
|
mask = vect_init_vector (stmt, mask, masktype, NULL);
|
| 4437 |
|
|
|
| 4438 |
|
|
scale = build_int_cst (scaletype, gather_scale);
|
| 4439 |
|
|
|
| 4440 |
|
|
prev_stmt_info = NULL;
|
| 4441 |
|
|
for (j = 0; j < ncopies; ++j)
|
| 4442 |
|
|
{
|
| 4443 |
|
|
if (modifier == WIDEN && (j & 1))
|
| 4444 |
|
|
op = permute_vec_elements (vec_oprnd0, vec_oprnd0,
|
| 4445 |
|
|
perm_mask, stmt, gsi);
|
| 4446 |
|
|
else if (j == 0)
|
| 4447 |
|
|
op = vec_oprnd0
|
| 4448 |
|
|
= vect_get_vec_def_for_operand (gather_off, stmt, NULL);
|
| 4449 |
|
|
else
|
| 4450 |
|
|
op = vec_oprnd0
|
| 4451 |
|
|
= vect_get_vec_def_for_stmt_copy (gather_dt, vec_oprnd0);
|
| 4452 |
|
|
|
| 4453 |
|
|
if (!useless_type_conversion_p (idxtype, TREE_TYPE (op)))
|
| 4454 |
|
|
{
|
| 4455 |
|
|
gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (op))
|
| 4456 |
|
|
== TYPE_VECTOR_SUBPARTS (idxtype));
|
| 4457 |
|
|
var = vect_get_new_vect_var (idxtype, vect_simple_var, NULL);
|
| 4458 |
|
|
add_referenced_var (var);
|
| 4459 |
|
|
var = make_ssa_name (var, NULL);
|
| 4460 |
|
|
op = build1 (VIEW_CONVERT_EXPR, idxtype, op);
|
| 4461 |
|
|
new_stmt
|
| 4462 |
|
|
= gimple_build_assign_with_ops (VIEW_CONVERT_EXPR, var,
|
| 4463 |
|
|
op, NULL_TREE);
|
| 4464 |
|
|
vect_finish_stmt_generation (stmt, new_stmt, gsi);
|
| 4465 |
|
|
op = var;
|
| 4466 |
|
|
}
|
| 4467 |
|
|
|
| 4468 |
|
|
new_stmt
|
| 4469 |
|
|
= gimple_build_call (gather_decl, 5, mask, ptr, op, mask, scale);
|
| 4470 |
|
|
|
| 4471 |
|
|
if (!useless_type_conversion_p (vectype, rettype))
|
| 4472 |
|
|
{
|
| 4473 |
|
|
gcc_assert (TYPE_VECTOR_SUBPARTS (vectype)
|
| 4474 |
|
|
== TYPE_VECTOR_SUBPARTS (rettype));
|
| 4475 |
|
|
var = vect_get_new_vect_var (rettype, vect_simple_var, NULL);
|
| 4476 |
|
|
add_referenced_var (var);
|
| 4477 |
|
|
op = make_ssa_name (var, new_stmt);
|
| 4478 |
|
|
gimple_call_set_lhs (new_stmt, op);
|
| 4479 |
|
|
vect_finish_stmt_generation (stmt, new_stmt, gsi);
|
| 4480 |
|
|
var = make_ssa_name (vec_dest, NULL);
|
| 4481 |
|
|
op = build1 (VIEW_CONVERT_EXPR, vectype, op);
|
| 4482 |
|
|
new_stmt
|
| 4483 |
|
|
= gimple_build_assign_with_ops (VIEW_CONVERT_EXPR, var, op,
|
| 4484 |
|
|
NULL_TREE);
|
| 4485 |
|
|
}
|
| 4486 |
|
|
else
|
| 4487 |
|
|
{
|
| 4488 |
|
|
var = make_ssa_name (vec_dest, new_stmt);
|
| 4489 |
|
|
gimple_call_set_lhs (new_stmt, var);
|
| 4490 |
|
|
}
|
| 4491 |
|
|
|
| 4492 |
|
|
vect_finish_stmt_generation (stmt, new_stmt, gsi);
|
| 4493 |
|
|
|
| 4494 |
|
|
if (modifier == NARROW)
|
| 4495 |
|
|
{
|
| 4496 |
|
|
if ((j & 1) == 0)
|
| 4497 |
|
|
{
|
| 4498 |
|
|
prev_res = var;
|
| 4499 |
|
|
continue;
|
| 4500 |
|
|
}
|
| 4501 |
|
|
var = permute_vec_elements (prev_res, var,
|
| 4502 |
|
|
perm_mask, stmt, gsi);
|
| 4503 |
|
|
new_stmt = SSA_NAME_DEF_STMT (var);
|
| 4504 |
|
|
}
|
| 4505 |
|
|
|
| 4506 |
|
|
if (prev_stmt_info == NULL)
|
| 4507 |
|
|
STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
|
| 4508 |
|
|
else
|
| 4509 |
|
|
STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
|
| 4510 |
|
|
prev_stmt_info = vinfo_for_stmt (new_stmt);
|
| 4511 |
|
|
}
|
| 4512 |
|
|
return true;
|
| 4513 |
|
|
}
|
| 4514 |
|
|
|
| 4515 |
|
|
if (strided_load)
|
| 4516 |
|
|
{
|
| 4517 |
|
|
first_stmt = GROUP_FIRST_ELEMENT (stmt_info);
|
| 4518 |
|
|
if (slp
|
| 4519 |
|
|
&& !SLP_INSTANCE_LOAD_PERMUTATION (slp_node_instance)
|
| 4520 |
|
|
&& first_stmt != VEC_index (gimple, SLP_TREE_SCALAR_STMTS (slp_node), 0))
|
| 4521 |
|
|
first_stmt = VEC_index (gimple, SLP_TREE_SCALAR_STMTS (slp_node), 0);
|
| 4522 |
|
|
|
| 4523 |
|
|
/* Check if the chain of loads is already vectorized. */
|
| 4524 |
|
|
if (STMT_VINFO_VEC_STMT (vinfo_for_stmt (first_stmt)))
|
| 4525 |
|
|
{
|
| 4526 |
|
|
*vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
|
| 4527 |
|
|
return true;
|
| 4528 |
|
|
}
|
| 4529 |
|
|
first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt));
|
| 4530 |
|
|
group_size = GROUP_SIZE (vinfo_for_stmt (first_stmt));
|
| 4531 |
|
|
|
| 4532 |
|
|
/* VEC_NUM is the number of vect stmts to be created for this group. */
|
| 4533 |
|
|
if (slp)
|
| 4534 |
|
|
{
|
| 4535 |
|
|
strided_load = false;
|
| 4536 |
|
|
vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
|
| 4537 |
|
|
if (SLP_INSTANCE_LOAD_PERMUTATION (slp_node_instance))
|
| 4538 |
|
|
slp_perm = true;
|
| 4539 |
|
|
}
|
| 4540 |
|
|
else
|
| 4541 |
|
|
vec_num = group_size;
|
| 4542 |
|
|
}
|
| 4543 |
|
|
else
|
| 4544 |
|
|
{
|
| 4545 |
|
|
first_stmt = stmt;
|
| 4546 |
|
|
first_dr = dr;
|
| 4547 |
|
|
group_size = vec_num = 1;
|
| 4548 |
|
|
}
|
| 4549 |
|
|
|
| 4550 |
|
|
alignment_support_scheme = vect_supportable_dr_alignment (first_dr, false);
|
| 4551 |
|
|
gcc_assert (alignment_support_scheme);
|
| 4552 |
|
|
/* Targets with load-lane instructions must not require explicit
|
| 4553 |
|
|
realignment. */
|
| 4554 |
|
|
gcc_assert (!load_lanes_p
|
| 4555 |
|
|
|| alignment_support_scheme == dr_aligned
|
| 4556 |
|
|
|| alignment_support_scheme == dr_unaligned_supported);
|
| 4557 |
|
|
|
| 4558 |
|
|
/* In case the vectorization factor (VF) is bigger than the number
|
| 4559 |
|
|
of elements that we can fit in a vectype (nunits), we have to generate
|
| 4560 |
|
|
more than one vector stmt - i.e - we need to "unroll" the
|
| 4561 |
|
|
vector stmt by a factor VF/nunits. In doing so, we record a pointer
|
| 4562 |
|
|
from one copy of the vector stmt to the next, in the field
|
| 4563 |
|
|
STMT_VINFO_RELATED_STMT. This is necessary in order to allow following
|
| 4564 |
|
|
stages to find the correct vector defs to be used when vectorizing
|
| 4565 |
|
|
stmts that use the defs of the current stmt. The example below
|
| 4566 |
|
|
illustrates the vectorization process when VF=16 and nunits=4 (i.e., we
|
| 4567 |
|
|
need to create 4 vectorized stmts):
|
| 4568 |
|
|
|
| 4569 |
|
|
before vectorization:
|
| 4570 |
|
|
RELATED_STMT VEC_STMT
|
| 4571 |
|
|
S1: x = memref - -
|
| 4572 |
|
|
S2: z = x + 1 - -
|
| 4573 |
|
|
|
| 4574 |
|
|
step 1: vectorize stmt S1:
|
| 4575 |
|
|
We first create the vector stmt VS1_0, and, as usual, record a
|
| 4576 |
|
|
pointer to it in the STMT_VINFO_VEC_STMT of the scalar stmt S1.
|
| 4577 |
|
|
Next, we create the vector stmt VS1_1, and record a pointer to
|
| 4578 |
|
|
it in the STMT_VINFO_RELATED_STMT of the vector stmt VS1_0.
|
| 4579 |
|
|
Similarly, for VS1_2 and VS1_3. This is the resulting chain of
|
| 4580 |
|
|
stmts and pointers:
|
| 4581 |
|
|
RELATED_STMT VEC_STMT
|
| 4582 |
|
|
VS1_0: vx0 = memref0 VS1_1 -
|
| 4583 |
|
|
VS1_1: vx1 = memref1 VS1_2 -
|
| 4584 |
|
|
VS1_2: vx2 = memref2 VS1_3 -
|
| 4585 |
|
|
VS1_3: vx3 = memref3 - -
|
| 4586 |
|
|
S1: x = load - VS1_0
|
| 4587 |
|
|
S2: z = x + 1 - -
|
| 4588 |
|
|
|
| 4589 |
|
|
See in documentation in vect_get_vec_def_for_stmt_copy for how the
|
| 4590 |
|
|
information we recorded in RELATED_STMT field is used to vectorize
|
| 4591 |
|
|
stmt S2. */
|
| 4592 |
|
|
|
| 4593 |
|
|
/* In case of interleaving (non-unit strided access):
|
| 4594 |
|
|
|
| 4595 |
|
|
S1: x2 = &base + 2
|
| 4596 |
|
|
S2: x0 = &base
|
| 4597 |
|
|
S3: x1 = &base + 1
|
| 4598 |
|
|
S4: x3 = &base + 3
|
| 4599 |
|
|
|
| 4600 |
|
|
Vectorized loads are created in the order of memory accesses
|
| 4601 |
|
|
starting from the access of the first stmt of the chain:
|
| 4602 |
|
|
|
| 4603 |
|
|
VS1: vx0 = &base
|
| 4604 |
|
|
VS2: vx1 = &base + vec_size*1
|
| 4605 |
|
|
VS3: vx3 = &base + vec_size*2
|
| 4606 |
|
|
VS4: vx4 = &base + vec_size*3
|
| 4607 |
|
|
|
| 4608 |
|
|
Then permutation statements are generated:
|
| 4609 |
|
|
|
| 4610 |
|
|
VS5: vx5 = VEC_PERM_EXPR < vx0, vx1, { 0, 2, ..., i*2 } >
|
| 4611 |
|
|
VS6: vx6 = VEC_PERM_EXPR < vx0, vx1, { 1, 3, ..., i*2+1 } >
|
| 4612 |
|
|
...
|
| 4613 |
|
|
|
| 4614 |
|
|
And they are put in STMT_VINFO_VEC_STMT of the corresponding scalar stmts
|
| 4615 |
|
|
(the order of the data-refs in the output of vect_permute_load_chain
|
| 4616 |
|
|
corresponds to the order of scalar stmts in the interleaving chain - see
|
| 4617 |
|
|
the documentation of vect_permute_load_chain()).
|
| 4618 |
|
|
The generation of permutation stmts and recording them in
|
| 4619 |
|
|
STMT_VINFO_VEC_STMT is done in vect_transform_strided_load().
|
| 4620 |
|
|
|
| 4621 |
|
|
In case of both multiple types and interleaving, the vector loads and
|
| 4622 |
|
|
permutation stmts above are created for every copy. The result vector
|
| 4623 |
|
|
stmts are put in STMT_VINFO_VEC_STMT for the first copy and in the
|
| 4624 |
|
|
corresponding STMT_VINFO_RELATED_STMT for the next copies. */
|
| 4625 |
|
|
|
| 4626 |
|
|
/* If the data reference is aligned (dr_aligned) or potentially unaligned
|
| 4627 |
|
|
on a target that supports unaligned accesses (dr_unaligned_supported)
|
| 4628 |
|
|
we generate the following code:
|
| 4629 |
|
|
p = initial_addr;
|
| 4630 |
|
|
indx = 0;
|
| 4631 |
|
|
loop {
|
| 4632 |
|
|
p = p + indx * vectype_size;
|
| 4633 |
|
|
vec_dest = *(p);
|
| 4634 |
|
|
indx = indx + 1;
|
| 4635 |
|
|
}
|
| 4636 |
|
|
|
| 4637 |
|
|
Otherwise, the data reference is potentially unaligned on a target that
|
| 4638 |
|
|
does not support unaligned accesses (dr_explicit_realign_optimized) -
|
| 4639 |
|
|
then generate the following code, in which the data in each iteration is
|
| 4640 |
|
|
obtained by two vector loads, one from the previous iteration, and one
|
| 4641 |
|
|
from the current iteration:
|
| 4642 |
|
|
p1 = initial_addr;
|
| 4643 |
|
|
msq_init = *(floor(p1))
|
| 4644 |
|
|
p2 = initial_addr + VS - 1;
|
| 4645 |
|
|
realignment_token = call target_builtin;
|
| 4646 |
|
|
indx = 0;
|
| 4647 |
|
|
loop {
|
| 4648 |
|
|
p2 = p2 + indx * vectype_size
|
| 4649 |
|
|
lsq = *(floor(p2))
|
| 4650 |
|
|
vec_dest = realign_load (msq, lsq, realignment_token)
|
| 4651 |
|
|
indx = indx + 1;
|
| 4652 |
|
|
msq = lsq;
|
| 4653 |
|
|
} */
|
| 4654 |
|
|
|
| 4655 |
|
|
/* If the misalignment remains the same throughout the execution of the
|
| 4656 |
|
|
loop, we can create the init_addr and permutation mask at the loop
|
| 4657 |
|
|
preheader. Otherwise, it needs to be created inside the loop.
