OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libgcc/] [config/] [libbid/] [bid128_to_uint64.c] - Blame information for rev 801

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 734 jeremybenn
/* Copyright (C) 2007, 2009  Free Software Foundation, Inc.
2
 
3
This file is part of GCC.
4
 
5
GCC is free software; you can redistribute it and/or modify it under
6
the terms of the GNU General Public License as published by the Free
7
Software Foundation; either version 3, or (at your option) any later
8
version.
9
 
10
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
11
WARRANTY; without even the implied warranty of MERCHANTABILITY or
12
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13
for more details.
14
 
15
Under Section 7 of GPL version 3, you are granted additional
16
permissions described in the GCC Runtime Library Exception, version
17
3.1, as published by the Free Software Foundation.
18
 
19
You should have received a copy of the GNU General Public License and
20
a copy of the GCC Runtime Library Exception along with this program;
21
see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
22
<http://www.gnu.org/licenses/>.  */
23
 
24
#include "bid_internal.h"
25
 
26
/*****************************************************************************
27
 *  BID128_to_uint64_rnint
28
 ****************************************************************************/
29
 
30
BID128_FUNCTION_ARG1_NORND_CUSTOMRESTYPE (UINT64,
31
                                          bid128_to_uint64_rnint, x)
32
 
33
     UINT64 res;
34
     UINT64 x_sign;
35
     UINT64 x_exp;
36
     int exp;                   // unbiased exponent
37
  // Note: C1.w[1], C1.w[0] represent x_signif_hi, x_signif_lo (all are UINT64)
38
     UINT64 tmp64;
39
     BID_UI64DOUBLE tmp1;
40
     unsigned int x_nr_bits;
41
     int q, ind, shift;
42
     UINT128 C1, C;
43
     UINT128 Cstar;             // C* represents up to 34 decimal digits ~ 113 bits
44
     UINT256 fstar;
45
     UINT256 P256;
46
 
47
  // unpack x
48
x_sign = x.w[1] & MASK_SIGN;    // 0 for positive, MASK_SIGN for negative
49
x_exp = x.w[1] & MASK_EXP;      // biased and shifted left 49 bit positions
50
C1.w[1] = x.w[1] & MASK_COEFF;
51
C1.w[0] = x.w[0];
52
 
53
  // check for NaN or Infinity
54
if ((x.w[1] & MASK_SPECIAL) == MASK_SPECIAL) {
55
    // x is special
56
if ((x.w[1] & MASK_NAN) == MASK_NAN) {  // x is NAN
57
  if ((x.w[1] & MASK_SNAN) == MASK_SNAN) {      // x is SNAN
58
    // set invalid flag
59
    *pfpsf |= INVALID_EXCEPTION;
60
    // return Integer Indefinite
61
    res = 0x8000000000000000ull;
62
  } else {      // x is QNaN
63
    // set invalid flag
64
    *pfpsf |= INVALID_EXCEPTION;
65
    // return Integer Indefinite
66
    res = 0x8000000000000000ull;
67
  }
68
  BID_RETURN (res);
69
} else {        // x is not a NaN, so it must be infinity
70
  if (!x_sign) {        // x is +inf
71
    // set invalid flag
72
    *pfpsf |= INVALID_EXCEPTION;
73
    // return Integer Indefinite
74
    res = 0x8000000000000000ull;
75
  } else {      // x is -inf
76
    // set invalid flag
77
    *pfpsf |= INVALID_EXCEPTION;
78
    // return Integer Indefinite
79
    res = 0x8000000000000000ull;
80
  }
81
  BID_RETURN (res);
82
}
83
}
84
  // check for non-canonical values (after the check for special values)
85
if ((C1.w[1] > 0x0001ed09bead87c0ull)
86
    || (C1.w[1] == 0x0001ed09bead87c0ull
87
        && (C1.w[0] > 0x378d8e63ffffffffull))
88
    || ((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull)) {
89
  res = 0x0000000000000000ull;
90
  BID_RETURN (res);
91
} else if ((C1.w[1] == 0x0ull) && (C1.w[0] == 0x0ull)) {
92
  // x is 0
93
  res = 0x0000000000000000ull;
94
  BID_RETURN (res);
95
} else {        // x is not special and is not zero
96
 
97
  // q = nr. of decimal digits in x
98
  //  determine first the nr. of bits in x
99
  if (C1.w[1] == 0) {
100
    if (C1.w[0] >= 0x0020000000000000ull) {      // x >= 2^53
101
      // split the 64-bit value in two 32-bit halves to avoid rounding errors
102
      if (C1.w[0] >= 0x0000000100000000ull) {    // x >= 2^32
103
        tmp1.d = (double) (C1.w[0] >> 32);       // exact conversion
104
        x_nr_bits =
105
          33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
106
      } else {  // x < 2^32
107
        tmp1.d = (double) (C1.w[0]);     // exact conversion
108
        x_nr_bits =
109
          1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
110
      }
111
    } else {    // if x < 2^53
112
      tmp1.d = (double) C1.w[0]; // exact conversion
113
      x_nr_bits =
114
        1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
115
    }
116
  } else {      // C1.w[1] != 0 => nr. bits = 64 + nr_bits (C1.w[1])
117
    tmp1.d = (double) C1.w[1];  // exact conversion
118
    x_nr_bits =
119
      65 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
120
  }
121
  q = nr_digits[x_nr_bits - 1].digits;
122
  if (q == 0) {
123
    q = nr_digits[x_nr_bits - 1].digits1;
124
    if (C1.w[1] > nr_digits[x_nr_bits - 1].threshold_hi
125
        || (C1.w[1] == nr_digits[x_nr_bits - 1].threshold_hi
126
            && C1.w[0] >= nr_digits[x_nr_bits - 1].threshold_lo))
127
      q++;
128
  }
129
  exp = (x_exp >> 49) - 6176;
130
 
131
  if ((q + exp) > 20) { // x >= 10^20 ~= 2^66.45... (cannot fit in 64 bits)
132
    // set invalid flag
133
    *pfpsf |= INVALID_EXCEPTION;
134
    // return Integer Indefinite
135
    res = 0x8000000000000000ull;
136
    BID_RETURN (res);
137
  } else if ((q + exp) == 20) { // x = c(0)c(1)...c(19).c(20)...c(q-1)
138
    // in this case 2^63.11... ~= 10^19 <= x < 10^20 ~= 2^66.43...
139
    // so x rounded to an integer may or may not fit in an unsigned 64-bit int
140
    // the cases that do not fit are identified here; the ones that fit
141
    // fall through and will be handled with other cases further,
142
    // under '1 <= q + exp <= 20'
143
    if (x_sign) {       // if n < 0 and q + exp = 20
144
      // if n < -1/2 then n cannot be converted to uint64 with RN
145
      // too large if c(0)c(1)...c(19).c(20)...c(q-1) > 1/2
146
      // <=> 0.c(0)c(1)...c(q-1) * 10^21 > 0x05, 1<=q<=34
147
      // <=> C * 10^(21-q) > 0x05, 1<=q<=34
148
      if (q == 21) {
149
        // C > 5 
150
        if (C1.w[1] != 0 || C1.w[0] > 0x05ull) {
151
          // set invalid flag
152
          *pfpsf |= INVALID_EXCEPTION;
153
          // return Integer Indefinite
154
          res = 0x8000000000000000ull;
155
          BID_RETURN (res);
156
        }
157
        // else cases that can be rounded to 64-bit unsigned int fall through
158
        // to '1 <= q + exp <= 20'
159
      } else {
160
        // if 1 <= q <= 20
161
        //   C * 10^(21-q) > 5 is true because C >= 1 and 10^(21-q) >= 10
162
        // if 22 <= q <= 34 => 1 <= q - 21 <= 13
163
        //   C > 5 * 10^(q-21) is true because C > 2^64 and 5*10^(q-21) < 2^64
164
        // set invalid flag
165
        *pfpsf |= INVALID_EXCEPTION;
166
        // return Integer Indefinite
167
        res = 0x8000000000000000ull;
168
        BID_RETURN (res);
169
      }
170
    } else {    // if n > 0 and q + exp = 20
171
      // if n >= 2^64 - 1/2 then n is too large
172
      // <=> c(0)c(1)...c(19).c(20)...c(q-1) >= 2^64-1/2
173
      // <=> 0.c(0)c(1)...c(19)c(20)...c(q-1) * 10^20 >= 2^64-1/2
174
      // <=> 0.c(0)c(1)...c(19)c(20)...c(q-1) * 10^21 >= 5*(2^65-1)
175
      // <=> C * 10^(21-q) >= 0x9fffffffffffffffb, 1<=q<=34
176
      if (q == 1) {
177
        // C * 10^20 >= 0x9fffffffffffffffb
178
        __mul_128x64_to_128 (C, C1.w[0], ten2k128[0]);    // 10^20 * C
179
        if (C.w[1] > 0x09 || (C.w[1] == 0x09
180
                              && C.w[0] >= 0xfffffffffffffffbull)) {
181
          // set invalid flag
182
          *pfpsf |= INVALID_EXCEPTION;
183
          // return Integer Indefinite
184
          res = 0x8000000000000000ull;
185
          BID_RETURN (res);
186
        }
187
        // else cases that can be rounded to a 64-bit int fall through
188
        // to '1 <= q + exp <= 20'
189
      } else if (q <= 19) {
190
        // C * 10^(21-q) >= 0x9fffffffffffffffb
191
        __mul_64x64_to_128MACH (C, C1.w[0], ten2k64[21 - q]);
192
        if (C.w[1] > 0x09 || (C.w[1] == 0x09
193
                              && C.w[0] >= 0xfffffffffffffffbull)) {
194
          // set invalid flag
195
          *pfpsf |= INVALID_EXCEPTION;
196
          // return Integer Indefinite
197
          res = 0x8000000000000000ull;
198
          BID_RETURN (res);
199
        }
200
        // else cases that can be rounded to a 64-bit int fall through
201
        // to '1 <= q + exp <= 20'
202
      } else if (q == 20) {
203
        // C * 10 >= 0x9fffffffffffffffb <=> C * 2 > 1ffffffffffffffff
204
        C.w[0] = C1.w[0] + C1.w[0];
205
        C.w[1] = C1.w[1] + C1.w[1];
206
        if (C.w[0] < C1.w[0])
207
          C.w[1]++;
208
        if (C.w[1] > 0x01 || (C.w[1] == 0x01
209
                              && C.w[0] >= 0xffffffffffffffffull)) {
210
          // set invalid flag
211
          *pfpsf |= INVALID_EXCEPTION;
212
          // return Integer Indefinite
213
          res = 0x8000000000000000ull;
214
          BID_RETURN (res);
215
        }
216
        // else cases that can be rounded to a 64-bit int fall through
217
        // to '1 <= q + exp <= 20'
218
      } else if (q == 21) {
219
        // C >= 0x9fffffffffffffffb
220
        if (C1.w[1] > 0x09 || (C1.w[1] == 0x09
221
                               && C1.w[0] >= 0xfffffffffffffffbull)) {
222
          // set invalid flag
223
          *pfpsf |= INVALID_EXCEPTION;
224
          // return Integer Indefinite
225
          res = 0x8000000000000000ull;
226
          BID_RETURN (res);
227
        }
228
        // else cases that can be rounded to a 64-bit int fall through
229
        // to '1 <= q + exp <= 20'
230
      } else {  // if 22 <= q <= 34 => 1 <= q - 21 <= 13
231
        // C  >= 10^(q-21) * 0x9fffffffffffffffb max 44 bits x 68 bits
232
        C.w[1] = 0x09;
233
        C.w[0] = 0xfffffffffffffffbull;
234
        __mul_128x64_to_128 (C, ten2k64[q - 21], C);
235
        if (C1.w[1] > C.w[1]
236
            || (C1.w[1] == C.w[1] && C1.w[0] >= C.w[0])) {
237
          // set invalid flag
238
          *pfpsf |= INVALID_EXCEPTION;
239
          // return Integer Indefinite
240
          res = 0x8000000000000000ull;
241
          BID_RETURN (res);
242
        }
243
        // else cases that can be rounded to a 64-bit int fall through
244
        // to '1 <= q + exp <= 20'
245
      }
246
    }
247
  }
248
  // n is not too large to be converted to int64 if -1/2 <= n < 2^64 - 1/2
249
  // Note: some of the cases tested for above fall through to this point
250
  if ((q + exp) < 0) {   // n = +/-0.0...c(0)c(1)...c(q-1)
251
    // return 0
252
    res = 0x0000000000000000ull;
253
    BID_RETURN (res);
254
  } else if ((q + exp) == 0) {   // n = +/-0.c(0)c(1)...c(q-1)
255
    // if 0.c(0)c(1)...c(q-1) <= 0.5 <=> c(0)c(1)...c(q-1) <= 5 * 10^(q-1)
256
    //   res = 0
257
    // else if x > 0
258
    //   res = +1
259
    // else // if x < 0
260
    //   invalid exc
261
    ind = q - 1;
262
    if (ind <= 18) {    // 0 <= ind <= 18
263
      if ((C1.w[1] == 0) && (C1.w[0] <= midpoint64[ind])) {
264
        res = 0x0000000000000000ull;    // return 0
265
      } else if (!x_sign) {     // n > 0
266
        res = 0x00000001;       // return +1
267
      } else {
268
        res = 0x8000000000000000ull;
269
        *pfpsf |= INVALID_EXCEPTION;
270
      }
271
    } else {    // 19 <= ind <= 33
272
      if ((C1.w[1] < midpoint128[ind - 19].w[1])
273
          || ((C1.w[1] == midpoint128[ind - 19].w[1])
274
              && (C1.w[0] <= midpoint128[ind - 19].w[0]))) {
275
        res = 0x0000000000000000ull;    // return 0
276
      } else if (!x_sign) {     // n > 0
277
        res = 0x00000001;       // return +1
278
      } else {
279
        res = 0x8000000000000000ull;
280
        *pfpsf |= INVALID_EXCEPTION;
281
      }
282
    }
283
  } else {      // if (1 <= q + exp <= 20, 1 <= q <= 34, -33 <= exp <= 19)
284
    // x <= -1 or 1 <= x < 2^64-1/2 so if positive x can be rounded
285
    // to nearest to a 64-bit unsigned signed integer
286
    if (x_sign) {       // x <= -1
287
      // set invalid flag
288
      *pfpsf |= INVALID_EXCEPTION;
289
      // return Integer Indefinite
290
      res = 0x8000000000000000ull;
291
      BID_RETURN (res);
292
    }
293
    // 1 <= x < 2^64-1/2 so x can be rounded
294
    // to nearest to a 64-bit unsigned integer
295
    if (exp < 0) {       // 2 <= q <= 34, -33 <= exp <= -1, 1 <= q + exp <= 20
296
      ind = -exp;       // 1 <= ind <= 33; ind is a synonym for 'x'
297
      // chop off ind digits from the lower part of C1
298
      // C1 = C1 + 1/2 * 10^ind where the result C1 fits in 127 bits
299
      tmp64 = C1.w[0];
300
      if (ind <= 19) {
301
        C1.w[0] = C1.w[0] + midpoint64[ind - 1];
302
      } else {
303
        C1.w[0] = C1.w[0] + midpoint128[ind - 20].w[0];
304
        C1.w[1] = C1.w[1] + midpoint128[ind - 20].w[1];
305
      }
306
      if (C1.w[0] < tmp64)
307
        C1.w[1]++;
308
      // calculate C* and f*
309
      // C* is actually floor(C*) in this case
310
      // C* and f* need shifting and masking, as shown by
311
      // shiftright128[] and maskhigh128[]
312
      // 1 <= x <= 33
313
      // kx = 10^(-x) = ten2mk128[ind - 1]
314
      // C* = (C1 + 1/2 * 10^x) * 10^(-x)
315
      // the approximation of 10^(-x) was rounded up to 118 bits
316
      __mul_128x128_to_256 (P256, C1, ten2mk128[ind - 1]);
317
      if (ind - 1 <= 21) {      // 0 <= ind - 1 <= 21
318
        Cstar.w[1] = P256.w[3];
319
        Cstar.w[0] = P256.w[2];
320
        fstar.w[3] = 0;
321
        fstar.w[2] = P256.w[2] & maskhigh128[ind - 1];
322
        fstar.w[1] = P256.w[1];
323
        fstar.w[0] = P256.w[0];
324
      } else {  // 22 <= ind - 1 <= 33
325
        Cstar.w[1] = 0;
326
        Cstar.w[0] = P256.w[3];
327
        fstar.w[3] = P256.w[3] & maskhigh128[ind - 1];
328
        fstar.w[2] = P256.w[2];
329
        fstar.w[1] = P256.w[1];
330
        fstar.w[0] = P256.w[0];
331
      }
332
      // the top Ex bits of 10^(-x) are T* = ten2mk128trunc[ind], e.g.
333
      // if x=1, T*=ten2mk128trunc[0]=0x19999999999999999999999999999999
334
      // if (0 < f* < 10^(-x)) then the result is a midpoint
335
      //   if floor(C*) is even then C* = floor(C*) - logical right
336
      //       shift; C* has p decimal digits, correct by Prop. 1)
337
      //   else if floor(C*) is odd C* = floor(C*)-1 (logical right
338
      //       shift; C* has p decimal digits, correct by Pr. 1)
339
      // else
340
      //   C* = floor(C*) (logical right shift; C has p decimal digits,
341
      //       correct by Property 1)
342
      // n = C* * 10^(e+x)
343
 
344
      // shift right C* by Ex-128 = shiftright128[ind]
345
      shift = shiftright128[ind - 1];   // 0 <= shift <= 102
346
      if (ind - 1 <= 21) {      // 0 <= ind - 1 <= 21
347
        Cstar.w[0] =
348
          (Cstar.w[0] >> shift) | (Cstar.w[1] << (64 - shift));
349
        // redundant, it will be 0! Cstar.w[1] = (Cstar.w[1] >> shift);
350
      } else {  // 22 <= ind - 1 <= 33
351
        Cstar.w[0] = (Cstar.w[0] >> (shift - 64));        // 2 <= shift - 64 <= 38
352
      }
353
      // if the result was a midpoint it was rounded away from zero, so
354
      // it will need a correction
355
      // check for midpoints
356
      if ((fstar.w[3] == 0) && (fstar.w[2] == 0)
357
          && (fstar.w[1] || fstar.w[0])
358
          && (fstar.w[1] < ten2mk128trunc[ind - 1].w[1]
359
              || (fstar.w[1] == ten2mk128trunc[ind - 1].w[1]
360
                  && fstar.w[0] <= ten2mk128trunc[ind - 1].w[0]))) {
361
        // the result is a midpoint; round to nearest
362
        if (Cstar.w[0] & 0x01) { // Cstar.w[0] is odd; MP in [EVEN, ODD]
363
          // if floor(C*) is odd C = floor(C*) - 1; the result >= 1
364
          Cstar.w[0]--;  // Cstar.w[0] is now even
365
        }       // else MP in [ODD, EVEN]
366
      }
367
      res = Cstar.w[0];  // the result is positive
368
    } else if (exp == 0) {
369
      // 1 <= q <= 20, but x < 2^64 - 1/2 so in this case C1.w[1] has to be 0
370
      // res = C (exact)
371
      res = C1.w[0];
372
    } else {
373
      // if (exp > 0) => 1 <= exp <= 19, 1 <= q < 19, 2 <= q + exp <= 20
374
      // res = C * 10^exp (exact) - must fit in 64 bits
375
      res = C1.w[0] * ten2k64[exp];
376
    }
377
  }
378
}
379
 
380
BID_RETURN (res);
381
}
382
 
383
/*****************************************************************************
384
 *  BID128_to_uint64_xrnint
385
 ****************************************************************************/
386
 