|
| 4658 |
|
|
This can only occur when vectorizing memory accesses in the inner-loop
|
| 4659 |
|
|
nested within an outer-loop that is being vectorized. */
|
| 4660 |
|
|
|
| 4661 |
|
|
if (nested_in_vect_loop
|
| 4662 |
|
|
&& (TREE_INT_CST_LOW (DR_STEP (dr))
|
| 4663 |
|
|
% GET_MODE_SIZE (TYPE_MODE (vectype)) != 0))
|
| 4664 |
|
|
{
|
| 4665 |
|
|
gcc_assert (alignment_support_scheme != dr_explicit_realign_optimized);
|
| 4666 |
|
|
compute_in_loop = true;
|
| 4667 |
|
|
}
|
| 4668 |
|
|
|
| 4669 |
|
|
if ((alignment_support_scheme == dr_explicit_realign_optimized
|
| 4670 |
|
|
|| alignment_support_scheme == dr_explicit_realign)
|
| 4671 |
|
|
&& !compute_in_loop)
|
| 4672 |
|
|
{
|
| 4673 |
|
|
msq = vect_setup_realignment (first_stmt, gsi, &realignment_token,
|
| 4674 |
|
|
alignment_support_scheme, NULL_TREE,
|
| 4675 |
|
|
&at_loop);
|
| 4676 |
|
|
if (alignment_support_scheme == dr_explicit_realign_optimized)
|
| 4677 |
|
|
{
|
| 4678 |
|
|
phi = SSA_NAME_DEF_STMT (msq);
|
| 4679 |
|
|
offset = size_int (TYPE_VECTOR_SUBPARTS (vectype) - 1);
|
| 4680 |
|
|
}
|
| 4681 |
|
|
}
|
| 4682 |
|
|
else
|
| 4683 |
|
|
at_loop = loop;
|
| 4684 |
|
|
|
| 4685 |
|
|
if (negative)
|
| 4686 |
|
|
offset = size_int (-TYPE_VECTOR_SUBPARTS (vectype) + 1);
|
| 4687 |
|
|
|
| 4688 |
|
|
if (load_lanes_p)
|
| 4689 |
|
|
aggr_type = build_array_type_nelts (elem_type, vec_num * nunits);
|
| 4690 |
|
|
else
|
| 4691 |
|
|
aggr_type = vectype;
|
| 4692 |
|
|
|
| 4693 |
|
|
prev_stmt_info = NULL;
|
| 4694 |
|
|
for (j = 0; j < ncopies; j++)
|
| 4695 |
|
|
{
|
| 4696 |
|
|
/* 1. Create the vector or array pointer update chain. */
|
| 4697 |
|
|
if (j == 0)
|
| 4698 |
|
|
dataref_ptr = vect_create_data_ref_ptr (first_stmt, aggr_type, at_loop,
|
| 4699 |
|
|
offset, &dummy, gsi,
|
| 4700 |
|
|
&ptr_incr, false, &inv_p);
|
| 4701 |
|
|
else
|
| 4702 |
|
|
dataref_ptr = bump_vector_ptr (dataref_ptr, ptr_incr, gsi, stmt,
|
| 4703 |
|
|
TYPE_SIZE_UNIT (aggr_type));
|
| 4704 |
|
|
|
| 4705 |
|
|
if (strided_load || slp_perm)
|
| 4706 |
|
|
dr_chain = VEC_alloc (tree, heap, vec_num);
|
| 4707 |
|
|
|
| 4708 |
|
|
if (load_lanes_p)
|
| 4709 |
|
|
{
|
| 4710 |
|
|
tree vec_array;
|
| 4711 |
|
|
|
| 4712 |
|
|
vec_array = create_vector_array (vectype, vec_num);
|
| 4713 |
|
|
|
| 4714 |
|
|
/* Emit:
|
| 4715 |
|
|
VEC_ARRAY = LOAD_LANES (MEM_REF[...all elements...]). */
|
| 4716 |
|
|
data_ref = create_array_ref (aggr_type, dataref_ptr, first_dr);
|
| 4717 |
|
|
new_stmt = gimple_build_call_internal (IFN_LOAD_LANES, 1, data_ref);
|
| 4718 |
|
|
gimple_call_set_lhs (new_stmt, vec_array);
|
| 4719 |
|
|
vect_finish_stmt_generation (stmt, new_stmt, gsi);
|
| 4720 |
|
|
mark_symbols_for_renaming (new_stmt);
|
| 4721 |
|
|
|
| 4722 |
|
|
/* Extract each vector into an SSA_NAME. */
|
| 4723 |
|
|
for (i = 0; i < vec_num; i++)
|
| 4724 |
|
|
{
|
| 4725 |
|
|
new_temp = read_vector_array (stmt, gsi, scalar_dest,
|
| 4726 |
|
|
vec_array, i);
|
| 4727 |
|
|
VEC_quick_push (tree, dr_chain, new_temp);
|
| 4728 |
|
|
}
|
| 4729 |
|
|
|
| 4730 |
|
|
/* Record the mapping between SSA_NAMEs and statements. */
|
| 4731 |
|
|
vect_record_strided_load_vectors (stmt, dr_chain);
|
| 4732 |
|
|
}
|
| 4733 |
|
|
else
|
| 4734 |
|
|
{
|
| 4735 |
|
|
for (i = 0; i < vec_num; i++)
|
| 4736 |
|
|
{
|
| 4737 |
|
|
if (i > 0)
|
| 4738 |
|
|
dataref_ptr = bump_vector_ptr (dataref_ptr, ptr_incr, gsi,
|
| 4739 |
|
|
stmt, NULL_TREE);
|
| 4740 |
|
|
|
| 4741 |
|
|
/* 2. Create the vector-load in the loop. */
|
| 4742 |
|
|
switch (alignment_support_scheme)
|
| 4743 |
|
|
{
|
| 4744 |
|
|
case dr_aligned:
|
| 4745 |
|
|
case dr_unaligned_supported:
|
| 4746 |
|
|
{
|
| 4747 |
|
|
struct ptr_info_def *pi;
|
| 4748 |
|
|
data_ref
|
| 4749 |
|
|
= build2 (MEM_REF, vectype, dataref_ptr,
|
| 4750 |
|
|
build_int_cst (reference_alias_ptr_type
|
| 4751 |
|
|
(DR_REF (first_dr)), 0));
|
| 4752 |
|
|
pi = get_ptr_info (dataref_ptr);
|
| 4753 |
|
|
pi->align = TYPE_ALIGN_UNIT (vectype);
|
| 4754 |
|
|
if (alignment_support_scheme == dr_aligned)
|
| 4755 |
|
|
{
|
| 4756 |
|
|
gcc_assert (aligned_access_p (first_dr));
|
| 4757 |
|
|
pi->misalign = 0;
|
| 4758 |
|
|
}
|
| 4759 |
|
|
else if (DR_MISALIGNMENT (first_dr) == -1)
|
| 4760 |
|
|
{
|
| 4761 |
|
|
TREE_TYPE (data_ref)
|
| 4762 |
|
|
= build_aligned_type (TREE_TYPE (data_ref),
|
| 4763 |
|
|
TYPE_ALIGN (elem_type));
|
| 4764 |
|
|
pi->align = TYPE_ALIGN_UNIT (elem_type);
|
| 4765 |
|
|
pi->misalign = 0;
|
| 4766 |
|
|
}
|
| 4767 |
|
|
else
|
| 4768 |
|
|
{
|
| 4769 |
|
|
TREE_TYPE (data_ref)
|
| 4770 |
|
|
= build_aligned_type (TREE_TYPE (data_ref),
|
| 4771 |
|
|
TYPE_ALIGN (elem_type));
|
| 4772 |
|
|
pi->misalign = DR_MISALIGNMENT (first_dr);
|
| 4773 |
|
|
}
|
| 4774 |
|
|
break;
|
| 4775 |
|
|
}
|
| 4776 |
|
|
case dr_explicit_realign:
|
| 4777 |
|
|
{
|
| 4778 |
|
|
tree ptr, bump;
|
| 4779 |
|
|
tree vs_minus_1;
|
| 4780 |
|
|
|
| 4781 |
|
|
vs_minus_1 = size_int (TYPE_VECTOR_SUBPARTS (vectype) - 1);
|
| 4782 |
|
|
|
| 4783 |
|
|
if (compute_in_loop)
|
| 4784 |
|
|
msq = vect_setup_realignment (first_stmt, gsi,
|
| 4785 |
|
|
&realignment_token,
|
| 4786 |
|
|
dr_explicit_realign,
|
| 4787 |
|
|
dataref_ptr, NULL);
|
| 4788 |
|
|
|
| 4789 |
|
|
new_stmt = gimple_build_assign_with_ops
|
| 4790 |
|
|
(BIT_AND_EXPR, NULL_TREE, dataref_ptr,
|
| 4791 |
|
|
build_int_cst
|
| 4792 |
|
|
(TREE_TYPE (dataref_ptr),
|
| 4793 |
|
|
-(HOST_WIDE_INT)TYPE_ALIGN_UNIT (vectype)));
|
| 4794 |
|
|
ptr = make_ssa_name (SSA_NAME_VAR (dataref_ptr), new_stmt);
|
| 4795 |
|
|
gimple_assign_set_lhs (new_stmt, ptr);
|
| 4796 |
|
|
vect_finish_stmt_generation (stmt, new_stmt, gsi);
|
| 4797 |
|
|
data_ref
|
| 4798 |
|
|
= build2 (MEM_REF, vectype, ptr,
|
| 4799 |
|
|
build_int_cst (reference_alias_ptr_type
|
| 4800 |
|
|
(DR_REF (first_dr)), 0));
|
| 4801 |
|
|
vec_dest = vect_create_destination_var (scalar_dest,
|
| 4802 |
|
|
vectype);
|
| 4803 |
|
|
new_stmt = gimple_build_assign (vec_dest, data_ref);
|
| 4804 |
|
|
new_temp = make_ssa_name (vec_dest, new_stmt);
|
| 4805 |
|
|
gimple_assign_set_lhs (new_stmt, new_temp);
|
| 4806 |
|
|
gimple_set_vdef (new_stmt, gimple_vdef (stmt));
|
| 4807 |
|
|
gimple_set_vuse (new_stmt, gimple_vuse (stmt));
|
| 4808 |
|
|
vect_finish_stmt_generation (stmt, new_stmt, gsi);
|
| 4809 |
|
|
msq = new_temp;
|
| 4810 |
|
|
|
| 4811 |
|
|
bump = size_binop (MULT_EXPR, vs_minus_1,
|
| 4812 |
|
|
TYPE_SIZE_UNIT (elem_type));
|
| 4813 |
|
|
ptr = bump_vector_ptr (dataref_ptr, NULL, gsi, stmt, bump);
|
| 4814 |
|
|
new_stmt = gimple_build_assign_with_ops
|
| 4815 |
|
|
(BIT_AND_EXPR, NULL_TREE, ptr,
|
| 4816 |
|
|
build_int_cst
|
| 4817 |
|
|
(TREE_TYPE (ptr),
|
| 4818 |
|
|
-(HOST_WIDE_INT)TYPE_ALIGN_UNIT (vectype)));
|
| 4819 |
|
|
ptr = make_ssa_name (SSA_NAME_VAR (dataref_ptr), new_stmt);
|
| 4820 |
|
|
gimple_assign_set_lhs (new_stmt, ptr);
|
| 4821 |
|
|
vect_finish_stmt_generation (stmt, new_stmt, gsi);
|
| 4822 |
|
|
data_ref
|
| 4823 |
|
|
= build2 (MEM_REF, vectype, ptr,
|
| 4824 |
|
|
build_int_cst (reference_alias_ptr_type
|
| 4825 |
|
|
(DR_REF (first_dr)), 0));
|
| 4826 |
|
|
break;
|
| 4827 |
|
|
}
|
| 4828 |
|
|
case dr_explicit_realign_optimized:
|
| 4829 |
|
|
new_stmt = gimple_build_assign_with_ops
|
| 4830 |
|
|
(BIT_AND_EXPR, NULL_TREE, dataref_ptr,
|
| 4831 |
|
|
build_int_cst
|
| 4832 |
|
|
(TREE_TYPE (dataref_ptr),
|
| 4833 |
|
|
-(HOST_WIDE_INT)TYPE_ALIGN_UNIT (vectype)));
|
| 4834 |
|
|
new_temp = make_ssa_name (SSA_NAME_VAR (dataref_ptr),
|
| 4835 |
|
|
new_stmt);
|
| 4836 |
|
|
gimple_assign_set_lhs (new_stmt, new_temp);
|
| 4837 |
|
|
vect_finish_stmt_generation (stmt, new_stmt, gsi);
|
| 4838 |
|
|
data_ref
|
| 4839 |
|
|
= build2 (MEM_REF, vectype, new_temp,
|
| 4840 |
|
|
build_int_cst (reference_alias_ptr_type
|
| 4841 |
|
|
(DR_REF (first_dr)), 0));
|
| 4842 |
|
|
break;
|
| 4843 |
|
|
default:
|
| 4844 |
|
|
gcc_unreachable ();
|
| 4845 |
|
|
}
|
| 4846 |
|
|
vec_dest = vect_create_destination_var (scalar_dest, vectype);
|
| 4847 |
|
|
new_stmt = gimple_build_assign (vec_dest, data_ref);
|
| 4848 |
|
|
new_temp = make_ssa_name (vec_dest, new_stmt);
|
| 4849 |
|
|
gimple_assign_set_lhs (new_stmt, new_temp);
|
| 4850 |
|
|
vect_finish_stmt_generation (stmt, new_stmt, gsi);
|
| 4851 |
|
|
mark_symbols_for_renaming (new_stmt);
|
| 4852 |
|
|
|
| 4853 |
|
|
/* 3. Handle explicit realignment if necessary/supported.
|
| 4854 |
|
|
Create in loop:
|
| 4855 |
|
|
vec_dest = realign_load (msq, lsq, realignment_token) */
|
| 4856 |
|
|
if (alignment_support_scheme == dr_explicit_realign_optimized
|
| 4857 |
|
|
|| alignment_support_scheme == dr_explicit_realign)
|
| 4858 |
|
|
{
|
| 4859 |
|
|
lsq = gimple_assign_lhs (new_stmt);
|
| 4860 |
|
|
if (!realignment_token)
|
| 4861 |
|
|
realignment_token = dataref_ptr;
|
| 4862 |
|
|
vec_dest = vect_create_destination_var (scalar_dest, vectype);
|
| 4863 |
|
|
new_stmt
|
| 4864 |
|
|
= gimple_build_assign_with_ops3 (REALIGN_LOAD_EXPR,
|
| 4865 |
|
|
vec_dest, msq, lsq,
|
| 4866 |
|
|
realignment_token);
|
| 4867 |
|
|
new_temp = make_ssa_name (vec_dest, new_stmt);
|
| 4868 |
|
|
gimple_assign_set_lhs (new_stmt, new_temp);
|
| 4869 |
|
|
vect_finish_stmt_generation (stmt, new_stmt, gsi);
|
| 4870 |
|
|
|
| 4871 |
|
|
if (alignment_support_scheme == dr_explicit_realign_optimized)
|
| 4872 |
|
|
{
|
| 4873 |
|
|
gcc_assert (phi);
|
| 4874 |
|
|
if (i == vec_num - 1 && j == ncopies - 1)
|
| 4875 |
|
|
add_phi_arg (phi, lsq,
|
| 4876 |
|
|
loop_latch_edge (containing_loop),
|
| 4877 |
|
|
UNKNOWN_LOCATION);
|
| 4878 |
|
|
msq = lsq;
|
| 4879 |
|
|
}
|
| 4880 |
|
|
}
|
| 4881 |
|
|
|
| 4882 |
|
|
/* 4. Handle invariant-load. */
|
| 4883 |
|
|
if (inv_p && !bb_vinfo)
|
| 4884 |
|
|
{
|
| 4885 |
|
|
tree tem, vec_inv;
|
| 4886 |
|
|
gimple_stmt_iterator gsi2 = *gsi;
|
| 4887 |
|
|
gcc_assert (!strided_load);
|
| 4888 |
|
|
gsi_next (&gsi2);
|
| 4889 |
|
|
tem = scalar_dest;
|
| 4890 |
|
|
if (!useless_type_conversion_p (TREE_TYPE (vectype),
|
| 4891 |
|
|
TREE_TYPE (tem)))
|
| 4892 |
|
|
{
|
| 4893 |
|
|
tem = fold_convert (TREE_TYPE (vectype), tem);
|
| 4894 |
|
|
tem = force_gimple_operand_gsi (&gsi2, tem, true,
|
| 4895 |
|
|
NULL_TREE, true,
|
| 4896 |
|
|
GSI_SAME_STMT);
|
| 4897 |
|
|
}
|
| 4898 |
|
|
vec_inv = build_vector_from_val (vectype, tem);
|
| 4899 |
|
|
new_temp = vect_init_vector (stmt, vec_inv,
|
| 4900 |
|
|
vectype, &gsi2);
|
| 4901 |
|
|
new_stmt = SSA_NAME_DEF_STMT (new_temp);
|
| 4902 |
|
|
}
|
| 4903 |
|
|
|
| 4904 |
|
|
if (negative)
|
| 4905 |
|
|
{
|
| 4906 |
|
|
tree perm_mask = perm_mask_for_reverse (vectype);
|
| 4907 |
|
|
new_temp = permute_vec_elements (new_temp, new_temp,
|
| 4908 |
|
|
perm_mask, stmt, gsi);
|
| 4909 |
|
|
new_stmt = SSA_NAME_DEF_STMT (new_temp);
|
| 4910 |
|
|
}
|
| 4911 |
|
|
|
| 4912 |
|
|
/* Collect vector loads and later create their permutation in
|
| 4913 |
|
|
vect_transform_strided_load (). */
|
| 4914 |
|
|
if (strided_load || slp_perm)
|
| 4915 |
|
|
VEC_quick_push (tree, dr_chain, new_temp);
|
| 4916 |
|
|
|
| 4917 |
|
|
/* Store vector loads in the corresponding SLP_NODE. */
|
| 4918 |
|
|
if (slp && !slp_perm)
|
| 4919 |
|
|
VEC_quick_push (gimple, SLP_TREE_VEC_STMTS (slp_node),
|
| 4920 |
|
|
new_stmt);
|
| 4921 |
|
|
}
|
| 4922 |
|
|
}
|
| 4923 |
|
|
|
| 4924 |
|
|
if (slp && !slp_perm)
|
| 4925 |
|
|
continue;
|
| 4926 |
|
|
|
| 4927 |
|
|
if (slp_perm)
|
| 4928 |
|
|
{
|
| 4929 |
|
|
if (!vect_transform_slp_perm_load (stmt, dr_chain, gsi, vf,
|
| 4930 |
|
|
slp_node_instance, false))
|
| 4931 |
|
|
{
|
| 4932 |
|
|
VEC_free (tree, heap, dr_chain);
|
| 4933 |
|
|
return false;
|
| 4934 |
|
|
}
|
| 4935 |
|
|
}
|
| 4936 |
|
|
else
|
| 4937 |
|
|
{
|
| 4938 |
|
|
if (strided_load)
|
| 4939 |
|
|
{
|
| 4940 |
|
|
if (!load_lanes_p)
|
| 4941 |
|
|
vect_transform_strided_load (stmt, dr_chain, group_size, gsi);
|
| 4942 |
|
|
*vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
|
| 4943 |
|
|
}
|
| 4944 |
|
|
else
|
| 4945 |
|
|
{
|
| 4946 |
|
|
if (j == 0)
|
| 4947 |
|
|
STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
|
| 4948 |
|
|
else
|
| 4949 |
|
|
STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
|
| 4950 |
|
|
prev_stmt_info = vinfo_for_stmt (new_stmt);
|
| 4951 |
|
|
}
|
| 4952 |
|
|
}
|
| 4953 |
|
|
if (dr_chain)
|
| 4954 |
|
|
VEC_free (tree, heap, dr_chain);
|
| 4955 |
|
|
}
|
| 4956 |
|
|
|
| 4957 |
|
|
return true;
|
| 4958 |
|
|
}
|
| 4959 |
|
|
|
| 4960 |
|
|
/* Function vect_is_simple_cond.
|
| 4961 |
|
|
|
| 4962 |
|
|
Input:
|
| 4963 |
|
|
LOOP - the loop that is being vectorized.
|
| 4964 |
|
|
COND - Condition that is checked for simple use.
|
| 4965 |
|
|
|
| 4966 |
|
|
Output:
|
| 4967 |
|
|
*COMP_VECTYPE - the vector type for the comparison.
|
| 4968 |
|
|
|
| 4969 |
|
|
Returns whether a COND can be vectorized. Checks whether
|
| 4970 |
|
|
condition operands are supportable using vec_is_simple_use. */
|
| 4971 |
|
|
|
| 4972 |
|
|
static bool
|
| 4973 |
|
|
vect_is_simple_cond (tree cond, gimple stmt, loop_vec_info loop_vinfo,
|
| 4974 |
|
|
bb_vec_info bb_vinfo, tree *comp_vectype)
|
| 4975 |
|
|
{
|
| 4976 |
|
|
tree lhs, rhs;
|
| 4977 |
|
|
tree def;
|
| 4978 |
|
|
enum vect_def_type dt;
|
| 4979 |
|
|
tree vectype1 = NULL_TREE, vectype2 = NULL_TREE;
|
| 4980 |
|
|
|
| 4981 |
|
|
if (!COMPARISON_CLASS_P (cond))
|
| 4982 |
|
|
return false;
|
| 4983 |
|
|
|
| 4984 |
|
|
lhs = TREE_OPERAND (cond, 0);
|
| 4985 |
|
|
rhs = TREE_OPERAND (cond, 1);
|
| 4986 |
|
|
|
| 4987 |
|
|
if (TREE_CODE (lhs) == SSA_NAME)
|
| 4988 |
|
|
{
|
| 4989 |
|
|
gimple lhs_def_stmt = SSA_NAME_DEF_STMT (lhs);
|
| 4990 |
|
|
if (!vect_is_simple_use_1 (lhs, stmt, loop_vinfo, bb_vinfo,
|
| 4991 |
|
|
&lhs_def_stmt, &def, &dt, &vectype1))
|
| 4992 |
|
|
return false;
|
| 4993 |
|
|
}
|
| 4994 |
|
|
else if (TREE_CODE (lhs) != INTEGER_CST && TREE_CODE (lhs) != REAL_CST
|
| 4995 |
|
|
&& TREE_CODE (lhs) != FIXED_CST)
|
| 4996 |
|
|
return false;
|
| 4997 |
|
|
|
| 4998 |
|
|
if (TREE_CODE (rhs) == SSA_NAME)
|
| 4999 |
|
|
{
|
| 5000 |
|
|
gimple rhs_def_stmt = SSA_NAME_DEF_STMT (rhs);
|
| 5001 |
|
|
if (!vect_is_simple_use_1 (rhs, stmt, loop_vinfo, bb_vinfo,
|
| 5002 |
|
|
&rhs_def_stmt, &def, &dt, &vectype2))
|
| 5003 |
|
|
return false;
|
| 5004 |
|
|
}
|
| 5005 |
|
|
else if (TREE_CODE (rhs) != INTEGER_CST && TREE_CODE (rhs) != REAL_CST
|
| 5006 |
|
|
&& TREE_CODE (rhs) != FIXED_CST)
|
| 5007 |
|
|
return false;
|
| 5008 |
|
|
|
| 5009 |
|
|
*comp_vectype = vectype1 ? vectype1 : vectype2;
|
| 5010 |
|
|
return true;
|
| 5011 |
|
|
}
|
| 5012 |
|
|
|
| 5013 |
|
|
/* vectorizable_condition.
|
| 5014 |
|
|
|
| 5015 |
|
|
Check if STMT is conditional modify expression that can be vectorized.
|
| 5016 |
|
|
If VEC_STMT is also passed, vectorize the STMT: create a vectorized
|
| 5017 |
|
|
stmt using VEC_COND_EXPR to replace it, put it in VEC_STMT, and insert it
|
| 5018 |
|
|
at GSI.
|
| 5019 |
|
|
|
| 5020 |
|
|
When STMT is vectorized as nested cycle, REDUC_DEF is the vector variable
|
| 5021 |
|
|
to be used at REDUC_INDEX (in then clause if REDUC_INDEX is 1, and in
|
| 5022 |
|
|
else caluse if it is 2).
|
| 5023 |
|
|
|
| 5024 |
|
|
Return FALSE if not a vectorizable STMT, TRUE otherwise. */
|
| 5025 |
|
|
|
| 5026 |
|
|
bool
|
| 5027 |
|
|
vectorizable_condition (gimple stmt, gimple_stmt_iterator *gsi,
|
| 5028 |
|
|
gimple *vec_stmt, tree reduc_def, int reduc_index,
|
| 5029 |
|
|
slp_tree slp_node)
|
| 5030 |
|
|
{
|
| 5031 |
|
|
tree scalar_dest = NULL_TREE;
|
| 5032 |
|
|
tree vec_dest = NULL_TREE;
|
| 5033 |
|
|
tree cond_expr, then_clause, else_clause;
|
| 5034 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
| 5035 |
|
|
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
|
| 5036 |
|
|
tree comp_vectype = NULL_TREE;
|
| 5037 |
|
|
tree vec_cond_lhs = NULL_TREE, vec_cond_rhs = NULL_TREE;
|
| 5038 |
|
|
tree vec_then_clause = NULL_TREE, vec_else_clause = NULL_TREE;
|
| 5039 |
|
|
tree vec_compare, vec_cond_expr;
|
| 5040 |
|
|
tree new_temp;
|
| 5041 |
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
| 5042 |
|
|
tree def;
|
| 5043 |
|
|
enum vect_def_type dt, dts[4];
|
| 5044 |
|
|
int nunits = TYPE_VECTOR_SUBPARTS (vectype);
|
| 5045 |
|
|
int ncopies;
|
| 5046 |
|
|
enum tree_code code;
|
| 5047 |
|
|
stmt_vec_info prev_stmt_info = NULL;
|
| 5048 |
|
|
int i, j;
|
| 5049 |
|
|
bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
|
| 5050 |
|
|
VEC (tree, heap) *vec_oprnds0 = NULL, *vec_oprnds1 = NULL;
|
| 5051 |
|
|
VEC (tree, heap) *vec_oprnds2 = NULL, *vec_oprnds3 = NULL;
|
| 5052 |
|
|
|
| 5053 |
|
|
if (slp_node || PURE_SLP_STMT (stmt_info))
|
| 5054 |
|
|
ncopies = 1;
|
| 5055 |
|
|
else
|
| 5056 |
|
|
ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
|
| 5057 |
|
|
|
| 5058 |
|
|
gcc_assert (ncopies >= 1);
|
| 5059 |
|
|
if (reduc_index && ncopies > 1)
|
| 5060 |
|
|
return false; /* FORNOW */
|
| 5061 |
|
|
|
| 5062 |
|
|
if (reduc_index && STMT_SLP_TYPE (stmt_info))
|
| 5063 |
|
|
return false;
|
| 5064 |
|
|
|
| 5065 |
|
|
if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
|
| 5066 |
|
|
return false;
|
| 5067 |
|
|
|
| 5068 |
|
|
if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def
|
| 5069 |
|
|
&& !(STMT_VINFO_DEF_TYPE (stmt_info) == vect_nested_cycle
|
| 5070 |
|
|
&& reduc_def))
|
| 5071 |
|
|
return false;
|
| 5072 |
|
|
|
| 5073 |
|
|
/* FORNOW: not yet supported. */
|
| 5074 |
|
|
if (STMT_VINFO_LIVE_P (stmt_info))
|
| 5075 |
|
|
{
|
| 5076 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 5077 |
|
|
fprintf (vect_dump, "value used after loop.");
|
| 5078 |
|
|
return false;
|
| 5079 |
|
|
}
|
| 5080 |
|
|
|
| 5081 |
|
|
/* Is vectorizable conditional operation? */
|
| 5082 |
|
|
if (!is_gimple_assign (stmt))
|
| 5083 |
|
|
return false;
|
| 5084 |
|
|
|
| 5085 |
|
|
code = gimple_assign_rhs_code (stmt);
|
| 5086 |
|
|
|
| 5087 |
|
|
if (code != COND_EXPR)
|
| 5088 |
|
|
return false;
|
| 5089 |
|
|
|
| 5090 |
|
|
cond_expr = gimple_assign_rhs1 (stmt);
|
| 5091 |
|
|
then_clause = gimple_assign_rhs2 (stmt);
|
| 5092 |
|
|
else_clause = gimple_assign_rhs3 (stmt);
|
| 5093 |
|
|
|
| 5094 |
|
|
if (!vect_is_simple_cond (cond_expr, stmt, loop_vinfo, bb_vinfo,
|
| 5095 |
|
|
&comp_vectype)
|
| 5096 |
|
|
|| !comp_vectype)
|
| 5097 |
|
|
return false;
|
| 5098 |
|
|
|
| 5099 |
|
|
if (TREE_CODE (then_clause) == SSA_NAME)
|
| 5100 |
|
|
{
|
| 5101 |
|
|
gimple then_def_stmt = SSA_NAME_DEF_STMT (then_clause);
|
| 5102 |
|
|
if (!vect_is_simple_use (then_clause, stmt, loop_vinfo, bb_vinfo,
|
| 5103 |
|
|
&then_def_stmt, &def, &dt))
|
| 5104 |
|
|
return false;
|
| 5105 |
|
|
}
|
| 5106 |
|
|
else if (TREE_CODE (then_clause) != INTEGER_CST
|
| 5107 |
|
|
&& TREE_CODE (then_clause) != REAL_CST
|
| 5108 |
|
|
&& TREE_CODE (then_clause) != FIXED_CST)
|
| 5109 |
|
|
return false;
|
| 5110 |
|
|
|
| 5111 |
|
|
if (TREE_CODE (else_clause) == SSA_NAME)
|
| 5112 |
|
|
{
|
| 5113 |
|
|
gimple else_def_stmt = SSA_NAME_DEF_STMT (else_clause);
|
| 5114 |
|
|
if (!vect_is_simple_use (else_clause, stmt, loop_vinfo, bb_vinfo,
|
| 5115 |
|
|
&else_def_stmt, &def, &dt))
|
| 5116 |
|
|
return false;
|
| 5117 |
|
|
}
|
| 5118 |
|
|
else if (TREE_CODE (else_clause) != INTEGER_CST
|
| 5119 |
|
|
&& TREE_CODE (else_clause) != REAL_CST
|
| 5120 |
|
|
&& TREE_CODE (else_clause) != FIXED_CST)
|
| 5121 |
|
|
return false;
|
| 5122 |
|
|
|
| 5123 |
|
|
if (!vec_stmt)
|
| 5124 |
|
|
{
|
| 5125 |
|
|
STMT_VINFO_TYPE (stmt_info) = condition_vec_info_type;
|
| 5126 |
|
|
return expand_vec_cond_expr_p (vectype, comp_vectype);
|
| 5127 |
|
|
}
|
| 5128 |
|
|
|
| 5129 |
|
|
/* Transform. */
|
| 5130 |
|
|
|
| 5131 |
|
|
if (!slp_node)
|
| 5132 |
|
|
{
|
| 5133 |
|
|
vec_oprnds0 = VEC_alloc (tree, heap, 1);
|
| 5134 |
|
|
vec_oprnds1 = VEC_alloc (tree, heap, 1);
|
| 5135 |
|
|
vec_oprnds2 = VEC_alloc (tree, heap, 1);
|
| 5136 |
|
|
vec_oprnds3 = VEC_alloc (tree, heap, 1);
|
| 5137 |
|
|
}
|
| 5138 |
|
|
|
| 5139 |
|
|
/* Handle def. */
|
| 5140 |
|
|
scalar_dest = gimple_assign_lhs (stmt);
|
| 5141 |
|
|
vec_dest = vect_create_destination_var (scalar_dest, vectype);
|
| 5142 |
|
|
|
| 5143 |
|
|
/* Handle cond expr. */
|
| 5144 |
|
|
for (j = 0; j < ncopies; j++)
|
| 5145 |
|
|
{
|
| 5146 |
|
|
gimple new_stmt = NULL;
|
| 5147 |
|
|
if (j == 0)
|
| 5148 |
|
|
{
|
| 5149 |
|
|
if (slp_node)
|
| 5150 |
|
|
{
|
| 5151 |
|
|
VEC (tree, heap) *ops = VEC_alloc (tree, heap, 4);
|
| 5152 |
|
|
VEC (slp_void_p, heap) *vec_defs;
|
| 5153 |
|
|
|
| 5154 |
|
|
vec_defs = VEC_alloc (slp_void_p, heap, 4);
|
| 5155 |
|
|
VEC_safe_push (tree, heap, ops, TREE_OPERAND (cond_expr, 0));
|
| 5156 |
|
|
VEC_safe_push (tree, heap, ops, TREE_OPERAND (cond_expr, 1));
|
| 5157 |
|
|
VEC_safe_push (tree, heap, ops, then_clause);
|
| 5158 |
|
|
VEC_safe_push (tree, heap, ops, else_clause);
|
| 5159 |
|
|
vect_get_slp_defs (ops, slp_node, &vec_defs, -1);
|
| 5160 |
|
|
vec_oprnds3 = (VEC (tree, heap) *) VEC_pop (slp_void_p, vec_defs);
|
| 5161 |
|
|
vec_oprnds2 = (VEC (tree, heap) *) VEC_pop (slp_void_p, vec_defs);
|
| 5162 |
|
|
vec_oprnds1 = (VEC (tree, heap) *) VEC_pop (slp_void_p, vec_defs);
|
| 5163 |
|
|
vec_oprnds0 = (VEC (tree, heap) *) VEC_pop (slp_void_p, vec_defs);
|
| 5164 |
|
|
|
| 5165 |
|
|
VEC_free (tree, heap, ops);
|
| 5166 |
|
|
VEC_free (slp_void_p, heap, vec_defs);
|
| 5167 |
|
|
}
|
| 5168 |
|
|
else
|
| 5169 |
|
|
{
|
| 5170 |
|
|
gimple gtemp;
|
| 5171 |
|
|
vec_cond_lhs =
|
| 5172 |
|
|
vect_get_vec_def_for_operand (TREE_OPERAND (cond_expr, 0),
|
| 5173 |
|
|
stmt, NULL);
|
| 5174 |
|
|
vect_is_simple_use (TREE_OPERAND (cond_expr, 0), stmt,
|
| 5175 |
|
|
loop_vinfo, NULL, >emp, &def, &dts[0]);
|
| 5176 |
|
|
|
| 5177 |
|
|
vec_cond_rhs =
|
| 5178 |
|
|
vect_get_vec_def_for_operand (TREE_OPERAND (cond_expr, 1),
|
| 5179 |
|
|
stmt, NULL);
|
| 5180 |
|
|
vect_is_simple_use (TREE_OPERAND (cond_expr, 1), stmt,
|
| 5181 |
|
|
loop_vinfo, NULL, >emp, &def, &dts[1]);
|
| 5182 |
|
|
if (reduc_index == 1)
|
| 5183 |
|
|
vec_then_clause = reduc_def;
|
| 5184 |
|
|
else
|
| 5185 |
|
|
{
|
| 5186 |
|
|
vec_then_clause = vect_get_vec_def_for_operand (then_clause,
|
| 5187 |
|
|
stmt, NULL);
|
| 5188 |
|
|
vect_is_simple_use (then_clause, stmt, loop_vinfo,
|
| 5189 |
|
|
NULL, >emp, &def, &dts[2]);
|
| 5190 |
|
|
}
|
| 5191 |
|
|
if (reduc_index == 2)
|
| 5192 |
|
|
vec_else_clause = reduc_def;
|
| 5193 |
|
|
else
|
| 5194 |
|
|
{
|
| 5195 |
|
|
vec_else_clause = vect_get_vec_def_for_operand (else_clause,
|
| 5196 |
|
|
stmt, NULL);
|
| 5197 |
|
|
vect_is_simple_use (else_clause, stmt, loop_vinfo,
|
| 5198 |
|
|
NULL, >emp, &def, &dts[3]);
|
| 5199 |
|
|
}
|
| 5200 |
|
|
}
|
| 5201 |
|
|
}
|
| 5202 |
|
|
else
|
| 5203 |
|
|
{
|
| 5204 |
|
|
vec_cond_lhs = vect_get_vec_def_for_stmt_copy (dts[0],
|
| 5205 |
|
|
VEC_pop (tree, vec_oprnds0));
|
| 5206 |
|
|
vec_cond_rhs = vect_get_vec_def_for_stmt_copy (dts[1],
|
| 5207 |
|
|
VEC_pop (tree, vec_oprnds1));
|
| 5208 |
|
|
vec_then_clause = vect_get_vec_def_for_stmt_copy (dts[2],
|
| 5209 |
|
|
VEC_pop (tree, vec_oprnds2));
|
| 5210 |
|
|
vec_else_clause = vect_get_vec_def_for_stmt_copy (dts[3],
|
| 5211 |
|
|
VEC_pop (tree, vec_oprnds3));
|
| 5212 |
|
|
}
|
| 5213 |
|
|
|
| 5214 |
|
|
if (!slp_node)
|
| 5215 |
|
|
{
|
| 5216 |
|
|
VEC_quick_push (tree, vec_oprnds0, vec_cond_lhs);
|
| 5217 |
|
|
VEC_quick_push (tree, vec_oprnds1, vec_cond_rhs);
|
| 5218 |
|
|
VEC_quick_push (tree, vec_oprnds2, vec_then_clause);
|
| 5219 |
|
|
VEC_quick_push (tree, vec_oprnds3, vec_else_clause);
|
| 5220 |
|
|
}
|
| 5221 |
|
|
|
| 5222 |
|
|
/* Arguments are ready. Create the new vector stmt. */
|
| 5223 |
|
|
FOR_EACH_VEC_ELT (tree, vec_oprnds0, i, vec_cond_lhs)