387
BID128_FUNCTION_ARG1_NORND_CUSTOMRESTYPE (UINT64,
388
                                          bid128_to_uint64_xrnint, x)
389
 
390
     UINT64 res;
391
     UINT64 x_sign;
392
     UINT64 x_exp;
393
     int exp;                   // unbiased exponent
394
  // Note: C1.w[1], C1.w[0] represent x_signif_hi, x_signif_lo (all are UINT64)
395
     UINT64 tmp64, tmp64A;
396
     BID_UI64DOUBLE tmp1;
397
     unsigned int x_nr_bits;
398
     int q, ind, shift;
399
     UINT128 C1, C;
400
     UINT128 Cstar;             // C* represents up to 34 decimal digits ~ 113 bits
401
     UINT256 fstar;
402
     UINT256 P256;
403
 
404
  // unpack x
405
x_sign = x.w[1] & MASK_SIGN;    // 0 for positive, MASK_SIGN for negative
406
x_exp = x.w[1] & MASK_EXP;      // biased and shifted left 49 bit positions
407
C1.w[1] = x.w[1] & MASK_COEFF;
408
C1.w[0] = x.w[0];
409
 
410
  // check for NaN or Infinity
411
if ((x.w[1] & MASK_SPECIAL) == MASK_SPECIAL) {
412
    // x is special
413
if ((x.w[1] & MASK_NAN) == MASK_NAN) {  // x is NAN
414
  if ((x.w[1] & MASK_SNAN) == MASK_SNAN) {      // x is SNAN
415
    // set invalid flag
416
    *pfpsf |= INVALID_EXCEPTION;
417
    // return Integer Indefinite
418
    res = 0x8000000000000000ull;
419
  } else {      // x is QNaN
420
    // set invalid flag
421
    *pfpsf |= INVALID_EXCEPTION;
422
    // return Integer Indefinite
423
    res = 0x8000000000000000ull;
424
  }
425
  BID_RETURN (res);
426
} else {        // x is not a NaN, so it must be infinity
427
  if (!x_sign) {        // x is +inf
428
    // set invalid flag
429
    *pfpsf |= INVALID_EXCEPTION;
430
    // return Integer Indefinite
431
    res = 0x8000000000000000ull;
432
  } else {      // x is -inf
433
    // set invalid flag
434
    *pfpsf |= INVALID_EXCEPTION;
435
    // return Integer Indefinite
436
    res = 0x8000000000000000ull;
437
  }
438
  BID_RETURN (res);
439
}
440
}
441
  // check for non-canonical values (after the check for special values)
442
if ((C1.w[1] > 0x0001ed09bead87c0ull)
443
    || (C1.w[1] == 0x0001ed09bead87c0ull
444
        && (C1.w[0] > 0x378d8e63ffffffffull))
445
    || ((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull)) {
446
  res = 0x0000000000000000ull;
447
  BID_RETURN (res);
448
} else if ((C1.w[1] == 0x0ull) && (C1.w[0] == 0x0ull)) {
449
  // x is 0
450
  res = 0x0000000000000000ull;
451
  BID_RETURN (res);
452
} else {        // x is not special and is not zero
453
 
454
  // q = nr. of decimal digits in x
455
  //  determine first the nr. of bits in x
456
  if (C1.w[1] == 0) {
457
    if (C1.w[0] >= 0x0020000000000000ull) {      // x >= 2^53
458
      // split the 64-bit value in two 32-bit halves to avoid rounding errors
459
      if (C1.w[0] >= 0x0000000100000000ull) {    // x >= 2^32
460
        tmp1.d = (double) (C1.w[0] >> 32);       // exact conversion
461
        x_nr_bits =
462
          33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
463
      } else {  // x < 2^32
464
        tmp1.d = (double) (C1.w[0]);     // exact conversion
465
        x_nr_bits =
466
          1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
467
      }
468
    } else {    // if x < 2^53
469
      tmp1.d = (double) C1.w[0]; // exact conversion
470
      x_nr_bits =
471
        1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
472
    }
473
  } else {      // C1.w[1] != 0 => nr. bits = 64 + nr_bits (C1.w[1])
474
    tmp1.d = (double) C1.w[1];  // exact conversion
475
    x_nr_bits =
476
      65 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
477
  }
478
  q = nr_digits[x_nr_bits - 1].digits;
479
  if (q == 0) {
480
    q = nr_digits[x_nr_bits - 1].digits1;
481
    if (C1.w[1] > nr_digits[x_nr_bits - 1].threshold_hi
482
        || (C1.w[1] == nr_digits[x_nr_bits - 1].threshold_hi
483
            && C1.w[0] >= nr_digits[x_nr_bits - 1].threshold_lo))
484
      q++;
485
  }
486
  exp = (x_exp >> 49) - 6176;
487
 