|
| 5224 |
|
|
{
|
| 5225 |
|
|
vec_cond_rhs = VEC_index (tree, vec_oprnds1, i);
|
| 5226 |
|
|
vec_then_clause = VEC_index (tree, vec_oprnds2, i);
|
| 5227 |
|
|
vec_else_clause = VEC_index (tree, vec_oprnds3, i);
|
| 5228 |
|
|
|
| 5229 |
|
|
vec_compare = build2 (TREE_CODE (cond_expr), vectype,
|
| 5230 |
|
|
vec_cond_lhs, vec_cond_rhs);
|
| 5231 |
|
|
vec_cond_expr = build3 (VEC_COND_EXPR, vectype,
|
| 5232 |
|
|
vec_compare, vec_then_clause, vec_else_clause);
|
| 5233 |
|
|
|
| 5234 |
|
|
new_stmt = gimple_build_assign (vec_dest, vec_cond_expr);
|
| 5235 |
|
|
new_temp = make_ssa_name (vec_dest, new_stmt);
|
| 5236 |
|
|
gimple_assign_set_lhs (new_stmt, new_temp);
|
| 5237 |
|
|
vect_finish_stmt_generation (stmt, new_stmt, gsi);
|
| 5238 |
|
|
if (slp_node)
|
| 5239 |
|
|
VEC_quick_push (gimple, SLP_TREE_VEC_STMTS (slp_node), new_stmt);
|
| 5240 |
|
|
}
|
| 5241 |
|
|
|
| 5242 |
|
|
if (slp_node)
|
| 5243 |
|
|
continue;
|
| 5244 |
|
|
|
| 5245 |
|
|
if (j == 0)
|
| 5246 |
|
|
STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
|
| 5247 |
|
|
else
|
| 5248 |
|
|
STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
|
| 5249 |
|
|
|
| 5250 |
|
|
prev_stmt_info = vinfo_for_stmt (new_stmt);
|
| 5251 |
|
|
}
|
| 5252 |
|
|
|
| 5253 |
|
|
VEC_free (tree, heap, vec_oprnds0);
|
| 5254 |
|
|
VEC_free (tree, heap, vec_oprnds1);
|
| 5255 |
|
|
VEC_free (tree, heap, vec_oprnds2);
|
| 5256 |
|
|
VEC_free (tree, heap, vec_oprnds3);
|
| 5257 |
|
|
|
| 5258 |
|
|
return true;
|
| 5259 |
|
|
}
|
| 5260 |
|
|
|
| 5261 |
|
|
|
| 5262 |
|
|
/* Make sure the statement is vectorizable. */
|
| 5263 |
|
|
|
| 5264 |
|
|
bool
|
| 5265 |
|
|
vect_analyze_stmt (gimple stmt, bool *need_to_vectorize, slp_tree node)
|
| 5266 |
|
|
{
|
| 5267 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
| 5268 |
|
|
bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
|
| 5269 |
|
|
enum vect_relevant relevance = STMT_VINFO_RELEVANT (stmt_info);
|
| 5270 |
|
|
bool ok;
|
| 5271 |
|
|
tree scalar_type, vectype;
|
| 5272 |
|
|
gimple pattern_stmt;
|
| 5273 |
|
|
gimple_seq pattern_def_seq;
|
| 5274 |
|
|
|
| 5275 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 5276 |
|
|
{
|
| 5277 |
|
|
fprintf (vect_dump, "==> examining statement: ");
|
| 5278 |
|
|
print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
|
| 5279 |
|
|
}
|
| 5280 |
|
|
|
| 5281 |
|
|
if (gimple_has_volatile_ops (stmt))
|
| 5282 |
|
|
{
|
| 5283 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
| 5284 |
|
|
fprintf (vect_dump, "not vectorized: stmt has volatile operands");
|
| 5285 |
|
|
|
| 5286 |
|
|
return false;
|
| 5287 |
|
|
}
|
| 5288 |
|
|
|
| 5289 |
|
|
/* Skip stmts that do not need to be vectorized. In loops this is expected
|
| 5290 |
|
|
to include:
|
| 5291 |
|
|
- the COND_EXPR which is the loop exit condition
|
| 5292 |
|
|
- any LABEL_EXPRs in the loop
|
| 5293 |
|
|
- computations that are used only for array indexing or loop control.
|
| 5294 |
|
|
In basic blocks we only analyze statements that are a part of some SLP
|
| 5295 |
|
|
instance, therefore, all the statements are relevant.
|
| 5296 |
|
|
|
| 5297 |
|
|
Pattern statement needs to be analyzed instead of the original statement
|
| 5298 |
|
|
if the original statement is not relevant. Otherwise, we analyze both
|
| 5299 |
|
|
statements. */
|
| 5300 |
|
|
|
| 5301 |
|
|
pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
|
| 5302 |
|
|
if (!STMT_VINFO_RELEVANT_P (stmt_info)
|
| 5303 |
|
|
&& !STMT_VINFO_LIVE_P (stmt_info))
|
| 5304 |
|
|
{
|
| 5305 |
|
|
if (STMT_VINFO_IN_PATTERN_P (stmt_info)
|
| 5306 |
|
|
&& pattern_stmt
|
| 5307 |
|
|
&& (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
|
| 5308 |
|
|
|| STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
|
| 5309 |
|
|
{
|
| 5310 |
|
|
/* Analyze PATTERN_STMT instead of the original stmt. */
|
| 5311 |
|
|
stmt = pattern_stmt;
|
| 5312 |
|
|
stmt_info = vinfo_for_stmt (pattern_stmt);
|
| 5313 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 5314 |
|
|
{
|
| 5315 |
|
|
fprintf (vect_dump, "==> examining pattern statement: ");
|
| 5316 |
|
|
print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
|
| 5317 |
|
|
}
|
| 5318 |
|
|
}
|
| 5319 |
|
|
else
|
| 5320 |
|
|
{
|
| 5321 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 5322 |
|
|
fprintf (vect_dump, "irrelevant.");
|
| 5323 |
|
|
|
| 5324 |
|
|
return true;
|
| 5325 |
|
|
}
|
| 5326 |
|
|
}
|
| 5327 |
|
|
else if (STMT_VINFO_IN_PATTERN_P (stmt_info)
|
| 5328 |
|
|
&& pattern_stmt
|
| 5329 |
|
|
&& (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
|
| 5330 |
|
|
|| STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
|
| 5331 |
|
|
{
|
| 5332 |
|
|
/* Analyze PATTERN_STMT too. */
|
| 5333 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 5334 |
|
|
{
|
| 5335 |
|
|
fprintf (vect_dump, "==> examining pattern statement: ");
|
| 5336 |
|
|
print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
|
| 5337 |
|
|
}
|
| 5338 |
|
|
|
| 5339 |
|
|
if (!vect_analyze_stmt (pattern_stmt, need_to_vectorize, node))
|
| 5340 |
|
|
return false;
|
| 5341 |
|
|
}
|
| 5342 |
|
|
|
| 5343 |
|
|
if (is_pattern_stmt_p (stmt_info)
|
| 5344 |
|
|
&& (pattern_def_seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_info)))
|
| 5345 |
|
|
{
|
| 5346 |
|
|
gimple_stmt_iterator si;
|
| 5347 |
|
|
|
| 5348 |
|
|
for (si = gsi_start (pattern_def_seq); !gsi_end_p (si); gsi_next (&si))
|
| 5349 |
|
|
{
|
| 5350 |
|
|
gimple pattern_def_stmt = gsi_stmt (si);
|
| 5351 |
|
|
if (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_def_stmt))
|
| 5352 |
|
|
|| STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_def_stmt)))
|
| 5353 |
|
|
{
|
| 5354 |
|
|
/* Analyze def stmt of STMT if it's a pattern stmt. */
|
| 5355 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 5356 |
|
|
{
|
| 5357 |
|
|
fprintf (vect_dump, "==> examining pattern def statement: ");
|
| 5358 |
|
|
print_gimple_stmt (vect_dump, pattern_def_stmt, 0, TDF_SLIM);
|
| 5359 |
|
|
}
|
| 5360 |
|
|
|
| 5361 |
|
|
if (!vect_analyze_stmt (pattern_def_stmt,
|
| 5362 |
|
|
need_to_vectorize, node))
|
| 5363 |
|
|
return false;
|
| 5364 |
|
|
}
|
| 5365 |
|
|
}
|
| 5366 |
|
|
}
|
| 5367 |
|
|
|
| 5368 |
|
|
switch (STMT_VINFO_DEF_TYPE (stmt_info))
|
| 5369 |
|
|
{
|
| 5370 |
|
|
case vect_internal_def:
|
| 5371 |
|
|
break;
|
| 5372 |
|
|
|
| 5373 |
|
|
case vect_reduction_def:
|
| 5374 |
|
|
case vect_nested_cycle:
|
| 5375 |
|
|
gcc_assert (!bb_vinfo && (relevance == vect_used_in_outer
|
| 5376 |
|
|
|| relevance == vect_used_in_outer_by_reduction
|
| 5377 |
|
|
|| relevance == vect_unused_in_scope));
|
| 5378 |
|
|
break;
|
| 5379 |
|
|
|
| 5380 |
|
|
case vect_induction_def:
|
| 5381 |
|
|
case vect_constant_def:
|
| 5382 |
|
|
case vect_external_def:
|
| 5383 |
|
|
case vect_unknown_def_type:
|
| 5384 |
|
|
default:
|
| 5385 |
|
|
gcc_unreachable ();
|
| 5386 |
|
|
}
|
| 5387 |
|
|
|
| 5388 |
|
|
if (bb_vinfo)
|
| 5389 |
|
|
{
|
| 5390 |
|
|
gcc_assert (PURE_SLP_STMT (stmt_info));
|
| 5391 |
|
|
|
| 5392 |
|
|
scalar_type = TREE_TYPE (gimple_get_lhs (stmt));
|
| 5393 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 5394 |
|
|
{
|
| 5395 |
|
|
fprintf (vect_dump, "get vectype for scalar type: ");
|
| 5396 |
|
|
print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
|
| 5397 |
|
|
}
|
| 5398 |
|
|
|
| 5399 |
|
|
vectype = get_vectype_for_scalar_type (scalar_type);
|
| 5400 |
|
|
if (!vectype)
|
| 5401 |
|
|
{
|
| 5402 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 5403 |
|
|
{
|
| 5404 |
|
|
fprintf (vect_dump, "not SLPed: unsupported data-type ");
|
| 5405 |
|
|
print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
|
| 5406 |
|
|
}
|
| 5407 |
|
|
return false;
|
| 5408 |
|
|
}
|
| 5409 |
|
|
|
| 5410 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 5411 |
|
|
{
|
| 5412 |
|
|
fprintf (vect_dump, "vectype: ");
|
| 5413 |
|
|
print_generic_expr (vect_dump, vectype, TDF_SLIM);
|
| 5414 |
|
|
}
|
| 5415 |
|
|
|
| 5416 |
|
|
STMT_VINFO_VECTYPE (stmt_info) = vectype;
|
| 5417 |
|
|
}
|
| 5418 |
|
|
|
| 5419 |
|
|
if (STMT_VINFO_RELEVANT_P (stmt_info))
|
| 5420 |
|
|
{
|
| 5421 |
|
|
gcc_assert (!VECTOR_MODE_P (TYPE_MODE (gimple_expr_type (stmt))));
|
| 5422 |
|
|
gcc_assert (STMT_VINFO_VECTYPE (stmt_info));
|
| 5423 |
|
|
*need_to_vectorize = true;
|
| 5424 |
|
|
}
|
| 5425 |
|
|
|
| 5426 |
|
|
ok = true;
|
| 5427 |
|
|
if (!bb_vinfo
|
| 5428 |
|
|
&& (STMT_VINFO_RELEVANT_P (stmt_info)
|
| 5429 |
|
|
|| STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def))
|
| 5430 |
|
|
ok = (vectorizable_conversion (stmt, NULL, NULL, NULL)
|
| 5431 |
|
|
|| vectorizable_shift (stmt, NULL, NULL, NULL)
|
| 5432 |
|
|
|| vectorizable_operation (stmt, NULL, NULL, NULL)
|
| 5433 |
|
|
|| vectorizable_assignment (stmt, NULL, NULL, NULL)
|
| 5434 |
|
|
|| vectorizable_load (stmt, NULL, NULL, NULL, NULL)
|
| 5435 |
|
|
|| vectorizable_call (stmt, NULL, NULL, NULL)
|
| 5436 |
|
|
|| vectorizable_store (stmt, NULL, NULL, NULL)
|
| 5437 |
|
|
|| vectorizable_reduction (stmt, NULL, NULL, NULL)
|
| 5438 |
|
|
|| vectorizable_condition (stmt, NULL, NULL, NULL, 0, NULL));
|
| 5439 |
|
|
else
|
| 5440 |
|
|
{
|
| 5441 |
|
|
if (bb_vinfo)
|
| 5442 |
|
|
ok = (vectorizable_conversion (stmt, NULL, NULL, node)
|
| 5443 |
|
|
|| vectorizable_shift (stmt, NULL, NULL, node)
|
| 5444 |
|
|
|| vectorizable_operation (stmt, NULL, NULL, node)
|
| 5445 |
|
|
|| vectorizable_assignment (stmt, NULL, NULL, node)
|
| 5446 |
|
|
|| vectorizable_load (stmt, NULL, NULL, node, NULL)
|
| 5447 |
|
|
|| vectorizable_call (stmt, NULL, NULL, node)
|
| 5448 |
|
|
|| vectorizable_store (stmt, NULL, NULL, node)
|
| 5449 |
|
|
|| vectorizable_condition (stmt, NULL, NULL, NULL, 0, node));
|
| 5450 |
|
|
}
|
| 5451 |
|
|
|
| 5452 |
|
|
if (!ok)
|
| 5453 |
|
|
{
|
| 5454 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
| 5455 |
|
|
{
|
| 5456 |
|
|
fprintf (vect_dump, "not vectorized: relevant stmt not ");
|
| 5457 |
|
|
fprintf (vect_dump, "supported: ");
|
| 5458 |
|
|
print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
|
| 5459 |
|
|
}
|
| 5460 |
|
|
|
| 5461 |
|
|
return false;
|
| 5462 |
|
|
}
|
| 5463 |
|
|
|
| 5464 |
|
|
if (bb_vinfo)
|
| 5465 |
|
|
return true;
|
| 5466 |
|
|
|
| 5467 |
|
|
/* Stmts that are (also) "live" (i.e. - that are used out of the loop)
|
| 5468 |
|
|
need extra handling, except for vectorizable reductions. */
|
| 5469 |
|
|
if (STMT_VINFO_LIVE_P (stmt_info)
|
| 5470 |
|
|
&& STMT_VINFO_TYPE (stmt_info) != reduc_vec_info_type)
|
| 5471 |
|
|
ok = vectorizable_live_operation (stmt, NULL, NULL);
|
| 5472 |
|
|
|
| 5473 |
|
|
if (!ok)
|
| 5474 |
|
|
{
|
| 5475 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
| 5476 |
|
|
{
|
| 5477 |
|
|
fprintf (vect_dump, "not vectorized: live stmt not ");
|
| 5478 |
|
|
fprintf (vect_dump, "supported: ");
|
| 5479 |
|
|
print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
|
| 5480 |
|
|
}
|
| 5481 |
|
|
|
| 5482 |
|
|
return false;
|
| 5483 |
|
|
}
|
| 5484 |
|
|
|
| 5485 |
|
|
return true;
|
| 5486 |
|
|
}
|
| 5487 |
|
|
|
| 5488 |
|
|
|
| 5489 |
|
|
/* Function vect_transform_stmt.
|
| 5490 |
|
|
|
| 5491 |
|
|
Create a vectorized stmt to replace STMT, and insert it at BSI. */
|
| 5492 |
|
|
|
| 5493 |
|
|
bool
|
| 5494 |
|
|
vect_transform_stmt (gimple stmt, gimple_stmt_iterator *gsi,
|
| 5495 |
|
|
bool *strided_store, slp_tree slp_node,
|
| 5496 |
|
|
slp_instance slp_node_instance)
|
| 5497 |
|
|
{
|
| 5498 |
|
|
bool is_store = false;
|
| 5499 |
|
|
gimple vec_stmt = NULL;
|
| 5500 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
| 5501 |
|
|
bool done;
|
| 5502 |
|
|
|
| 5503 |
|
|
switch (STMT_VINFO_TYPE (stmt_info))
|
| 5504 |
|
|
{
|
| 5505 |
|
|
case type_demotion_vec_info_type:
|
| 5506 |
|
|
case type_promotion_vec_info_type:
|
| 5507 |
|
|
case type_conversion_vec_info_type:
|
| 5508 |
|
|
done = vectorizable_conversion (stmt, gsi, &vec_stmt, slp_node);
|
| 5509 |
|
|
gcc_assert (done);
|
| 5510 |
|
|
break;
|
| 5511 |
|
|
|
| 5512 |
|
|
case induc_vec_info_type:
|
| 5513 |
|
|
gcc_assert (!slp_node);
|
| 5514 |
|
|
done = vectorizable_induction (stmt, gsi, &vec_stmt);
|
| 5515 |
|
|
gcc_assert (done);
|
| 5516 |
|
|
break;
|
| 5517 |
|
|
|
| 5518 |
|
|
case shift_vec_info_type:
|
| 5519 |
|
|
done = vectorizable_shift (stmt, gsi, &vec_stmt, slp_node);
|
| 5520 |
|
|
gcc_assert (done);
|
| 5521 |
|
|
break;
|
| 5522 |
|
|
|
| 5523 |
|
|
case op_vec_info_type:
|
| 5524 |
|
|
done = vectorizable_operation (stmt, gsi, &vec_stmt, slp_node);
|
| 5525 |
|
|
gcc_assert (done);
|
| 5526 |
|
|
break;
|
| 5527 |
|
|
|
| 5528 |
|
|
case assignment_vec_info_type:
|
| 5529 |
|
|
done = vectorizable_assignment (stmt, gsi, &vec_stmt, slp_node);
|
| 5530 |
|
|
gcc_assert (done);
|
| 5531 |
|
|
break;
|
| 5532 |
|
|
|
| 5533 |
|
|
case load_vec_info_type:
|
| 5534 |
|
|
done = vectorizable_load (stmt, gsi, &vec_stmt, slp_node,
|
| 5535 |
|
|
slp_node_instance);
|
| 5536 |
|
|
gcc_assert (done);
|
| 5537 |
|
|
break;
|
| 5538 |
|
|
|
| 5539 |
|
|
case store_vec_info_type:
|
| 5540 |
|
|
done = vectorizable_store (stmt, gsi, &vec_stmt, slp_node);
|
| 5541 |
|
|
gcc_assert (done);
|
| 5542 |
|
|
if (STMT_VINFO_STRIDED_ACCESS (stmt_info) && !slp_node)
|
| 5543 |
|
|
{
|
| 5544 |
|
|
/* In case of interleaving, the whole chain is vectorized when the
|
| 5545 |
|
|
last store in the chain is reached. Store stmts before the last
|
| 5546 |
|
|
one are skipped, and there vec_stmt_info shouldn't be freed
|
| 5547 |
|
|
meanwhile. */
|
| 5548 |
|
|
*strided_store = true;
|
| 5549 |
|
|
if (STMT_VINFO_VEC_STMT (stmt_info))
|
| 5550 |
|
|
is_store = true;
|
| 5551 |
|
|
}
|
| 5552 |
|
|
else
|
| 5553 |
|
|
is_store = true;
|
| 5554 |
|
|
break;
|
| 5555 |
|
|
|
| 5556 |
|
|
case condition_vec_info_type:
|
| 5557 |
|
|
done = vectorizable_condition (stmt, gsi, &vec_stmt, NULL, 0, slp_node);
|
| 5558 |
|
|
gcc_assert (done);
|
| 5559 |
|
|
break;
|
| 5560 |
|
|
|
| 5561 |
|
|
case call_vec_info_type:
|
| 5562 |
|
|
done = vectorizable_call (stmt, gsi, &vec_stmt, slp_node);
|
| 5563 |
|
|
stmt = gsi_stmt (*gsi);
|
| 5564 |
|
|
break;
|
| 5565 |
|
|
|
| 5566 |
|
|
case reduc_vec_info_type:
|
| 5567 |
|
|
done = vectorizable_reduction (stmt, gsi, &vec_stmt, slp_node);
|
| 5568 |
|
|
gcc_assert (done);
|
| 5569 |
|
|
break;
|
| 5570 |
|
|
|
| 5571 |
|
|
default:
|
| 5572 |
|
|
if (!STMT_VINFO_LIVE_P (stmt_info))
|
| 5573 |
|
|
{
|
| 5574 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 5575 |
|
|
fprintf (vect_dump, "stmt not supported.");
|
| 5576 |
|
|
gcc_unreachable ();
|
| 5577 |
|
|
}
|
| 5578 |
|
|
}
|
| 5579 |
|
|
|
| 5580 |
|
|
/* Handle inner-loop stmts whose DEF is used in the loop-nest that
|
| 5581 |
|
|
is being vectorized, but outside the immediately enclosing loop. */
|
| 5582 |
|
|
if (vec_stmt
|
| 5583 |
|
|
&& STMT_VINFO_LOOP_VINFO (stmt_info)
|
| 5584 |
|
|
&& nested_in_vect_loop_p (LOOP_VINFO_LOOP (
|
| 5585 |
|
|
STMT_VINFO_LOOP_VINFO (stmt_info)), stmt)
|
| 5586 |
|
|
&& STMT_VINFO_TYPE (stmt_info) != reduc_vec_info_type
|
| 5587 |
|
|
&& (STMT_VINFO_RELEVANT (stmt_info) == vect_used_in_outer
|
| 5588 |
|
|
|| STMT_VINFO_RELEVANT (stmt_info) ==
|
| 5589 |
|
|
vect_used_in_outer_by_reduction))
|
| 5590 |
|
|
{
|
| 5591 |
|
|
struct loop *innerloop = LOOP_VINFO_LOOP (
|
| 5592 |
|
|
STMT_VINFO_LOOP_VINFO (stmt_info))->inner;
|
| 5593 |
|
|
imm_use_iterator imm_iter;
|
| 5594 |
|
|
use_operand_p use_p;
|
| 5595 |
|
|
tree scalar_dest;
|
| 5596 |
|
|
gimple exit_phi;
|
| 5597 |
|
|
|
| 5598 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 5599 |
|
|
fprintf (vect_dump, "Record the vdef for outer-loop vectorization.");
|
| 5600 |
|
|
|
| 5601 |
|
|
/* Find the relevant loop-exit phi-node, and reord the vec_stmt there
|
| 5602 |
|
|
(to be used when vectorizing outer-loop stmts that use the DEF of
|
| 5603 |
|
|
STMT). */
|
| 5604 |
|
|
if (gimple_code (stmt) == GIMPLE_PHI)
|
| 5605 |
|
|
scalar_dest = PHI_RESULT (stmt);
|
| 5606 |
|
|
else
|
| 5607 |
|
|
scalar_dest = gimple_assign_lhs (stmt);
|
| 5608 |
|
|
|
| 5609 |
|
|
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
|
| 5610 |
|
|
{
|
| 5611 |
|
|
if (!flow_bb_inside_loop_p (innerloop, gimple_bb (USE_STMT (use_p))))
|
| 5612 |
|
|
{
|
| 5613 |
|
|
exit_phi = USE_STMT (use_p);
|
| 5614 |
|
|
STMT_VINFO_VEC_STMT (vinfo_for_stmt (exit_phi)) = vec_stmt;
|
| 5615 |
|
|
}
|
| 5616 |
|
|
}
|
| 5617 |
|
|
}
|
| 5618 |
|
|
|
| 5619 |
|
|
/* Handle stmts whose DEF is used outside the loop-nest that is
|
| 5620 |
|
|
being vectorized. */
|
| 5621 |
|
|
if (STMT_VINFO_LIVE_P (stmt_info)
|
| 5622 |
|
|
&& STMT_VINFO_TYPE (stmt_info) != reduc_vec_info_type)
|
| 5623 |
|
|
{
|
| 5624 |
|
|
done = vectorizable_live_operation (stmt, gsi, &vec_stmt);
|
| 5625 |
|
|
gcc_assert (done);
|
| 5626 |
|
|
}
|
| 5627 |
|
|
|
| 5628 |
|
|
if (vec_stmt)
|
| 5629 |
|
|
STMT_VINFO_VEC_STMT (stmt_info) = vec_stmt;
|
| 5630 |
|
|
|
| 5631 |
|
|
return is_store;
|
| 5632 |
|
|
}
|
| 5633 |
|
|
|
| 5634 |
|
|
|
| 5635 |
|
|
/* Remove a group of stores (for SLP or interleaving), free their
|
| 5636 |
|
|
stmt_vec_info. */
|
| 5637 |
|
|
|
| 5638 |
|
|
void
|
| 5639 |
|
|
vect_remove_stores (gimple first_stmt)
|
| 5640 |
|
|
{
|
| 5641 |
|
|
gimple next = first_stmt;
|
| 5642 |
|
|
gimple tmp;
|
| 5643 |
|
|
gimple_stmt_iterator next_si;
|
| 5644 |
|
|
|
| 5645 |
|
|
while (next)
|
| 5646 |
|
|
{
|
| 5647 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (next);
|
| 5648 |
|
|
|
| 5649 |
|
|
tmp = GROUP_NEXT_ELEMENT (stmt_info);
|
| 5650 |
|
|
if (is_pattern_stmt_p (stmt_info))
|
| 5651 |
|
|
next = STMT_VINFO_RELATED_STMT (stmt_info);
|
| 5652 |
|
|
/* Free the attached stmt_vec_info and remove the stmt. */
|
| 5653 |
|
|
next_si = gsi_for_stmt (next);
|
| 5654 |
|
|
gsi_remove (&next_si, true);
|
| 5655 |
|
|
free_stmt_vec_info (next);
|
| 5656 |
|
|
next = tmp;
|
| 5657 |
|
|
}
|
| 5658 |
|
|
}
|
| 5659 |
|
|
|
| 5660 |
|
|
|
| 5661 |
|
|
/* Function new_stmt_vec_info.