488
  if ((q + exp) > 20) { // x >= 10^20 ~= 2^66.45... (cannot fit in 64 bits)
489
    // set invalid flag
490
    *pfpsf |= INVALID_EXCEPTION;
491
    // return Integer Indefinite
492
    res = 0x8000000000000000ull;
493
    BID_RETURN (res);
494
  } else if ((q + exp) == 20) { // x = c(0)c(1)...c(19).c(20)...c(q-1)
495
    // in this case 2^63.11... ~= 10^19 <= x < 10^20 ~= 2^66.43...
496
    // so x rounded to an integer may or may not fit in an unsigned 64-bit int
497
    // the cases that do not fit are identified here; the ones that fit
498
    // fall through and will be handled with other cases further,
499
    // under '1 <= q + exp <= 20'
500
    if (x_sign) {       // if n < 0 and q + exp = 20
501
      // if n < -1/2 then n cannot be converted to uint64 with RN
502
      // too large if c(0)c(1)...c(19).c(20)...c(q-1) > 1/2
503
      // <=> 0.c(0)c(1)...c(q-1) * 10^21 > 0x05, 1<=q<=34
504
      // <=> C * 10^(21-q) > 0x05, 1<=q<=34
505
      if (q == 21) {
506
        // C > 5 
507
        if (C1.w[1] != 0 || C1.w[0] > 0x05ull) {
508
          // set invalid flag
509
          *pfpsf |= INVALID_EXCEPTION;
510
          // return Integer Indefinite
511
          res = 0x8000000000000000ull;
512
          BID_RETURN (res);
513
        }
514
        // else cases that can be rounded to 64-bit unsigned int fall through
515
        // to '1 <= q + exp <= 20'
516
      } else {
517
        // if 1 <= q <= 20
518
        //   C * 10^(21-q) > 5 is true because C >= 1 and 10^(21-q) >= 10
519
        // if 22 <= q <= 34 => 1 <= q - 21 <= 13
520
        //   C > 5 * 10^(q-21) is true because C > 2^64 and 5*10^(q-21) < 2^64
521
        // set invalid flag
522
        *pfpsf |= INVALID_EXCEPTION;
523
        // return Integer Indefinite
524
        res = 0x8000000000000000ull;
525
        BID_RETURN (res);
526
      }
527
    } else {    // if n > 0 and q + exp = 20
528
      // if n >= 2^64 - 1/2 then n is too large
529
      // <=> c(0)c(1)...c(19).c(20)...c(q-1) >= 2^64-1/2
530
      // <=> 0.c(0)c(1)...c(19)c(20)...c(q-1) * 10^20 >= 2^64-1/2
531
      // <=> 0.c(0)c(1)...c(19)c(20)...c(q-1) * 10^21 >= 5*(2^65-1)
532
      // <=> C * 10^(21-q) >= 0x9fffffffffffffffb, 1<=q<=34
533
      if (q == 1) {
534
        // C * 10^20 >= 0x9fffffffffffffffb
535
        __mul_128x64_to_128 (C, C1.w[0], ten2k128[0]);    // 10^20 * C
536
        if (C.w[1] > 0x09 || (C.w[1] == 0x09
537
                              && C.w[0] >= 0xfffffffffffffffbull)) {
538
          // set invalid flag
539
          *pfpsf |= INVALID_EXCEPTION;
540
          // return Integer Indefinite
541
          res = 0x8000000000000000ull;
542
          BID_RETURN (res);
543
        }
544
        // else cases that can be rounded to a 64-bit int fall through
545
        // to '1 <= q + exp <= 20'
546
      } else if (q <= 19) {
547
        // C * 10^(21-q) >= 0x9fffffffffffffffb
548
        __mul_64x64_to_128MACH (C, C1.w[0], ten2k64[21 - q]);
549
        if (C.w[1] > 0x09 || (C.w[1] == 0x09
550
                              && C.w[0] >= 0xfffffffffffffffbull)) {
551
          // set invalid flag
552
          *pfpsf |= INVALID_EXCEPTION;
553
          // return Integer Indefinite
554
          res = 0x8000000000000000ull;
555
          BID_RETURN (res);
556
        }
557
        // else cases that can be rounded to a 64-bit int fall through
558
        // to '1 <= q + exp <= 20'
559
      } else if (q == 20) {
560
        // C * 10 >= 0x9fffffffffffffffb <=> C * 2 > 1ffffffffffffffff
561
        C.w[0] = C1.w[0] + C1.w[0];
562
        C.w[1] = C1.w[1] + C1.w[1];
563
        if (C.w[0] < C1.w[0])
564
          C.w[1]++;
565
        if (C.w[1] > 0x01 || (C.w[1] == 0x01
566
                              && C.w[0] >= 0xffffffffffffffffull)) {
567
          // set invalid flag
568
          *pfpsf |= INVALID_EXCEPTION;
569
          // return Integer Indefinite
570
          res = 0x8000000000000000ull;
571
          BID_RETURN (res);
572
        }
573
        // else cases that can be rounded to a 64-bit int fall through
574
        // to '1 <= q + exp <= 20'
575
      } else if (q == 21) {
576
        // C >= 0x9fffffffffffffffb
577
        if (C1.w[1] > 0x09 || (C1.w[1] == 0x09
578
                               && C1.w[0] >= 0xfffffffffffffffbull)) {
579
          // set invalid flag
580
          *pfpsf |= INVALID_EXCEPTION;
581
          // return Integer Indefinite
582
          res = 0x8000000000000000ull;
583
          BID_RETURN (res);
584
        }
585
        // else cases that can be rounded to a 64-bit int fall through
586
        // to '1 <= q + exp <= 20'
587
      } else {  // if 22 <= q <= 34 => 1 <= q - 21 <= 13
588
        // C  >= 10^(q-21) * 0x9fffffffffffffffb max 44 bits x 68 bits
589
        C.w[1] = 0x09;
590
        C.w[0] = 0xfffffffffffffffbull;
591
        __mul_128x64_to_128 (C, ten2k64[q - 21], C);
592
        if (C1.w[1] > C.w[1]
593
            || (C1.w[1] == C.w[1] && C1.w[0] >= C.w[0])) {
594
          // set invalid flag
595
          *pfpsf |= INVALID_EXCEPTION;
596
          // return Integer Indefinite
597
          res = 0x8000000000000000ull;
598
          BID_RETURN (res);
599
        }
600
        // else cases that can be rounded to a 64-bit int fall through
601
        // to '1 <= q + exp <= 20'
602
      }
603
    }
604
  }
605
  // n is not too large to be converted to int64 if -1/2 <= n < 2^64 - 1/2
606
  // Note: some of the cases tested for above fall through to this point
607
  if ((q + exp) < 0) {   // n = +/-0.0...c(0)c(1)...c(q-1)
608
    // set inexact flag
609
    *pfpsf |= INEXACT_EXCEPTION;
610
    // return 0
611
    res = 0x0000000000000000ull;
612
    BID_RETURN (res);
613
  } else if ((q + exp) == 0) {   // n = +/-0.c(0)c(1)...c(q-1)
614
    // if 0.c(0)c(1)...c(q-1) <= 0.5 <=> c(0)c(1)...c(q-1) <= 5 * 10^(q-1)
615
    //   res = 0
616
    // else if x > 0
617
    //   res = +1
618
    // else // if x < 0
619
    //   invalid exc
620
    ind = q - 1;
621
    if (ind <= 18) {    // 0 <= ind <= 18
622
      if ((C1.w[1] == 0) && (C1.w[0] <= midpoint64[ind])) {
623
        res = 0x0000000000000000ull;    // return 0
624
      } else if (!x_sign) {     // n > 0
625
        res = 0x00000001;       // return +1
626
      } else {
627
        res = 0x8000000000000000ull;
628
        *pfpsf |= INVALID_EXCEPTION;
629
        BID_RETURN (res);
630
      }
631
    } else {    // 19 <= ind <= 33
632
      if ((C1.w[1] < midpoint128[ind - 19].w[1])
633
          || ((C1.w[1] == midpoint128[ind - 19].w[1])
634
              && (C1.w[0] <= midpoint128[ind - 19].w[0]))) {
635
        res = 0x0000000000000000ull;    // return 0
636
      } else if (!x_sign) {     // n > 0
637
        res = 0x00000001;       // return +1
638
      } else {
639
        res = 0x8000000000000000ull;
640
        *pfpsf |= INVALID_EXCEPTION;
641
        BID_RETURN (res);
642
      }
643
    }
644
    // set inexact flag
645
    *pfpsf |= INEXACT_EXCEPTION;
646
  } else {      // if (1 <= q + exp <= 20, 1 <= q <= 34, -33 <= exp <= 19)
647
    // x <= -1 or 1 <= x < 2^64-1/2 so if positive x can be rounded
648
    // to nearest to a 64-bit unsigned signed integer
649
    if (x_sign) {       // x <= -1
650
      // set invalid flag
651
      *pfpsf |= INVALID_EXCEPTION;
652
      // return Integer Indefinite
653
      res = 0x8000000000000000ull;
654
      BID_RETURN (res);
655
    }
656
    // 1 <= x < 2^64-1/2 so x can be rounded
657
    // to nearest to a 64-bit unsigned integer
658
    if (exp < 0) {       // 2 <= q <= 34, -33 <= exp <= -1, 1 <= q + exp <= 20
659
      ind = -exp;       // 1 <= ind <= 33; ind is a synonym for 'x'
660
      // chop off ind digits from the lower part of C1
661
      // C1 = C1 + 1/2 * 10^ind where the result C1 fits in 127 bits
662
      tmp64 = C1.w[0];
663
      if (ind <= 19) {
664
        C1.w[0] = C1.w[0] + midpoint64[ind - 1];
665
      } else {
666
        C1.w[0] = C1.w[0] + midpoint128[ind - 20].w[0];
667
        C1.w[1] = C1.w[1] + midpoint128[ind - 20].w[1];
668
      }
669
      if (C1.w[0] < tmp64)
670
        C1.w[1]++;
671
      // calculate C* and f*
672
      // C* is actually floor(C*) in this case
673
      // C* and f* need shifting and masking, as shown by
674
      // shiftright128[] and maskhigh128[]
675
      // 1 <= x <= 33
676
      // kx = 10^(-x) = ten2mk128[ind - 1]
677
      // C* = (C1 + 1/2 * 10^x) * 10^(-x)
678
      // the approximation of 10^(-x) was rounded up to 118 bits
679
      __mul_128x128_to_256 (P256, C1, ten2mk128[ind - 1]);
680
      if (ind - 1 <= 21) {      // 0 <= ind - 1 <= 21
681
        Cstar.w[1] = P256.w[3];
682
        Cstar.w[0] = P256.w[2];
683
        fstar.w[3] = 0;
684
        fstar.w[2] = P256.w[2] & maskhigh128[ind - 1];
685
        fstar.w[1] = P256.w[1];
686
        fstar.w[0] = P256.w[0];
687
      } else {  // 22 <= ind - 1 <= 33
688
        Cstar.w[1] = 0;
689
        Cstar.w[0] = P256.w[3];
690
        fstar.w[3] = P256.w[3] & maskhigh128[ind - 1];
691
        fstar.w[2] = P256.w[2];
692
        fstar.w[1] = P256.w[1];
693
        fstar.w[0] = P256.w[0];
694
      }
695
      // the top Ex bits of 10^(-x) are T* = ten2mk128trunc[ind], e.g.
696
      // if x=1, T*=ten2mk128trunc[0]=0x19999999999999999999999999999999
697
      // if (0 < f* < 10^(-x)) then the result is a midpoint
698
      //   if floor(C*) is even then C* = floor(C*) - logical right
699
      //       shift; C* has p decimal digits, correct by Prop. 1)
700
      //   else if floor(C*) is odd C* = floor(C*)-1 (logical right
701
      //       shift; C* has p decimal digits, correct by Pr. 1)
702
      // else
703
      //   C* = floor(C*) (logical right shift; C has p decimal digits,
704
      //       correct by Property 1)
705
      // n = C* * 10^(e+x)
706
 
707
      // shift right C* by Ex-128 = shiftright128[ind]
708
      shift = shiftright128[ind - 1];   // 0 <= shift <= 102
709
      if (ind - 1 <= 21) {      // 0 <= ind - 1 <= 21
710
        Cstar.w[0] =
711
          (Cstar.w[0] >> shift) | (Cstar.w[1] << (64 - shift));
712
        // redundant, it will be 0! Cstar.w[1] = (Cstar.w[1] >> shift);
713
      } else {  // 22 <= ind - 1 <= 33
714
        Cstar.w[0] = (Cstar.w[0] >> (shift - 64));        // 2 <= shift - 64 <= 38
715
      }
716
      // determine inexactness of the rounding of C*
717
      // if (0 < f* - 1/2 < 10^(-x)) then
718
      //   the result is exact
719
      // else // if (f* - 1/2 > T*) then
720
      //   the result is inexact
721
      if (ind - 1 <= 2) {
722
        if (fstar.w[1] > 0x8000000000000000ull ||
723
            (fstar.w[1] == 0x8000000000000000ull
724
             && fstar.w[0] > 0x0ull)) {
725
          // f* > 1/2 and the result may be exact
726
          tmp64 = fstar.w[1] - 0x8000000000000000ull;   // f* - 1/2
727
          if (tmp64 > ten2mk128trunc[ind - 1].w[1]
728
              || (tmp64 == ten2mk128trunc[ind - 1].w[1]
729
                  && fstar.w[0] >= ten2mk128trunc[ind - 1].w[0])) {
730
            // set the inexact flag
731
            *pfpsf |= INEXACT_EXCEPTION;
732
          }     // else the result is exact
733
        } else {        // the result is inexact; f2* <= 1/2
734
          // set the inexact flag
735
          *pfpsf |= INEXACT_EXCEPTION;
736
        }
737
      } else if (ind - 1 <= 21) {       // if 3 <= ind <= 21
738
        if (fstar.w[3] > 0x0 ||
739
            (fstar.w[3] == 0x0 && fstar.w[2] > onehalf128[ind - 1]) ||
740
            (fstar.w[3] == 0x0 && fstar.w[2] == onehalf128[ind - 1] &&
741
             (fstar.w[1] || fstar.w[0]))) {
742
          // f2* > 1/2 and the result may be exact
743
          // Calculate f2* - 1/2
744
          tmp64 = fstar.w[2] - onehalf128[ind - 1];
745
          tmp64A = fstar.w[3];
746
          if (tmp64 > fstar.w[2])
747
            tmp64A--;
748
          if (tmp64A || tmp64
749
              || fstar.w[1] > ten2mk128trunc[ind - 1].w[1]
750
              || (fstar.w[1] == ten2mk128trunc[ind - 1].w[1]
751
                  && fstar.w[0] > ten2mk128trunc[ind - 1].w[0])) {
752
            // set the inexact flag
753
            *pfpsf |= INEXACT_EXCEPTION;
754
          }     // else the result is exact
755
        } else {        // the result is inexact; f2* <= 1/2
756
          // set the inexact flag
757
          *pfpsf |= INEXACT_EXCEPTION;
758
        }
759
      } else {  // if 22 <= ind <= 33
760
        if (fstar.w[3] > onehalf128[ind - 1] ||
761
            (fstar.w[3] == onehalf128[ind - 1] &&
762
             (fstar.w[2] || fstar.w[1] || fstar.w[0]))) {
763
          // f2* > 1/2 and the result may be exact
764
          // Calculate f2* - 1/2
765
          tmp64 = fstar.w[3] - onehalf128[ind - 1];
766
          if (tmp64 || fstar.w[2]
767
              || fstar.w[1] > ten2mk128trunc[ind - 1].w[1]
768
              || (fstar.w[1] == ten2mk128trunc[ind - 1].w[1]
769
                  && fstar.w[0] > ten2mk128trunc[ind - 1].w[0])) {
770
            // set the inexact flag
771
            *pfpsf |= INEXACT_EXCEPTION;
772
          }     // else the result is exact
773
        } else {        // the result is inexact; f2* <= 1/2
774
          // set the inexact flag
775
          *pfpsf |= INEXACT_EXCEPTION;
776
        }
777
      }
778
 