|
| 5662 |
|
|
|
| 5663 |
|
|
Create and initialize a new stmt_vec_info struct for STMT. */
|
| 5664 |
|
|
|
| 5665 |
|
|
stmt_vec_info
|
| 5666 |
|
|
new_stmt_vec_info (gimple stmt, loop_vec_info loop_vinfo,
|
| 5667 |
|
|
bb_vec_info bb_vinfo)
|
| 5668 |
|
|
{
|
| 5669 |
|
|
stmt_vec_info res;
|
| 5670 |
|
|
res = (stmt_vec_info) xcalloc (1, sizeof (struct _stmt_vec_info));
|
| 5671 |
|
|
|
| 5672 |
|
|
STMT_VINFO_TYPE (res) = undef_vec_info_type;
|
| 5673 |
|
|
STMT_VINFO_STMT (res) = stmt;
|
| 5674 |
|
|
STMT_VINFO_LOOP_VINFO (res) = loop_vinfo;
|
| 5675 |
|
|
STMT_VINFO_BB_VINFO (res) = bb_vinfo;
|
| 5676 |
|
|
STMT_VINFO_RELEVANT (res) = vect_unused_in_scope;
|
| 5677 |
|
|
STMT_VINFO_LIVE_P (res) = false;
|
| 5678 |
|
|
STMT_VINFO_VECTYPE (res) = NULL;
|
| 5679 |
|
|
STMT_VINFO_VEC_STMT (res) = NULL;
|
| 5680 |
|
|
STMT_VINFO_VECTORIZABLE (res) = true;
|
| 5681 |
|
|
STMT_VINFO_IN_PATTERN_P (res) = false;
|
| 5682 |
|
|
STMT_VINFO_RELATED_STMT (res) = NULL;
|
| 5683 |
|
|
STMT_VINFO_PATTERN_DEF_SEQ (res) = NULL;
|
| 5684 |
|
|
STMT_VINFO_DATA_REF (res) = NULL;
|
| 5685 |
|
|
|
| 5686 |
|
|
STMT_VINFO_DR_BASE_ADDRESS (res) = NULL;
|
| 5687 |
|
|
STMT_VINFO_DR_OFFSET (res) = NULL;
|
| 5688 |
|
|
STMT_VINFO_DR_INIT (res) = NULL;
|
| 5689 |
|
|
STMT_VINFO_DR_STEP (res) = NULL;
|
| 5690 |
|
|
STMT_VINFO_DR_ALIGNED_TO (res) = NULL;
|
| 5691 |
|
|
|
| 5692 |
|
|
if (gimple_code (stmt) == GIMPLE_PHI
|
| 5693 |
|
|
&& is_loop_header_bb_p (gimple_bb (stmt)))
|
| 5694 |
|
|
STMT_VINFO_DEF_TYPE (res) = vect_unknown_def_type;
|
| 5695 |
|
|
else
|
| 5696 |
|
|
STMT_VINFO_DEF_TYPE (res) = vect_internal_def;
|
| 5697 |
|
|
|
| 5698 |
|
|
STMT_VINFO_SAME_ALIGN_REFS (res) = VEC_alloc (dr_p, heap, 5);
|
| 5699 |
|
|
STMT_VINFO_INSIDE_OF_LOOP_COST (res) = 0;
|
| 5700 |
|
|
STMT_VINFO_OUTSIDE_OF_LOOP_COST (res) = 0;
|
| 5701 |
|
|
STMT_SLP_TYPE (res) = loop_vect;
|
| 5702 |
|
|
GROUP_FIRST_ELEMENT (res) = NULL;
|
| 5703 |
|
|
GROUP_NEXT_ELEMENT (res) = NULL;
|
| 5704 |
|
|
GROUP_SIZE (res) = 0;
|
| 5705 |
|
|
GROUP_STORE_COUNT (res) = 0;
|
| 5706 |
|
|
GROUP_GAP (res) = 0;
|
| 5707 |
|
|
GROUP_SAME_DR_STMT (res) = NULL;
|
| 5708 |
|
|
GROUP_READ_WRITE_DEPENDENCE (res) = false;
|
| 5709 |
|
|
|
| 5710 |
|
|
return res;
|
| 5711 |
|
|
}
|
| 5712 |
|
|
|
| 5713 |
|
|
|
| 5714 |
|
|
/* Create a hash table for stmt_vec_info. */
|
| 5715 |
|
|
|
| 5716 |
|
|
void
|
| 5717 |
|
|
init_stmt_vec_info_vec (void)
|
| 5718 |
|
|
{
|
| 5719 |
|
|
gcc_assert (!stmt_vec_info_vec);
|
| 5720 |
|
|
stmt_vec_info_vec = VEC_alloc (vec_void_p, heap, 50);
|
| 5721 |
|
|
}
|
| 5722 |
|
|
|
| 5723 |
|
|
|
| 5724 |
|
|
/* Free hash table for stmt_vec_info. */
|
| 5725 |
|
|
|
| 5726 |
|
|
void
|
| 5727 |
|
|
free_stmt_vec_info_vec (void)
|
| 5728 |
|
|
{
|
| 5729 |
|
|
gcc_assert (stmt_vec_info_vec);
|
| 5730 |
|
|
VEC_free (vec_void_p, heap, stmt_vec_info_vec);
|
| 5731 |
|
|
}
|
| 5732 |
|
|
|
| 5733 |
|
|
|
| 5734 |
|
|
/* Free stmt vectorization related info. */
|
| 5735 |
|
|
|
| 5736 |
|
|
void
|
| 5737 |
|
|
free_stmt_vec_info (gimple stmt)
|
| 5738 |
|
|
{
|
| 5739 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
| 5740 |
|
|
|
| 5741 |
|
|
if (!stmt_info)
|
| 5742 |
|
|
return;
|
| 5743 |
|
|
|
| 5744 |
|
|
/* Check if this statement has a related "pattern stmt"
|
| 5745 |
|
|
(introduced by the vectorizer during the pattern recognition
|
| 5746 |
|
|
pass). Free pattern's stmt_vec_info and def stmt's stmt_vec_info
|
| 5747 |
|
|
too. */
|
| 5748 |
|
|
if (STMT_VINFO_IN_PATTERN_P (stmt_info))
|
| 5749 |
|
|
{
|
| 5750 |
|
|
stmt_vec_info patt_info
|
| 5751 |
|
|
= vinfo_for_stmt (STMT_VINFO_RELATED_STMT (stmt_info));
|
| 5752 |
|
|
if (patt_info)
|
| 5753 |
|
|
{
|
| 5754 |
|
|
gimple_seq seq = STMT_VINFO_PATTERN_DEF_SEQ (patt_info);
|
| 5755 |
|
|
if (seq)
|
| 5756 |
|
|
{
|
| 5757 |
|
|
gimple_stmt_iterator si;
|
| 5758 |
|
|
for (si = gsi_start (seq); !gsi_end_p (si); gsi_next (&si))
|
| 5759 |
|
|
free_stmt_vec_info (gsi_stmt (si));
|
| 5760 |
|
|
}
|
| 5761 |
|
|
free_stmt_vec_info (STMT_VINFO_RELATED_STMT (stmt_info));
|
| 5762 |
|
|
}
|
| 5763 |
|
|
}
|
| 5764 |
|
|
|
| 5765 |
|
|
VEC_free (dr_p, heap, STMT_VINFO_SAME_ALIGN_REFS (stmt_info));
|
| 5766 |
|
|
set_vinfo_for_stmt (stmt, NULL);
|
| 5767 |
|
|
free (stmt_info);
|
| 5768 |
|
|
}
|
| 5769 |
|
|
|
| 5770 |
|
|
|
| 5771 |
|
|
/* Function get_vectype_for_scalar_type_and_size.
|
| 5772 |
|
|
|
| 5773 |
|
|
Returns the vector type corresponding to SCALAR_TYPE and SIZE as supported
|
| 5774 |
|
|
by the target. */
|
| 5775 |
|
|
|
| 5776 |
|
|
static tree
|
| 5777 |
|
|
get_vectype_for_scalar_type_and_size (tree scalar_type, unsigned size)
|
| 5778 |
|
|
{
|
| 5779 |
|
|
enum machine_mode inner_mode = TYPE_MODE (scalar_type);
|
| 5780 |
|
|
enum machine_mode simd_mode;
|
| 5781 |
|
|
unsigned int nbytes = GET_MODE_SIZE (inner_mode);
|
| 5782 |
|
|
int nunits;
|
| 5783 |
|
|
tree vectype;
|
| 5784 |
|
|
|
| 5785 |
|
|
if (nbytes == 0)
|
| 5786 |
|
|
return NULL_TREE;
|
| 5787 |
|
|
|
| 5788 |
|
|
if (GET_MODE_CLASS (inner_mode) != MODE_INT
|
| 5789 |
|
|
&& GET_MODE_CLASS (inner_mode) != MODE_FLOAT)
|
| 5790 |
|
|
return NULL_TREE;
|
| 5791 |
|
|
|
| 5792 |
|
|
/* We can't build a vector type of elements with alignment bigger than
|
| 5793 |
|
|
their size. */
|
| 5794 |
|
|
if (nbytes < TYPE_ALIGN_UNIT (scalar_type))
|
| 5795 |
|
|
return NULL_TREE;
|
| 5796 |
|
|
|
| 5797 |
|
|
/* For vector types of elements whose mode precision doesn't
|
| 5798 |
|
|
match their types precision we use a element type of mode
|
| 5799 |
|
|
precision. The vectorization routines will have to make sure
|
| 5800 |
|
|
they support the proper result truncation/extension.
|
| 5801 |
|
|
We also make sure to build vector types with INTEGER_TYPE
|
| 5802 |
|
|
component type only. */
|
| 5803 |
|
|
if (INTEGRAL_TYPE_P (scalar_type)
|
| 5804 |
|
|
&& (GET_MODE_BITSIZE (inner_mode) != TYPE_PRECISION (scalar_type)
|
| 5805 |
|
|
|| TREE_CODE (scalar_type) != INTEGER_TYPE))
|
| 5806 |
|
|
scalar_type = build_nonstandard_integer_type (GET_MODE_BITSIZE (inner_mode),
|
| 5807 |
|
|
TYPE_UNSIGNED (scalar_type));
|
| 5808 |
|
|
|
| 5809 |
|
|
/* We shouldn't end up building VECTOR_TYPEs of non-scalar components.
|
| 5810 |
|
|
When the component mode passes the above test simply use a type
|
| 5811 |
|
|
corresponding to that mode. The theory is that any use that
|
| 5812 |
|
|
would cause problems with this will disable vectorization anyway. */
|
| 5813 |
|
|
if (!SCALAR_FLOAT_TYPE_P (scalar_type)
|
| 5814 |
|
|
&& !INTEGRAL_TYPE_P (scalar_type)
|
| 5815 |
|
|
&& !POINTER_TYPE_P (scalar_type))
|
| 5816 |
|
|
scalar_type = lang_hooks.types.type_for_mode (inner_mode, 1);
|
| 5817 |
|
|
|
| 5818 |
|
|
/* If no size was supplied use the mode the target prefers. Otherwise
|
| 5819 |
|
|
lookup a vector mode of the specified size. */
|
| 5820 |
|
|
if (size == 0)
|
| 5821 |
|
|
simd_mode = targetm.vectorize.preferred_simd_mode (inner_mode);
|
| 5822 |
|
|
else
|
| 5823 |
|
|
simd_mode = mode_for_vector (inner_mode, size / nbytes);
|
| 5824 |
|
|
nunits = GET_MODE_SIZE (simd_mode) / nbytes;
|
| 5825 |
|
|
if (nunits <= 1)
|
| 5826 |
|
|
return NULL_TREE;
|
| 5827 |
|
|
|
| 5828 |
|
|
vectype = build_vector_type (scalar_type, nunits);
|
| 5829 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 5830 |
|
|
{
|
| 5831 |
|
|
fprintf (vect_dump, "get vectype with %d units of type ", nunits);
|
| 5832 |
|
|
print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
|
| 5833 |
|
|
}
|
| 5834 |
|
|
|
| 5835 |
|
|
if (!vectype)
|
| 5836 |
|
|
return NULL_TREE;
|
| 5837 |
|
|
|
| 5838 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 5839 |
|
|
{
|
| 5840 |
|
|
fprintf (vect_dump, "vectype: ");
|
| 5841 |
|
|
print_generic_expr (vect_dump, vectype, TDF_SLIM);
|
| 5842 |
|
|
}
|
| 5843 |
|
|
|
| 5844 |
|
|
if (!VECTOR_MODE_P (TYPE_MODE (vectype))
|
| 5845 |
|
|
&& !INTEGRAL_MODE_P (TYPE_MODE (vectype)))
|
| 5846 |
|
|
{
|
| 5847 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 5848 |
|
|
fprintf (vect_dump, "mode not supported by target.");
|
| 5849 |
|
|
return NULL_TREE;
|
| 5850 |
|
|
}
|
| 5851 |
|
|
|
| 5852 |
|
|
return vectype;
|
| 5853 |
|
|
}
|
| 5854 |
|
|
|
| 5855 |
|
|
unsigned int current_vector_size;
|
| 5856 |
|
|
|
| 5857 |
|
|
/* Function get_vectype_for_scalar_type.
|
| 5858 |
|
|
|
| 5859 |
|
|
Returns the vector type corresponding to SCALAR_TYPE as supported
|
| 5860 |
|
|
by the target. */
|
| 5861 |
|
|
|
| 5862 |
|
|
tree
|
| 5863 |
|
|
get_vectype_for_scalar_type (tree scalar_type)
|
| 5864 |
|
|
{
|
| 5865 |
|
|
tree vectype;
|
| 5866 |
|
|
vectype = get_vectype_for_scalar_type_and_size (scalar_type,
|
| 5867 |
|
|
current_vector_size);
|
| 5868 |
|
|
if (vectype
|
| 5869 |
|
|
&& current_vector_size == 0)
|
| 5870 |
|
|
current_vector_size = GET_MODE_SIZE (TYPE_MODE (vectype));
|
| 5871 |
|
|
return vectype;
|
| 5872 |
|
|
}
|
| 5873 |
|
|
|
| 5874 |
|
|
/* Function get_same_sized_vectype
|
| 5875 |
|
|
|
| 5876 |
|
|
Returns a vector type corresponding to SCALAR_TYPE of size
|
| 5877 |
|
|
VECTOR_TYPE if supported by the target. */
|
| 5878 |
|
|
|
| 5879 |
|
|
tree
|
| 5880 |
|
|
get_same_sized_vectype (tree scalar_type, tree vector_type)
|
| 5881 |
|
|
{
|
| 5882 |
|
|
return get_vectype_for_scalar_type_and_size
|
| 5883 |
|
|
(scalar_type, GET_MODE_SIZE (TYPE_MODE (vector_type)));
|
| 5884 |
|
|
}
|
| 5885 |
|
|
|
| 5886 |
|
|
/* Function vect_is_simple_use.
|
| 5887 |
|
|
|
| 5888 |
|
|
Input:
|
| 5889 |
|
|
LOOP_VINFO - the vect info of the loop that is being vectorized.
|
| 5890 |
|
|
BB_VINFO - the vect info of the basic block that is being vectorized.
|
| 5891 |
|
|
OPERAND - operand of STMT in the loop or bb.
|
| 5892 |
|
|
DEF - the defining stmt in case OPERAND is an SSA_NAME.
|
| 5893 |
|
|
|
| 5894 |
|
|
Returns whether a stmt with OPERAND can be vectorized.
|
| 5895 |
|
|
For loops, supportable operands are constants, loop invariants, and operands
|
| 5896 |
|
|
that are defined by the current iteration of the loop. Unsupportable
|
| 5897 |
|
|
operands are those that are defined by a previous iteration of the loop (as
|
| 5898 |
|
|
is the case in reduction/induction computations).
|
| 5899 |
|
|
For basic blocks, supportable operands are constants and bb invariants.
|
| 5900 |
|
|
For now, operands defined outside the basic block are not supported. */
|
| 5901 |
|
|
|
| 5902 |
|
|
bool
|
| 5903 |
|
|
vect_is_simple_use (tree operand, gimple stmt, loop_vec_info loop_vinfo,
|
| 5904 |
|
|
bb_vec_info bb_vinfo, gimple *def_stmt,
|
| 5905 |
|
|
tree *def, enum vect_def_type *dt)
|
| 5906 |
|
|
{
|
| 5907 |
|
|
basic_block bb;
|
| 5908 |
|
|
stmt_vec_info stmt_vinfo;
|
| 5909 |
|
|
struct loop *loop = NULL;
|
| 5910 |
|
|
|
| 5911 |
|
|
if (loop_vinfo)
|
| 5912 |
|
|
loop = LOOP_VINFO_LOOP (loop_vinfo);
|
| 5913 |
|
|
|
| 5914 |
|
|
*def_stmt = NULL;
|
| 5915 |
|
|
*def = NULL_TREE;
|
| 5916 |
|
|
|
| 5917 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 5918 |
|
|
{
|
| 5919 |
|
|
fprintf (vect_dump, "vect_is_simple_use: operand ");
|
| 5920 |
|
|
print_generic_expr (vect_dump, operand, TDF_SLIM);
|
| 5921 |
|
|
}
|
| 5922 |
|
|
|
| 5923 |
|
|
if (TREE_CODE (operand) == INTEGER_CST || TREE_CODE (operand) == REAL_CST)
|
| 5924 |
|
|
{
|
| 5925 |
|
|
*dt = vect_constant_def;
|
| 5926 |
|
|
return true;
|
| 5927 |
|
|
}
|
| 5928 |
|
|
|
| 5929 |
|
|
if (is_gimple_min_invariant (operand))
|
| 5930 |
|
|
{
|
| 5931 |
|
|
*def = operand;
|
| 5932 |
|
|
*dt = vect_external_def;
|
| 5933 |
|
|
return true;
|
| 5934 |
|
|
}
|
| 5935 |
|
|
|
| 5936 |
|
|
if (TREE_CODE (operand) == PAREN_EXPR)
|
| 5937 |
|
|
{
|
| 5938 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 5939 |
|
|
fprintf (vect_dump, "non-associatable copy.");
|
| 5940 |
|
|
operand = TREE_OPERAND (operand, 0);
|
| 5941 |
|
|
}
|
| 5942 |
|
|
|
| 5943 |
|
|
if (TREE_CODE (operand) != SSA_NAME)
|
| 5944 |
|
|
{
|
| 5945 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 5946 |
|
|
fprintf (vect_dump, "not ssa-name.");
|
| 5947 |
|
|
return false;
|
| 5948 |
|
|
}
|
| 5949 |
|
|
|
| 5950 |
|
|
*def_stmt = SSA_NAME_DEF_STMT (operand);
|
| 5951 |
|
|
if (*def_stmt == NULL)
|
| 5952 |
|
|
{
|
| 5953 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 5954 |
|
|
fprintf (vect_dump, "no def_stmt.");
|
| 5955 |
|
|
return false;
|
| 5956 |
|
|
}
|
| 5957 |
|
|
|
| 5958 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 5959 |
|
|
{
|
| 5960 |
|
|
fprintf (vect_dump, "def_stmt: ");
|
| 5961 |
|
|
print_gimple_stmt (vect_dump, *def_stmt, 0, TDF_SLIM);
|
| 5962 |
|
|
}
|
| 5963 |
|
|
|
| 5964 |
|
|
/* Empty stmt is expected only in case of a function argument.
|
| 5965 |
|
|
(Otherwise - we expect a phi_node or a GIMPLE_ASSIGN). */
|
| 5966 |
|
|
if (gimple_nop_p (*def_stmt))
|
| 5967 |
|
|
{
|
| 5968 |
|
|
*def = operand;
|
| 5969 |
|
|
*dt = vect_external_def;
|
| 5970 |
|
|
return true;
|
| 5971 |
|
|
}
|
| 5972 |
|
|
|
| 5973 |
|
|
bb = gimple_bb (*def_stmt);
|
| 5974 |
|
|
|
| 5975 |
|
|
if ((loop && !flow_bb_inside_loop_p (loop, bb))
|
| 5976 |
|
|
|| (!loop && bb != BB_VINFO_BB (bb_vinfo))
|
| 5977 |
|
|
|| (!loop && gimple_code (*def_stmt) == GIMPLE_PHI))
|
| 5978 |
|
|
*dt = vect_external_def;
|
| 5979 |
|
|
else
|
| 5980 |
|
|
{
|
| 5981 |
|
|
stmt_vinfo = vinfo_for_stmt (*def_stmt);
|
| 5982 |
|
|
*dt = STMT_VINFO_DEF_TYPE (stmt_vinfo);
|
| 5983 |
|
|
}
|
| 5984 |
|
|
|
| 5985 |
|
|
if (*dt == vect_unknown_def_type
|
| 5986 |
|
|
|| (stmt
|
| 5987 |
|
|
&& *dt == vect_double_reduction_def
|
| 5988 |
|
|
&& gimple_code (stmt) != GIMPLE_PHI))
|
| 5989 |
|
|
{
|
| 5990 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 5991 |
|
|
fprintf (vect_dump, "Unsupported pattern.");
|
| 5992 |
|
|
return false;
|
| 5993 |
|
|
}
|
| 5994 |
|
|
|
| 5995 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 5996 |
|
|
fprintf (vect_dump, "type of def: %d.",*dt);
|
| 5997 |
|
|
|
| 5998 |
|
|
switch (gimple_code (*def_stmt))
|
| 5999 |
|
|
{
|
| 6000 |
|
|
case GIMPLE_PHI:
|
| 6001 |
|
|
*def = gimple_phi_result (*def_stmt);
|
| 6002 |
|
|
break;
|
| 6003 |
|
|
|
| 6004 |
|
|
case GIMPLE_ASSIGN:
|
| 6005 |
|
|
*def = gimple_assign_lhs (*def_stmt);
|
| 6006 |
|
|
break;
|
| 6007 |
|
|
|
| 6008 |
|
|
case GIMPLE_CALL:
|
| 6009 |
|
|
*def = gimple_call_lhs (*def_stmt);
|
| 6010 |
|
|
if (*def != NULL)
|
| 6011 |
|
|
break;
|
| 6012 |
|
|
/* FALLTHRU */
|
| 6013 |
|
|
default:
|
| 6014 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 6015 |
|
|
fprintf (vect_dump, "unsupported defining stmt: ");
|
| 6016 |
|
|
return false;
|
| 6017 |
|
|
}
|
| 6018 |
|
|
|
| 6019 |
|
|
return true;
|
| 6020 |
|
|
}
|
| 6021 |
|
|
|
| 6022 |
|
|
/* Function vect_is_simple_use_1.
|
| 6023 |
|
|
|
| 6024 |
|
|
Same as vect_is_simple_use_1 but also determines the vector operand
|
| 6025 |
|
|
type of OPERAND and stores it to *VECTYPE. If the definition of
|
| 6026 |
|
|
OPERAND is vect_uninitialized_def, vect_constant_def or
|
| 6027 |
|
|
vect_external_def *VECTYPE will be set to NULL_TREE and the caller
|
| 6028 |
|
|
is responsible to compute the best suited vector type for the
|
| 6029 |
|
|
scalar operand. */
|
| 6030 |
|
|
|
| 6031 |
|
|
bool
|
| 6032 |
|
|
vect_is_simple_use_1 (tree operand, gimple stmt, loop_vec_info loop_vinfo,
|
| 6033 |
|
|
bb_vec_info bb_vinfo, gimple *def_stmt,
|
| 6034 |
|
|
tree *def, enum vect_def_type *dt, tree *vectype)
|
| 6035 |
|
|
{
|
| 6036 |
|
|
if (!vect_is_simple_use (operand, stmt, loop_vinfo, bb_vinfo, def_stmt,
|
| 6037 |
|
|
def, dt))
|
| 6038 |
|
|
return false;
|
| 6039 |
|
|
|
| 6040 |
|
|
/* Now get a vector type if the def is internal, otherwise supply
|
| 6041 |
|
|
NULL_TREE and leave it up to the caller to figure out a proper
|
| 6042 |
|
|
type for the use stmt. */
|
| 6043 |
|
|
if (*dt == vect_internal_def
|
| 6044 |
|
|
|| *dt == vect_induction_def
|
| 6045 |
|
|
|| *dt == vect_reduction_def
|
| 6046 |
|
|
|| *dt == vect_double_reduction_def
|
| 6047 |
|
|
|| *dt == vect_nested_cycle)
|
| 6048 |
|
|
{
|
| 6049 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (*def_stmt);
|
| 6050 |
|
|
|
| 6051 |
|
|
if (STMT_VINFO_IN_PATTERN_P (stmt_info)
|
| 6052 |
|
|
&& !STMT_VINFO_RELEVANT (stmt_info)
|
| 6053 |
|
|
&& !STMT_VINFO_LIVE_P (stmt_info))
|
| 6054 |
|
|
stmt_info = vinfo_for_stmt (STMT_VINFO_RELATED_STMT (stmt_info));
|
| 6055 |
|
|
|
| 6056 |
|
|
*vectype = STMT_VINFO_VECTYPE (stmt_info);
|
| 6057 |
|
|
gcc_assert (*vectype != NULL_TREE);
|
| 6058 |
|
|
}
|
| 6059 |
|
|
else if (*dt == vect_uninitialized_def
|
| 6060 |
|
|
|| *dt == vect_constant_def
|
| 6061 |
|
|
|| *dt == vect_external_def)
|
| 6062 |
|
|
*vectype = NULL_TREE;
|
| 6063 |
|
|
else
|
| 6064 |
|
|
gcc_unreachable ();
|
| 6065 |
|
|
|
| 6066 |
|
|
return true;
|
| 6067 |
|
|
}
|
| 6068 |
|
|
|
| 6069 |
|
|
|
| 6070 |
|
|
/* Function supportable_widening_operation
|
| 6071 |
|
|
|
| 6072 |
|
|
Check whether an operation represented by the code CODE is a
|
| 6073 |
|
|
widening operation that is supported by the target platform in
|
| 6074 |
|
|
vector form (i.e., when operating on arguments of type VECTYPE_IN
|
| 6075 |
|
|
producing a result of type VECTYPE_OUT).
|
| 6076 |
|
|
|
| 6077 |
|
|
Widening operations we currently support are NOP (CONVERT), FLOAT
|
| 6078 |
|
|
and WIDEN_MULT. This function checks if these operations are supported
|
| 6079 |
|
|
by the target platform either directly (via vector tree-codes), or via
|
| 6080 |
|
|
target builtins.
|
| 6081 |
|
|
|
| 6082 |
|
|
Output:
|
| 6083 |
|
|
- CODE1 and CODE2 are codes of vector operations to be used when
|
| 6084 |
|
|
vectorizing the operation, if available.
|
| 6085 |
|
|
- DECL1 and DECL2 are decls of target builtin functions to be used
|
| 6086 |
|
|
when vectorizing the operation, if available. In this case,
|
| 6087 |
|
|
CODE1 and CODE2 are CALL_EXPR.
|
| 6088 |
|
|
- MULTI_STEP_CVT determines the number of required intermediate steps in
|
| 6089 |
|
|
case of multi-step conversion (like char->short->int - in that case
|
| 6090 |
|
|
MULTI_STEP_CVT will be 1).
|
| 6091 |
|
|
- INTERM_TYPES contains the intermediate type required to perform the
|
| 6092 |
|
|
widening operation (short in the above example). */
|
| 6093 |
|
|
|
| 6094 |
|
|
bool
|
| 6095 |
|
|
supportable_widening_operation (enum tree_code code, gimple stmt,
|
| 6096 |
|
|
tree vectype_out, tree vectype_in,
|
| 6097 |
|
|
tree *decl1, tree *decl2,
|
| 6098 |
|
|
enum tree_code *code1, enum tree_code *code2,
|
| 6099 |
|
|
int *multi_step_cvt,
|
| 6100 |
|
|
VEC (tree, heap) **interm_types)
|
| 6101 |
|
|
{
|
| 6102 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
| 6103 |
|
|
loop_vec_info loop_info = STMT_VINFO_LOOP_VINFO (stmt_info);
|
| 6104 |
|
|
struct loop *vect_loop = NULL;
|
| 6105 |
|
|
bool ordered_p;
|
| 6106 |
|
|
enum machine_mode vec_mode;
|
| 6107 |
|
|
enum insn_code icode1, icode2;
|
| 6108 |
|
|
optab optab1, optab2;
|
| 6109 |
|
|
tree vectype = vectype_in;
|
| 6110 |
|
|
tree wide_vectype = vectype_out;
|
| 6111 |
|
|
enum tree_code c1, c2;
|
| 6112 |
|
|
int i;
|
| 6113 |
|
|
tree prev_type, intermediate_type;
|
| 6114 |
|
|
enum machine_mode intermediate_mode, prev_mode;
|
| 6115 |
|
|
optab optab3, optab4;
|
| 6116 |
|
|
|
| 6117 |
|
|
*multi_step_cvt = 0;
|
| 6118 |
|
|
if (loop_info)
|
| 6119 |
|
|
vect_loop = LOOP_VINFO_LOOP (loop_info);
|
| 6120 |
|
|
|
| 6121 |
|
|
/* The result of a vectorized widening operation usually requires two vectors
|
| 6122 |
|
|
(because the widened results do not fit into one vector). The generated
|
| 6123 |
|
|
vector results would normally be expected to be generated in the same
|
| 6124 |
|
|
order as in the original scalar computation, i.e. if 8 results are
|
| 6125 |
|
|
generated in each vector iteration, they are to be organized as follows:
|
| 6126 |
|
|
vect1: [res1,res2,res3,res4], vect2: [res5,res6,res7,res8].
|
| 6127 |
|
|
|
| 6128 |
|
|
However, in the special case that the result of the widening operation is
|
| 6129 |
|
|
used in a reduction computation only, the order doesn't matter (because
|
| 6130 |
|
|
when vectorizing a reduction we change the order of the computation).
|
| 6131 |
|
|
Some targets can take advantage of this and generate more efficient code.
|
| 6132 |
|
|
For example, targets like Altivec, that support widen_mult using a sequence
|
| 6133 |
|
|
of {mult_even,mult_odd} generate the following vectors:
|
| 6134 |
|
|
vect1: [res1,res3,res5,res7], vect2: [res2,res4,res6,res8].