779
      // if the result was a midpoint it was rounded away from zero, so
780
      // it will need a correction
781
      // check for midpoints
782
      if ((fstar.w[3] == 0) && (fstar.w[2] == 0)
783
          && (fstar.w[1] || fstar.w[0])
784
          && (fstar.w[1] < ten2mk128trunc[ind - 1].w[1]
785
              || (fstar.w[1] == ten2mk128trunc[ind - 1].w[1]
786
                  && fstar.w[0] <= ten2mk128trunc[ind - 1].w[0]))) {
787
        // the result is a midpoint; round to nearest
788
        if (Cstar.w[0] & 0x01) { // Cstar.w[0] is odd; MP in [EVEN, ODD]
789
          // if floor(C*) is odd C = floor(C*) - 1; the result >= 1
790
          Cstar.w[0]--;  // Cstar.w[0] is now even
791
        }       // else MP in [ODD, EVEN]
792
      }
793
      res = Cstar.w[0];  // the result is positive
794
    } else if (exp == 0) {
795
      // 1 <= q <= 20, but x < 2^64 - 1/2 so in this case C1.w[1] has to be 0
796
      // res = C (exact)
797
      res = C1.w[0];
798
    } else {
799
      // if (exp > 0) => 1 <= exp <= 19, 1 <= q < 19, 2 <= q + exp <= 20
800
      // res = C * 10^exp (exact) - must fit in 64 bits
801
      res = C1.w[0] * ten2k64[exp];
802
    }
803
  }
804
}
805
 
806
BID_RETURN (res);
807
}
808
 
809
/*****************************************************************************
810
 *  BID128_to_uint64_floor
811
 ****************************************************************************/
812
 
813
BID128_FUNCTION_ARG1_NORND_CUSTOMRESTYPE (UINT64,
814
                                          bid128_to_uint64_floor, x)
815
 
816
     UINT64 res;
817
     UINT64 x_sign;
818
     UINT64 x_exp;
819
     int exp;                   // unbiased exponent
820
  // Note: C1.w[1], C1.w[0] represent x_signif_hi, x_signif_lo (all are UINT64)
821
     BID_UI64DOUBLE tmp1;
822
     unsigned int x_nr_bits;
823
     int q, ind, shift;
824
     UINT128 C1, C;
825
     UINT128 Cstar;             // C* represents up to 34 decimal digits ~ 113 bits
826
     UINT256 P256;
827
 
828
  // unpack x
829
x_sign = x.w[1] & MASK_SIGN;    // 0 for positive, MASK_SIGN for negative
830
x_exp = x.w[1] & MASK_EXP;      // biased and shifted left 49 bit positions
831
C1.w[1] = x.w[1] & MASK_COEFF;
832
C1.w[0] = x.w[0];
833
 
834
  // check for NaN or Infinity
835
if ((x.w[1] & MASK_SPECIAL) == MASK_SPECIAL) {
836
    // x is special
837
if ((x.w[1] & MASK_NAN) == MASK_NAN) {  // x is NAN
838
  if ((x.w[1] & MASK_SNAN) == MASK_SNAN) {      // x is SNAN
839
    // set invalid flag
840
    *pfpsf |= INVALID_EXCEPTION;
841
    // return Integer Indefinite
842
    res = 0x8000000000000000ull;
843
  } else {      // x is QNaN
844
    // set invalid flag
845
    *pfpsf |= INVALID_EXCEPTION;
846
    // return Integer Indefinite
847
    res = 0x8000000000000000ull;
848
  }
849
  BID_RETURN (res);
850
} else {        // x is not a NaN, so it must be infinity
851
  if (!x_sign) {        // x is +inf
852
    // set invalid flag
853
    *pfpsf |= INVALID_EXCEPTION;
854
    // return Integer Indefinite
855
    res = 0x8000000000000000ull;
856
  } else {      // x is -inf
857
    // set invalid flag
858
    *pfpsf |= INVALID_EXCEPTION;
859
    // return Integer Indefinite
860
    res = 0x8000000000000000ull;
861
  }
862
  BID_RETURN (res);
863
}
864
}
865
  // check for non-canonical values (after the check for special values)
866
if ((C1.w[1] > 0x0001ed09bead87c0ull)
867
    || (C1.w[1] == 0x0001ed09bead87c0ull
868
        && (C1.w[0] > 0x378d8e63ffffffffull))
869
    || ((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull)) {
870
  res = 0x0000000000000000ull;
871
  BID_RETURN (res);
872
} else if ((C1.w[1] == 0x0ull) && (C1.w[0] == 0x0ull)) {
873
  // x is 0
874
  res = 0x0000000000000000ull;
875
  BID_RETURN (res);
876
} else {        // x is not special and is not zero
877
 
878
  // if n < 0 then n cannot be converted to uint64 with RM
879
  if (x_sign) { // if n < 0 and q + exp = 20
880
    // too large if c(0)c(1)...c(19).c(20)...c(q-1) > 0
881
    // set invalid flag
882
    *pfpsf |= INVALID_EXCEPTION;
883
    // return Integer Indefinite
884
    res = 0x8000000000000000ull;
885
    BID_RETURN (res);
886
  }
887
  // q = nr. of decimal digits in x
888
  //  determine first the nr. of bits in x
889
  if (C1.w[1] == 0) {
890
    if (C1.w[0] >= 0x0020000000000000ull) {      // x >= 2^53
891
      // split the 64-bit value in two 32-bit halves to avoid rounding errors
892
      if (C1.w[0] >= 0x0000000100000000ull) {    // x >= 2^32
893
        tmp1.d = (double) (C1.w[0] >> 32);       // exact conversion
894
        x_nr_bits =
895
          33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
896
      } else {  // x < 2^32
897
        tmp1.d = (double) (C1.w[0]);     // exact conversion
898
        x_nr_bits =
899
          1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
900
      }
901
    } else {    // if x < 2^53
902
      tmp1.d = (double) C1.w[0]; // exact conversion
903
      x_nr_bits =
904
        1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
905
    }
906
  } else {      // C1.w[1] != 0 => nr. bits = 64 + nr_bits (C1.w[1])
907
    tmp1.d = (double) C1.w[1];  // exact conversion
908
    x_nr_bits =
909
      65 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
910
  }
911
  q = nr_digits[x_nr_bits - 1].digits;
912
  if (q == 0) {
913
    q = nr_digits[x_nr_bits - 1].digits1;
914
    if (C1.w[1] > nr_digits[x_nr_bits - 1].threshold_hi
915
        || (C1.w[1] == nr_digits[x_nr_bits - 1].threshold_hi
916
            && C1.w[0] >= nr_digits[x_nr_bits - 1].threshold_lo))
917
      q++;
918
  }
919
  exp = (x_exp >> 49) - 6176;
920
  if ((q + exp) > 20) { // x >= 10^20 ~= 2^66.45... (cannot fit in 64 bits)
921
    // set invalid flag
922
    *pfpsf |= INVALID_EXCEPTION;
923
    // return Integer Indefinite
924
    res = 0x8000000000000000ull;
925
    BID_RETURN (res);
926
  } else if ((q + exp) == 20) { // x = c(0)c(1)...c(19).c(20)...c(q-1)
927
    // in this case 2^63.11... ~= 10^19 <= x < 10^20 ~= 2^66.43...
928
    // so x rounded to an integer may or may not fit in an unsigned 64-bit int
929
    // the cases that do not fit are identified here; the ones that fit
930
    // fall through and will be handled with other cases further,
931
    // under '1 <= q + exp <= 20'
932
    // if n > 0 and q + exp = 20
933
    // if n >= 2^64 then n is too large
934
    // <=> c(0)c(1)...c(19).c(20)...c(q-1) >= 2^64
935
    // <=> 0.c(0)c(1)...c(19)c(20)...c(q-1) * 10^20 >= 2^64
936
    // <=> 0.c(0)c(1)...c(19)c(20)...c(q-1) * 10^21 >= 5*2^65
937
    // <=> C * 10^(21-q) >= 0xa0000000000000000, 1<=q<=34
938
    if (q == 1) {
939
      // C * 10^20 >= 0xa0000000000000000
940
      __mul_128x64_to_128 (C, C1.w[0], ten2k128[0]);      // 10^20 * C
941
      if (C.w[1] >= 0x0a) {
942
        // actually C.w[1] == 0x0a && C.w[0] >= 0x0000000000000000ull) {
943
        // set invalid flag
944
        *pfpsf |= INVALID_EXCEPTION;
945
        // return Integer Indefinite
946
        res = 0x8000000000000000ull;
947
        BID_RETURN (res);
948
      }
949
      // else cases that can be rounded to a 64-bit int fall through
950
      // to '1 <= q + exp <= 20'
951
    } else if (q <= 19) {
952
      // C * 10^(21-q) >= 0xa0000000000000000
953
      __mul_64x64_to_128MACH (C, C1.w[0], ten2k64[21 - q]);
954
      if (C.w[1] >= 0x0a) {
955
        // actually C.w[1] == 0x0a && C.w[0] >= 0x0000000000000000ull) {
956
        // set invalid flag
957
        *pfpsf |= INVALID_EXCEPTION;
958
        // return Integer Indefinite
959
        res = 0x8000000000000000ull;
960
        BID_RETURN (res);
961
      }
962
      // else cases that can be rounded to a 64-bit int fall through
963
      // to '1 <= q + exp <= 20'
964
    } else if (q == 20) {
965
      // C >= 0x10000000000000000
966
      if (C1.w[1] >= 0x01) {
967
        // actually C1.w[1] == 0x01 && C1.w[0] >= 0x0000000000000000ull) {
968
        // set invalid flag
969
        *pfpsf |= INVALID_EXCEPTION;
970
        // return Integer Indefinite
971
        res = 0x8000000000000000ull;
972
        BID_RETURN (res);
973
      }
974
      // else cases that can be rounded to a 64-bit int fall through
975
      // to '1 <= q + exp <= 20'
976
    } else if (q == 21) {
977
      // C >= 0xa0000000000000000
978
      if (C1.w[1] >= 0x0a) {
979
        // actually C1.w[1] == 0x0a && C1.w[0] >= 0x0000000000000000ull) {
980
        // set invalid flag
981
        *pfpsf |= INVALID_EXCEPTION;
982
        // return Integer Indefinite
983
        res = 0x8000000000000000ull;
984
        BID_RETURN (res);
985
      }
986
      // else cases that can be rounded to a 64-bit int fall through
987
      // to '1 <= q + exp <= 20'
988
    } else {    // if 22 <= q <= 34 => 1 <= q - 21 <= 13
989
      // C  >= 10^(q-21) * 0xa0000000000000000 max 44 bits x 68 bits
990
      C.w[1] = 0x0a;
991
      C.w[0] = 0x0000000000000000ull;
992
      __mul_128x64_to_128 (C, ten2k64[q - 21], C);
993
      if (C1.w[1] > C.w[1] || (C1.w[1] == C.w[1] && C1.w[0] >= C.w[0])) {
994
        // set invalid flag
995
        *pfpsf |= INVALID_EXCEPTION;
996
        // return Integer Indefinite
997
        res = 0x8000000000000000ull;
998
        BID_RETURN (res);
999
      }
1000
      // else cases that can be rounded to a 64-bit int fall through
1001
      // to '1 <= q + exp <= 20'
1002
    }
1003
  }
1004
  // n is not too large to be converted to int64 if 0 <= n < 2^64
1005
  // Note: some of the cases tested for above fall through to this point
1006
  if ((q + exp) <= 0) {  // n = +0.[0...0]c(0)c(1)...c(q-1)
1007
    // return 0
1008
    res = 0x0000000000000000ull;
1009
    BID_RETURN (res);
1010
  } else {      // if (1 <= q + exp <= 20, 1 <= q <= 34, -33 <= exp <= 19)
1011
    // 1 <= x < 2^64 so x can be rounded
1012
    // down to a 64-bit unsigned signed integer
1013
    if (exp < 0) {       // 2 <= q <= 34, -33 <= exp <= -1, 1 <= q + exp <= 20
1014
      ind = -exp;       // 1 <= ind <= 33; ind is a synonym for 'x'
1015
      // chop off ind digits from the lower part of C1
1016
      // C1 fits in 127 bits
1017
      // calculate C* and f*
1018
      // C* is actually floor(C*) in this case
1019
      // C* and f* need shifting and masking, as shown by
1020
      // shiftright128[] and maskhigh128[]
1021
      // 1 <= x <= 33
1022
      // kx = 10^(-x) = ten2mk128[ind - 1]
1023
      // C* = C1 * 10^(-x)
1024
      // the approximation of 10^(-x) was rounded up to 118 bits
1025
      __mul_128x128_to_256 (P256, C1, ten2mk128[ind - 1]);
1026
      if (ind - 1 <= 21) {      // 0 <= ind - 1 <= 21
1027
        Cstar.w[1] = P256.w[3];
1028
        Cstar.w[0] = P256.w[2];
1029
      } else {  // 22 <= ind - 1 <= 33
1030
        Cstar.w[1] = 0;
1031
        Cstar.w[0] = P256.w[3];
1032
      }
1033
      // the top Ex bits of 10^(-x) are T* = ten2mk128trunc[ind], e.g.
1034
      // if x=1, T*=ten2mk128trunc[0]=0x19999999999999999999999999999999
1035
      // C* = floor(C*) (logical right shift; C has p decimal digits,
1036
      //     correct by Property 1)
1037
      // n = C* * 10^(e+x)
1038
 
1039
      // shift right C* by Ex-128 = shiftright128[ind]
1040
      shift = shiftright128[ind - 1];   // 0 <= shift <= 102
1041
      if (ind - 1 <= 21) {      // 0 <= ind - 1 <= 21
1042
        Cstar.w[0] =
1043
          (Cstar.w[0] >> shift) | (Cstar.w[1] << (64 - shift));
1044
        // redundant, it will be 0! Cstar.w[1] = (Cstar.w[1] >> shift);
1045
      } else {  // 22 <= ind - 1 <= 33
1046
        Cstar.w[0] = (Cstar.w[0] >> (shift - 64));        // 2 <= shift - 64 <= 38
1047
      }
1048
      res = Cstar.w[0];  // the result is positive
1049
    } else if (exp == 0) {
1050
      // 1 <= q <= 20, but x < 2^64 - 1/2 so in this case C1.w[1] has to be 0
1051
      // res = C (exact)
1052
      res = C1.w[0];
1053
    } else {
1054
      // if (exp > 0) => 1 <= exp <= 19, 1 <= q < 19, 2 <= q + exp <= 20
1055
      // res = C * 10^exp (exact) - must fit in 64 bits
1056
      res = C1.w[0] * ten2k64[exp];
1057
    }
1058
  }
1059
}
1060
 
1061
BID_RETURN (res);
1062
}
1063
 
1064
/*****************************************************************************
1065
 *  BID128_to_uint64_xfloor
1066
 ****************************************************************************/
1067
 
1068
BID128_FUNCTION_ARG1_NORND_CUSTOMRESTYPE (UINT64,
1069
                                          bid128_to_uint64_xfloor, x)
1070
 
1071
     UINT64 res;
1072
     UINT64 x_sign;
1073
     UINT64 x_exp;
1074
     int exp;                   // unbiased exponent
1075
  // Note: C1.w[1], C1.w[0] represent x_signif_hi, x_signif_lo (all are UINT64)
1076
     BID_UI64DOUBLE tmp1;
1077
     unsigned int x_nr_bits;
1078
     int q, ind, shift;
1079
     UINT128 C1, C;
1080
     UINT128 Cstar;             // C* represents up to 34 decimal digits ~ 113 bits
1081
     UINT256 fstar;
1082
     UINT256 P256;
1083
 
1084
  // unpack x
1085
x_sign = x.w[1] & MASK_SIGN;    // 0 for positive, MASK_SIGN for negative
1086
x_exp = x.w[1] & MASK_EXP;      // biased and shifted left 49 bit positions
1087
C1.w[1] = x.w[1] & MASK_COEFF;
1088
C1.w[0] = x.w[0];
1089
 
1090
  // check for NaN or Infinity
1091
if ((x.w[1] & MASK_SPECIAL) == MASK_SPECIAL) {
1092
    // x is special
1093
if ((x.w[1] & MASK_NAN) == MASK_NAN) {  // x is NAN
1094
  if ((x.w[1] & MASK_SNAN) == MASK_SNAN) {      // x is SNAN
1095
    // set invalid flag
1096
    *pfpsf |= INVALID_EXCEPTION;
1097
    // return Integer Indefinite
1098
    res = 0x8000000000000000ull;
1099
  } else {      // x is QNaN
1100
    // set invalid flag
1101
    *pfpsf |= INVALID_EXCEPTION;
1102
    // return Integer Indefinite
1103
    res = 0x8000000000000000ull;
1104
  }
1105
  BID_RETURN (res);
1106
} else {        // x is not a NaN, so it must be infinity
1107
  if (!x_sign) {        // x is +inf
1108
    // set invalid flag
1109
    *pfpsf |= INVALID_EXCEPTION;
1110
    // return Integer Indefinite
1111
    res = 0x8000000000000000ull;
1112
  } else {      // x is -inf
1113
    // set invalid flag
1114
    *pfpsf |= INVALID_EXCEPTION;
1115
    // return Integer Indefinite
1116
    res = 0x8000000000000000ull;
1117
  }
1118
  BID_RETURN (res);
1119
}
1120
}
1121
  // check for non-canonical values (after the check for special values)
1122
if ((C1.w[1] > 0x0001ed09bead87c0ull)
1123
    || (C1.w[1] == 0x0001ed09bead87c0ull
1124
        && (C1.w[0] > 0x378d8e63ffffffffull))
1125
    || ((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull)) {
1126
  res = 0x0000000000000000ull;
1127
  BID_RETURN (res);
1128
} else if ((C1.w[1] == 0x0ull) && (C1.w[0] == 0x0ull)) {
1129
  // x is 0
1130
  res = 0x0000000000000000ull;
1131
  BID_RETURN (res);
1132
} else {        // x is not special and is not zero
1133
 