|
| 6135 |
|
|
|
| 6136 |
|
|
When vectorizing outer-loops, we execute the inner-loop sequentially
|
| 6137 |
|
|
(each vectorized inner-loop iteration contributes to VF outer-loop
|
| 6138 |
|
|
iterations in parallel). We therefore don't allow to change the order
|
| 6139 |
|
|
of the computation in the inner-loop during outer-loop vectorization. */
|
| 6140 |
|
|
|
| 6141 |
|
|
if (vect_loop
|
| 6142 |
|
|
&& STMT_VINFO_RELEVANT (stmt_info) == vect_used_by_reduction
|
| 6143 |
|
|
&& !nested_in_vect_loop_p (vect_loop, stmt))
|
| 6144 |
|
|
ordered_p = false;
|
| 6145 |
|
|
else
|
| 6146 |
|
|
ordered_p = true;
|
| 6147 |
|
|
|
| 6148 |
|
|
if (!ordered_p
|
| 6149 |
|
|
&& code == WIDEN_MULT_EXPR
|
| 6150 |
|
|
&& targetm.vectorize.builtin_mul_widen_even
|
| 6151 |
|
|
&& targetm.vectorize.builtin_mul_widen_even (vectype)
|
| 6152 |
|
|
&& targetm.vectorize.builtin_mul_widen_odd
|
| 6153 |
|
|
&& targetm.vectorize.builtin_mul_widen_odd (vectype))
|
| 6154 |
|
|
{
|
| 6155 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 6156 |
|
|
fprintf (vect_dump, "Unordered widening operation detected.");
|
| 6157 |
|
|
|
| 6158 |
|
|
*code1 = *code2 = CALL_EXPR;
|
| 6159 |
|
|
*decl1 = targetm.vectorize.builtin_mul_widen_even (vectype);
|
| 6160 |
|
|
*decl2 = targetm.vectorize.builtin_mul_widen_odd (vectype);
|
| 6161 |
|
|
return true;
|
| 6162 |
|
|
}
|
| 6163 |
|
|
|
| 6164 |
|
|
switch (code)
|
| 6165 |
|
|
{
|
| 6166 |
|
|
case WIDEN_MULT_EXPR:
|
| 6167 |
|
|
c1 = VEC_WIDEN_MULT_LO_EXPR;
|
| 6168 |
|
|
c2 = VEC_WIDEN_MULT_HI_EXPR;
|
| 6169 |
|
|
break;
|
| 6170 |
|
|
|
| 6171 |
|
|
case WIDEN_LSHIFT_EXPR:
|
| 6172 |
|
|
c1 = VEC_WIDEN_LSHIFT_LO_EXPR;
|
| 6173 |
|
|
c2 = VEC_WIDEN_LSHIFT_HI_EXPR;
|
| 6174 |
|
|
break;
|
| 6175 |
|
|
|
| 6176 |
|
|
CASE_CONVERT:
|
| 6177 |
|
|
c1 = VEC_UNPACK_LO_EXPR;
|
| 6178 |
|
|
c2 = VEC_UNPACK_HI_EXPR;
|
| 6179 |
|
|
break;
|
| 6180 |
|
|
|
| 6181 |
|
|
case FLOAT_EXPR:
|
| 6182 |
|
|
c1 = VEC_UNPACK_FLOAT_LO_EXPR;
|
| 6183 |
|
|
c2 = VEC_UNPACK_FLOAT_HI_EXPR;
|
| 6184 |
|
|
break;
|
| 6185 |
|
|
|
| 6186 |
|
|
case FIX_TRUNC_EXPR:
|
| 6187 |
|
|
/* ??? Not yet implemented due to missing VEC_UNPACK_FIX_TRUNC_HI_EXPR/
|
| 6188 |
|
|
VEC_UNPACK_FIX_TRUNC_LO_EXPR tree codes and optabs used for
|
| 6189 |
|
|
computing the operation. */
|
| 6190 |
|
|
return false;
|
| 6191 |
|
|
|
| 6192 |
|
|
default:
|
| 6193 |
|
|
gcc_unreachable ();
|
| 6194 |
|
|
}
|
| 6195 |
|
|
|
| 6196 |
|
|
if (BYTES_BIG_ENDIAN)
|
| 6197 |
|
|
{
|
| 6198 |
|
|
enum tree_code ctmp = c1;
|
| 6199 |
|
|
c1 = c2;
|
| 6200 |
|
|
c2 = ctmp;
|
| 6201 |
|
|
}
|
| 6202 |
|
|
|
| 6203 |
|
|
if (code == FIX_TRUNC_EXPR)
|
| 6204 |
|
|
{
|
| 6205 |
|
|
/* The signedness is determined from output operand. */
|
| 6206 |
|
|
optab1 = optab_for_tree_code (c1, vectype_out, optab_default);
|
| 6207 |
|
|
optab2 = optab_for_tree_code (c2, vectype_out, optab_default);
|
| 6208 |
|
|
}
|
| 6209 |
|
|
else
|
| 6210 |
|
|
{
|
| 6211 |
|
|
optab1 = optab_for_tree_code (c1, vectype, optab_default);
|
| 6212 |
|
|
optab2 = optab_for_tree_code (c2, vectype, optab_default);
|
| 6213 |
|
|
}
|
| 6214 |
|
|
|
| 6215 |
|
|
if (!optab1 || !optab2)
|
| 6216 |
|
|
return false;
|
| 6217 |
|
|
|
| 6218 |
|
|
vec_mode = TYPE_MODE (vectype);
|
| 6219 |
|
|
if ((icode1 = optab_handler (optab1, vec_mode)) == CODE_FOR_nothing
|
| 6220 |
|
|
|| (icode2 = optab_handler (optab2, vec_mode)) == CODE_FOR_nothing)
|
| 6221 |
|
|
return false;
|
| 6222 |
|
|
|
| 6223 |
|
|
*code1 = c1;
|
| 6224 |
|
|
*code2 = c2;
|
| 6225 |
|
|
|
| 6226 |
|
|
if (insn_data[icode1].operand[0].mode == TYPE_MODE (wide_vectype)
|
| 6227 |
|
|
&& insn_data[icode2].operand[0].mode == TYPE_MODE (wide_vectype))
|
| 6228 |
|
|
return true;
|
| 6229 |
|
|
|
| 6230 |
|
|
/* Check if it's a multi-step conversion that can be done using intermediate
|
| 6231 |
|
|
types. */
|
| 6232 |
|
|
|
| 6233 |
|
|
prev_type = vectype;
|
| 6234 |
|
|
prev_mode = vec_mode;
|
| 6235 |
|
|
|
| 6236 |
|
|
if (!CONVERT_EXPR_CODE_P (code))
|
| 6237 |
|
|
return false;
|
| 6238 |
|
|
|
| 6239 |
|
|
/* We assume here that there will not be more than MAX_INTERM_CVT_STEPS
|
| 6240 |
|
|
intermediate steps in promotion sequence. We try
|
| 6241 |
|
|
MAX_INTERM_CVT_STEPS to get to NARROW_VECTYPE, and fail if we do
|
| 6242 |
|
|
not. */
|
| 6243 |
|
|
*interm_types = VEC_alloc (tree, heap, MAX_INTERM_CVT_STEPS);
|
| 6244 |
|
|
for (i = 0; i < MAX_INTERM_CVT_STEPS; i++)
|
| 6245 |
|
|
{
|
| 6246 |
|
|
intermediate_mode = insn_data[icode1].operand[0].mode;
|
| 6247 |
|
|
intermediate_type
|
| 6248 |
|
|
= lang_hooks.types.type_for_mode (intermediate_mode,
|
| 6249 |
|
|
TYPE_UNSIGNED (prev_type));
|
| 6250 |
|
|
optab3 = optab_for_tree_code (c1, intermediate_type, optab_default);
|
| 6251 |
|
|
optab4 = optab_for_tree_code (c2, intermediate_type, optab_default);
|
| 6252 |
|
|
|
| 6253 |
|
|
if (!optab3 || !optab4
|
| 6254 |
|
|
|| (icode1 = optab_handler (optab1, prev_mode)) == CODE_FOR_nothing
|
| 6255 |
|
|
|| insn_data[icode1].operand[0].mode != intermediate_mode
|
| 6256 |
|
|
|| (icode2 = optab_handler (optab2, prev_mode)) == CODE_FOR_nothing
|
| 6257 |
|
|
|| insn_data[icode2].operand[0].mode != intermediate_mode
|
| 6258 |
|
|
|| ((icode1 = optab_handler (optab3, intermediate_mode))
|
| 6259 |
|
|
== CODE_FOR_nothing)
|
| 6260 |
|
|
|| ((icode2 = optab_handler (optab4, intermediate_mode))
|
| 6261 |
|
|
== CODE_FOR_nothing))
|
| 6262 |
|
|
break;
|
| 6263 |
|
|
|
| 6264 |
|
|
VEC_quick_push (tree, *interm_types, intermediate_type);
|
| 6265 |
|
|
(*multi_step_cvt)++;
|
| 6266 |
|
|
|
| 6267 |
|
|
if (insn_data[icode1].operand[0].mode == TYPE_MODE (wide_vectype)
|
| 6268 |
|
|
&& insn_data[icode2].operand[0].mode == TYPE_MODE (wide_vectype))
|
| 6269 |
|
|
return true;
|
| 6270 |
|
|
|
| 6271 |
|
|
prev_type = intermediate_type;
|
| 6272 |
|
|
prev_mode = intermediate_mode;
|
| 6273 |
|
|
}
|
| 6274 |
|
|
|
| 6275 |
|
|
VEC_free (tree, heap, *interm_types);
|
| 6276 |
|
|
return false;
|
| 6277 |
|
|
}
|
| 6278 |
|
|
|
| 6279 |
|
|
|
| 6280 |
|
|
/* Function supportable_narrowing_operation
|
| 6281 |
|
|
|
| 6282 |
|
|
Check whether an operation represented by the code CODE is a
|
| 6283 |
|
|
narrowing operation that is supported by the target platform in
|
| 6284 |
|
|
vector form (i.e., when operating on arguments of type VECTYPE_IN
|
| 6285 |
|
|
and producing a result of type VECTYPE_OUT).
|
| 6286 |
|
|
|
| 6287 |
|
|
Narrowing operations we currently support are NOP (CONVERT) and
|
| 6288 |
|
|
FIX_TRUNC. This function checks if these operations are supported by
|
| 6289 |
|
|
the target platform directly via vector tree-codes.
|
| 6290 |
|
|
|
| 6291 |
|
|
Output:
|
| 6292 |
|
|
- CODE1 is the code of a vector operation to be used when
|
| 6293 |
|
|
vectorizing the operation, if available.
|
| 6294 |
|
|
- MULTI_STEP_CVT determines the number of required intermediate steps in
|
| 6295 |
|
|
case of multi-step conversion (like int->short->char - in that case
|
| 6296 |
|
|
MULTI_STEP_CVT will be 1).
|
| 6297 |
|
|
- INTERM_TYPES contains the intermediate type required to perform the
|
| 6298 |
|
|
narrowing operation (short in the above example). */
|
| 6299 |
|
|
|
| 6300 |
|
|
bool
|
| 6301 |
|
|
supportable_narrowing_operation (enum tree_code code,
|
| 6302 |
|
|
tree vectype_out, tree vectype_in,
|
| 6303 |
|
|
enum tree_code *code1, int *multi_step_cvt,
|
| 6304 |
|
|
VEC (tree, heap) **interm_types)
|
| 6305 |
|
|
{
|
| 6306 |
|
|
enum machine_mode vec_mode;
|
| 6307 |
|
|
enum insn_code icode1;
|
| 6308 |
|
|
optab optab1, interm_optab;
|
| 6309 |
|
|
tree vectype = vectype_in;
|
| 6310 |
|
|
tree narrow_vectype = vectype_out;
|
| 6311 |
|
|
enum tree_code c1;
|
| 6312 |
|
|
tree intermediate_type;
|
| 6313 |
|
|
enum machine_mode intermediate_mode, prev_mode;
|
| 6314 |
|
|
int i;
|
| 6315 |
|
|
bool uns;
|
| 6316 |
|
|
|
| 6317 |
|
|
*multi_step_cvt = 0;
|
| 6318 |
|
|
switch (code)
|
| 6319 |
|
|
{
|
| 6320 |
|
|
CASE_CONVERT:
|
| 6321 |
|
|
c1 = VEC_PACK_TRUNC_EXPR;
|
| 6322 |
|
|
break;
|
| 6323 |
|
|
|
| 6324 |
|
|
case FIX_TRUNC_EXPR:
|
| 6325 |
|
|
c1 = VEC_PACK_FIX_TRUNC_EXPR;
|
| 6326 |
|
|
break;
|
| 6327 |
|
|
|
| 6328 |
|
|
case FLOAT_EXPR:
|
| 6329 |
|
|
/* ??? Not yet implemented due to missing VEC_PACK_FLOAT_EXPR
|
| 6330 |
|
|
tree code and optabs used for computing the operation. */
|
| 6331 |
|
|
return false;
|
| 6332 |
|
|
|
| 6333 |
|
|
default:
|
| 6334 |
|
|
gcc_unreachable ();
|
| 6335 |
|
|
}
|
| 6336 |
|
|
|
| 6337 |
|
|
if (code == FIX_TRUNC_EXPR)
|
| 6338 |
|
|
/* The signedness is determined from output operand. */
|
| 6339 |
|
|
optab1 = optab_for_tree_code (c1, vectype_out, optab_default);
|
| 6340 |
|
|
else
|
| 6341 |
|
|
optab1 = optab_for_tree_code (c1, vectype, optab_default);
|
| 6342 |
|
|
|
| 6343 |
|
|
if (!optab1)
|
| 6344 |
|
|
return false;
|
| 6345 |
|
|
|
| 6346 |
|
|
vec_mode = TYPE_MODE (vectype);
|
| 6347 |
|
|
if ((icode1 = optab_handler (optab1, vec_mode)) == CODE_FOR_nothing)
|
| 6348 |
|
|
return false;
|
| 6349 |
|
|
|
| 6350 |
|
|
*code1 = c1;
|
| 6351 |
|
|
|
| 6352 |
|
|
if (insn_data[icode1].operand[0].mode == TYPE_MODE (narrow_vectype))
|
| 6353 |
|
|
return true;
|
| 6354 |
|
|
|
| 6355 |
|
|
/* Check if it's a multi-step conversion that can be done using intermediate
|
| 6356 |
|
|
types. */
|
| 6357 |
|
|
prev_mode = vec_mode;
|
| 6358 |
|
|
if (code == FIX_TRUNC_EXPR)
|
| 6359 |
|
|
uns = TYPE_UNSIGNED (vectype_out);
|
| 6360 |
|
|
else
|
| 6361 |
|
|
uns = TYPE_UNSIGNED (vectype);
|
| 6362 |
|
|
|
| 6363 |
|
|
/* For multi-step FIX_TRUNC_EXPR prefer signed floating to integer
|
| 6364 |
|
|
conversion over unsigned, as unsigned FIX_TRUNC_EXPR is often more
|
| 6365 |
|
|
costly than signed. */
|
| 6366 |
|
|
if (code == FIX_TRUNC_EXPR && uns)
|
| 6367 |
|
|
{
|
| 6368 |
|
|
enum insn_code icode2;
|
| 6369 |
|
|
|
| 6370 |
|
|
intermediate_type
|
| 6371 |
|
|
= lang_hooks.types.type_for_mode (TYPE_MODE (vectype_out), 0);
|
| 6372 |
|
|
interm_optab
|
| 6373 |
|
|
= optab_for_tree_code (c1, intermediate_type, optab_default);
|
| 6374 |
|
|
if (interm_optab != NULL
|
| 6375 |
|
|
&& (icode2 = optab_handler (optab1, vec_mode)) != CODE_FOR_nothing
|
| 6376 |
|
|
&& insn_data[icode1].operand[0].mode
|
| 6377 |
|
|
== insn_data[icode2].operand[0].mode)
|
| 6378 |
|
|
{
|
| 6379 |
|
|
uns = false;
|
| 6380 |
|
|
optab1 = interm_optab;
|
| 6381 |
|
|
icode1 = icode2;
|
| 6382 |
|
|
}
|
| 6383 |
|
|
}
|
| 6384 |
|
|
|
| 6385 |
|
|
/* We assume here that there will not be more than MAX_INTERM_CVT_STEPS
|
| 6386 |
|
|
intermediate steps in promotion sequence. We try
|
| 6387 |
|
|
MAX_INTERM_CVT_STEPS to get to NARROW_VECTYPE, and fail if we do not. */
|
| 6388 |
|
|
*interm_types = VEC_alloc (tree, heap, MAX_INTERM_CVT_STEPS);
|
| 6389 |
|
|
for (i = 0; i < MAX_INTERM_CVT_STEPS; i++)
|
| 6390 |
|
|
{
|
| 6391 |
|
|
intermediate_mode = insn_data[icode1].operand[0].mode;
|
| 6392 |
|
|
intermediate_type
|
| 6393 |
|
|
= lang_hooks.types.type_for_mode (intermediate_mode, uns);
|
| 6394 |
|
|
interm_optab
|
| 6395 |
|
|
= optab_for_tree_code (VEC_PACK_TRUNC_EXPR, intermediate_type,
|
| 6396 |
|
|
optab_default);
|
| 6397 |
|
|
if (!interm_optab
|
| 6398 |
|
|
|| ((icode1 = optab_handler (optab1, prev_mode)) == CODE_FOR_nothing)
|
| 6399 |
|
|
|| insn_data[icode1].operand[0].mode != intermediate_mode
|
| 6400 |
|
|
|| ((icode1 = optab_handler (interm_optab, intermediate_mode))
|
| 6401 |
|
|
== CODE_FOR_nothing))
|
| 6402 |
|
|
break;
|
| 6403 |
|
|
|
| 6404 |
|
|
VEC_quick_push (tree, *interm_types, intermediate_type);
|
| 6405 |
|
|
(*multi_step_cvt)++;
|
| 6406 |
|
|
|
| 6407 |
|
|
if (insn_data[icode1].operand[0].mode == TYPE_MODE (narrow_vectype))
|
| 6408 |
|
|
return true;
|
| 6409 |
|
|
|
| 6410 |
|
|
prev_mode = intermediate_mode;
|
| 6411 |
|
|
optab1 = interm_optab;
|
| 6412 |
|
|
}
|
| 6413 |
|
|
|
| 6414 |
|
|
VEC_free (tree, heap, *interm_types);
|
| 6415 |
|
|
return false;
|
| 6416 |
|
|
}
|