1134
  // if n < 0 then n cannot be converted to uint64 with RM
1135
  if (x_sign) { // if n < 0 and q + exp = 20
1136
    // too large if c(0)c(1)...c(19).c(20)...c(q-1) > 0
1137
    // set invalid flag
1138
    *pfpsf |= INVALID_EXCEPTION;
1139
    // return Integer Indefinite
1140
    res = 0x8000000000000000ull;
1141
    BID_RETURN (res);
1142
  }
1143
  // q = nr. of decimal digits in x
1144
  //  determine first the nr. of bits in x
1145
  if (C1.w[1] == 0) {
1146
    if (C1.w[0] >= 0x0020000000000000ull) {      // x >= 2^53
1147
      // split the 64-bit value in two 32-bit halves to avoid rounding errors
1148
      if (C1.w[0] >= 0x0000000100000000ull) {    // x >= 2^32
1149
        tmp1.d = (double) (C1.w[0] >> 32);       // exact conversion
1150
        x_nr_bits =
1151
          33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
1152
      } else {  // x < 2^32
1153
        tmp1.d = (double) (C1.w[0]);     // exact conversion
1154
        x_nr_bits =
1155
          1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
1156
      }
1157
    } else {    // if x < 2^53
1158
      tmp1.d = (double) C1.w[0]; // exact conversion
1159
      x_nr_bits =
1160
        1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
1161
    }
1162
  } else {      // C1.w[1] != 0 => nr. bits = 64 + nr_bits (C1.w[1])
1163
    tmp1.d = (double) C1.w[1];  // exact conversion
1164
    x_nr_bits =
1165
      65 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
1166
  }
1167
  q = nr_digits[x_nr_bits - 1].digits;
1168
  if (q == 0) {
1169
    q = nr_digits[x_nr_bits - 1].digits1;
1170
    if (C1.w[1] > nr_digits[x_nr_bits - 1].threshold_hi
1171
        || (C1.w[1] == nr_digits[x_nr_bits - 1].threshold_hi
1172
            && C1.w[0] >= nr_digits[x_nr_bits - 1].threshold_lo))
1173
      q++;
1174
  }
1175
  exp = (x_exp >> 49) - 6176;
1176
  if ((q + exp) > 20) { // x >= 10^20 ~= 2^66.45... (cannot fit in 64 bits)
1177
    // set invalid flag
1178
    *pfpsf |= INVALID_EXCEPTION;
1179
    // return Integer Indefinite
1180
    res = 0x8000000000000000ull;
1181
    BID_RETURN (res);
1182
  } else if ((q + exp) == 20) { // x = c(0)c(1)...c(19).c(20)...c(q-1)
1183
    // in this case 2^63.11... ~= 10^19 <= x < 10^20 ~= 2^66.43...
1184
    // so x rounded to an integer may or may not fit in an unsigned 64-bit int
1185
    // the cases that do not fit are identified here; the ones that fit
1186
    // fall through and will be handled with other cases further,
1187
    // under '1 <= q + exp <= 20'
1188
    // if n > 0 and q + exp = 20
1189
    // if n >= 2^64 then n is too large
1190
    // <=> c(0)c(1)...c(19).c(20)...c(q-1) >= 2^64
1191
    // <=> 0.c(0)c(1)...c(19)c(20)...c(q-1) * 10^20 >= 2^64
1192
    // <=> 0.c(0)c(1)...c(19)c(20)...c(q-1) * 10^21 >= 5*2^65
1193
    // <=> C * 10^(21-q) >= 0xa0000000000000000, 1<=q<=34
1194
    if (q == 1) {
1195
      // C * 10^20 >= 0xa0000000000000000
1196
      __mul_128x64_to_128 (C, C1.w[0], ten2k128[0]);      // 10^20 * C
1197
      if (C.w[1] >= 0x0a) {
1198
        // actually C.w[1] == 0x0a && C.w[0] >= 0x0000000000000000ull) {
1199
        // set invalid flag
1200
        *pfpsf |= INVALID_EXCEPTION;
1201
        // return Integer Indefinite
1202
        res = 0x8000000000000000ull;
1203
        BID_RETURN (res);
1204
      }
1205
      // else cases that can be rounded to a 64-bit int fall through
1206
      // to '1 <= q + exp <= 20'
1207
    } else if (q <= 19) {
1208
      // C * 10^(21-q) >= 0xa0000000000000000
1209
      __mul_64x64_to_128MACH (C, C1.w[0], ten2k64[21 - q]);
1210
      if (C.w[1] >= 0x0a) {
1211
        // actually C.w[1] == 0x0a && C.w[0] >= 0x0000000000000000ull) {
1212
        // set invalid flag
1213
        *pfpsf |= INVALID_EXCEPTION;
1214
        // return Integer Indefinite
1215
        res = 0x8000000000000000ull;
1216
        BID_RETURN (res);
1217
      }
1218
      // else cases that can be rounded to a 64-bit int fall through
1219
      // to '1 <= q + exp <= 20'
1220
    } else if (q == 20) {
1221
      // C >= 0x10000000000000000
1222
      if (C1.w[1] >= 0x01) {
1223
        // actually C1.w[1] == 0x01 && C1.w[0] >= 0x0000000000000000ull) {
1224
        // set invalid flag
1225
        *pfpsf |= INVALID_EXCEPTION;
1226
        // return Integer Indefinite
1227
        res = 0x8000000000000000ull;
1228
        BID_RETURN (res);
1229
      }
1230
      // else cases that can be rounded to a 64-bit int fall through
1231
      // to '1 <= q + exp <= 20'
1232
    } else if (q == 21) {
1233
      // C >= 0xa0000000000000000
1234
      if (C1.w[1] >= 0x0a) {
1235
        // actually C1.w[1] == 0x0a && C1.w[0] >= 0x0000000000000000ull) {
1236
        // set invalid flag
1237
        *pfpsf |= INVALID_EXCEPTION;
1238
        // return Integer Indefinite
1239
        res = 0x8000000000000000ull;
1240
        BID_RETURN (res);
1241
      }
1242
      // else cases that can be rounded to a 64-bit int fall through
1243
      // to '1 <= q + exp <= 20'
1244
    } else {    // if 22 <= q <= 34 => 1 <= q - 21 <= 13
1245
      // C  >= 10^(q-21) * 0xa0000000000000000 max 44 bits x 68 bits
1246
      C.w[1] = 0x0a;
1247
      C.w[0] = 0x0000000000000000ull;
1248
      __mul_128x64_to_128 (C, ten2k64[q - 21], C);
1249
      if (C1.w[1] > C.w[1] || (C1.w[1] == C.w[1] && C1.w[0] >= C.w[0])) {
1250
        // set invalid flag
1251
        *pfpsf |= INVALID_EXCEPTION;
1252
        // return Integer Indefinite
1253
        res = 0x8000000000000000ull;
1254
        BID_RETURN (res);
1255
      }
1256
      // else cases that can be rounded to a 64-bit int fall through
1257
      // to '1 <= q + exp <= 20'
1258
    }
1259
  }
1260
  // n is not too large to be converted to int64 if 0 <= n < 2^64
1261
  // Note: some of the cases tested for above fall through to this point
1262
  if ((q + exp) <= 0) {  // n = +0.[0...0]c(0)c(1)...c(q-1)
1263
    // set inexact flag
1264
    *pfpsf |= INEXACT_EXCEPTION;
1265
    // return 0
1266
    res = 0x0000000000000000ull;
1267
    BID_RETURN (res);
1268
  } else {      // if (1 <= q + exp <= 20, 1 <= q <= 34, -33 <= exp <= 19)
1269
    // 1 <= x < 2^64 so x can be rounded
1270
    // down to a 64-bit unsigned signed integer
1271
    if (exp < 0) {       // 2 <= q <= 34, -33 <= exp <= -1, 1 <= q + exp <= 20
1272
      ind = -exp;       // 1 <= ind <= 33; ind is a synonym for 'x'
1273
      // chop off ind digits from the lower part of C1
1274
      // C1 fits in 127 bits
1275
      // calculate C* and f*
1276
      // C* is actually floor(C*) in this case
1277
      // C* and f* need shifting and masking, as shown by
1278
      // shiftright128[] and maskhigh128[]
1279
      // 1 <= x <= 33
1280
      // kx = 10^(-x) = ten2mk128[ind - 1]
1281
      // C* = C1 * 10^(-x)
1282
      // the approximation of 10^(-x) was rounded up to 118 bits
1283
      __mul_128x128_to_256 (P256, C1, ten2mk128[ind - 1]);
1284
      if (ind - 1 <= 21) {      // 0 <= ind - 1 <= 21
1285
        Cstar.w[1] = P256.w[3];
1286
        Cstar.w[0] = P256.w[2];
1287
        fstar.w[3] = 0;
1288
        fstar.w[2] = P256.w[2] & maskhigh128[ind - 1];
1289
        fstar.w[1] = P256.w[1];
1290
        fstar.w[0] = P256.w[0];
1291
      } else {  // 22 <= ind - 1 <= 33
1292
        Cstar.w[1] = 0;
1293
        Cstar.w[0] = P256.w[3];
1294
        fstar.w[3] = P256.w[3] & maskhigh128[ind - 1];
1295
        fstar.w[2] = P256.w[2];
1296
        fstar.w[1] = P256.w[1];
1297
        fstar.w[0] = P256.w[0];
1298
      }
1299
      // the top Ex bits of 10^(-x) are T* = ten2mk128trunc[ind], e.g.
1300
      // if x=1, T*=ten2mk128trunc[0]=0x19999999999999999999999999999999
1301
      // C* = floor(C*) (logical right shift; C has p decimal digits,
1302
      //     correct by Property 1)
1303
      // n = C* * 10^(e+x)
1304
 
1305
      // shift right C* by Ex-128 = shiftright128[ind]
1306
      shift = shiftright128[ind - 1];   // 0 <= shift <= 102
1307
      if (ind - 1 <= 21) {      // 0 <= ind - 1 <= 21
1308
        Cstar.w[0] =
1309
          (Cstar.w[0] >> shift) | (Cstar.w[1] << (64 - shift));
1310
        // redundant, it will be 0! Cstar.w[1] = (Cstar.w[1] >> shift);
1311
      } else {  // 22 <= ind - 1 <= 33
1312
        Cstar.w[0] = (Cstar.w[0] >> (shift - 64));        // 2 <= shift - 64 <= 38
1313
      }
1314
      // determine inexactness of the rounding of C*
1315
      // if (0 < f* < 10^(-x)) then
1316
      //   the result is exact
1317
      // else // if (f* > T*) then
1318
      //   the result is inexact
1319
      if (ind - 1 <= 2) {
1320
        if (fstar.w[1] > ten2mk128trunc[ind - 1].w[1] ||
1321
            (fstar.w[1] == ten2mk128trunc[ind - 1].w[1] &&
1322
             fstar.w[0] > ten2mk128trunc[ind - 1].w[0])) {
1323
          // set the inexact flag
1324
          *pfpsf |= INEXACT_EXCEPTION;
1325
        }       // else the result is exact
1326
      } else if (ind - 1 <= 21) {       // if 3 <= ind <= 21
1327
        if (fstar.w[2] || fstar.w[1] > ten2mk128trunc[ind - 1].w[1]
1328
            || (fstar.w[1] == ten2mk128trunc[ind - 1].w[1]
1329
                && fstar.w[0] > ten2mk128trunc[ind - 1].w[0])) {
1330
          // set the inexact flag
1331
          *pfpsf |= INEXACT_EXCEPTION;
1332
        }       // else the result is exact
1333
      } else {  // if 22 <= ind <= 33
1334
        if (fstar.w[3] || fstar.w[2]
1335
            || fstar.w[1] > ten2mk128trunc[ind - 1].w[1]
1336
            || (fstar.w[1] == ten2mk128trunc[ind - 1].w[1]
1337
                && fstar.w[0] > ten2mk128trunc[ind - 1].w[0])) {
1338
          // set the inexact flag
1339
          *pfpsf |= INEXACT_EXCEPTION;
1340
        }       // else the result is exact
1341
      }
1342
 
1343
      res = Cstar.w[0];  // the result is positive
1344
    } else if (exp == 0) {
1345
      // 1 <= q <= 20, but x < 2^64 - 1/2 so in this case C1.w[1] has to be 0
1346
      // res = C (exact)
1347
      res = C1.w[0];
1348
    } else {
1349
      // if (exp > 0) => 1 <= exp <= 19, 1 <= q < 19, 2 <= q + exp <= 20
1350
      // res = C * 10^exp (exact) - must fit in 64 bits
1351
      res = C1.w[0] * ten2k64[exp];
1352
    }
1353
  }
1354
}
1355
 
1356
BID_RETURN (res);
1357
}
1358
 
1359
/*****************************************************************************
1360
 *  BID128_to_uint64_ceil
1361
 ****************************************************************************/
1362
 
1363
BID128_FUNCTION_ARG1_NORND_CUSTOMRESTYPE (UINT64, bid128_to_uint64_ceil,
1364
                                          x)
1365
 
1366
     UINT64 res;
1367
     UINT64 x_sign;
1368
     UINT64 x_exp;
1369
     int exp;                   // unbiased exponent
1370
  // Note: C1.w[1], C1.w[0] represent x_signif_hi, x_signif_lo (all are UINT64)
1371
     BID_UI64DOUBLE tmp1;
1372
     unsigned int x_nr_bits;
1373
     int q, ind, shift;
1374
     UINT128 C1, C;
1375
     UINT128 Cstar;             // C* represents up to 34 decimal digits ~ 113 bits
1376
     UINT256 fstar;
1377
     UINT256 P256;
1378
 
1379
  // unpack x
1380
x_sign = x.w[1] & MASK_SIGN;    // 0 for positive, MASK_SIGN for negative
1381
x_exp = x.w[1] & MASK_EXP;      // biased and shifted left 49 bit positions
1382
C1.w[1] = x.w[1] & MASK_COEFF;
1383
C1.w[0] = x.w[0];
1384
 
1385
  // check for NaN or Infinity
1386
if ((x.w[1] & MASK_SPECIAL) == MASK_SPECIAL) {
1387
    // x is special
1388
if ((x.w[1] & MASK_NAN) == MASK_NAN) {  // x is NAN
1389
  if ((x.w[1] & MASK_SNAN) == MASK_SNAN) {      // x is SNAN
1390
    // set invalid flag
1391
    *pfpsf |= INVALID_EXCEPTION;
1392
    // return Integer Indefinite
1393
    res = 0x8000000000000000ull;
1394
  } else {      // x is QNaN
1395
    // set invalid flag
1396
    *pfpsf |= INVALID_EXCEPTION;
1397
    // return Integer Indefinite
1398
    res = 0x8000000000000000ull;
1399
  }
1400
  BID_RETURN (res);
1401
} else {        // x is not a NaN, so it must be infinity
1402
  if (!x_sign) {        // x is +inf
1403
    // set invalid flag
1404
    *pfpsf |= INVALID_EXCEPTION;
1405
    // return Integer Indefinite
1406
    res = 0x8000000000000000ull;
1407
  } else {      // x is -inf
1408
    // set invalid flag
1409
    *pfpsf |= INVALID_EXCEPTION;
1410
    // return Integer Indefinite
1411
    res = 0x8000000000000000ull;
1412
  }
1413
  BID_RETURN (res);
1414
}
1415
}
1416
  // check for non-canonical values (after the check for special values)
1417
if ((C1.w[1] > 0x0001ed09bead87c0ull)
1418
    || (C1.w[1] == 0x0001ed09bead87c0ull
1419
        && (C1.w[0] > 0x378d8e63ffffffffull))
1420
    || ((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull)) {
1421
  res = 0x0000000000000000ull;
1422
  BID_RETURN (res);
1423
} else if ((C1.w[1] == 0x0ull) && (C1.w[0] == 0x0ull)) {
1424
  // x is 0
1425
  res = 0x0000000000000000ull;
1426
  BID_RETURN (res);
1427
} else {        // x is not special and is not zero
1428
 
1429
  // q = nr. of decimal digits in x
1430
  //  determine first the nr. of bits in x
1431
  if (C1.w[1] == 0) {
1432
    if (C1.w[0] >= 0x0020000000000000ull) {      // x >= 2^53
1433
      // split the 64-bit value in two 32-bit halves to avoid rounding errors
1434
      if (C1.w[0] >= 0x0000000100000000ull) {    // x >= 2^32
1435
        tmp1.d = (double) (C1.w[0] >> 32);       // exact conversion
1436
        x_nr_bits =
1437
          33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
1438
      } else {  // x < 2^32
1439
        tmp1.d = (double) (C1.w[0]);     // exact conversion
1440
        x_nr_bits =
1441
          1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
1442
      }
1443
    } else {    // if x < 2^53
1444
      tmp1.d = (double) C1.w[0]; // exact conversion
1445
      x_nr_bits =
1446
        1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
1447
    }
1448
  } else {      // C1.w[1] != 0 => nr. bits = 64 + nr_bits (C1.w[1])
1449
    tmp1.d = (double) C1.w[1];  // exact conversion
1450
    x_nr_bits =
1451
      65 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
1452
  }
1453
  q = nr_digits[x_nr_bits - 1].digits;
1454
  if (q == 0) {
1455
    q = nr_digits[x_nr_bits - 1].digits1;
1456
    if (C1.w[1] > nr_digits[x_nr_bits - 1].threshold_hi
1457
        || (C1.w[1] == nr_digits[x_nr_bits - 1].threshold_hi
1458
            && C1.w[0] >= nr_digits[x_nr_bits - 1].threshold_lo))
1459
      q++;
1460
  }
1461
  exp = (x_exp >> 49) - 6176;
1462
  if ((q + exp) > 20) { // x >= 10^20 ~= 2^66.45... (cannot fit in 64 bits)
1463
    // set invalid flag
1464
    *pfpsf |= INVALID_EXCEPTION;
1465
    // return Integer Indefinite
1466
    res = 0x8000000000000000ull;
1467
    BID_RETURN (res);
1468
  } else if ((q + exp) == 20) { // x = c(0)c(1)...c(19).c(20)...c(q-1)
1469
    // in this case 2^63.11... ~= 10^19 <= x < 10^20 ~= 2^66.43...
1470
    // so x rounded to an integer may or may not fit in an unsigned 64-bit int
1471
    // the cases that do not fit are identified here; the ones that fit
1472
    // fall through and will be handled with other cases further,
1473
    // under '1 <= q + exp <= 20'
1474
    if (x_sign) {       // if n < 0 and q + exp = 20
1475
      // if n <= -1 then n cannot be converted to uint64 with RZ
1476
      // too large if c(0)c(1)...c(19).c(20)...c(q-1) >= 1
1477
      // <=> 0.c(0)c(1)...c(q-1) * 10^21 >= 0x0a, 1<=q<=34
1478
      // <=> C * 10^(21-q) >= 0x0a, 1<=q<=34
1479
      if (q == 21) {
1480
        // C >= a 
1481
        if (C1.w[1] != 0 || C1.w[0] >= 0x0aull) {
1482
          // set invalid flag
1483
          *pfpsf |= INVALID_EXCEPTION;
1484
          // return Integer Indefinite
1485
          res = 0x8000000000000000ull;
1486
          BID_RETURN (res);
1487
        }
1488
        // else cases that can be rounded to 64-bit unsigned int fall through
1489
        // to '1 <= q + exp <= 20'
1490
      } else {
1491
        // if 1 <= q <= 20
1492
        //   C * 10^(21-q) >= a is true because C >= 1 and 10^(21-q) >= 10
1493
        // if 22 <= q <= 34 => 1 <= q - 21 <= 13
1494
        //  C >= a * 10^(q-21) is true because C > 2^64 and a*10^(q-21) < 2^64
1495
        // set invalid flag
1496
        *pfpsf |= INVALID_EXCEPTION;
1497
        // return Integer Indefinite
1498
        res = 0x8000000000000000ull;
1499
        BID_RETURN (res);
1500
      }
1501
    } else {    // if n > 0 and q + exp = 20
1502
      // if n > 2^64 - 1 then n is too large
1503
      // <=> c(0)c(1)...c(19).c(20)...c(q-1) > 2^64 - 1
1504
      // <=> 0.c(0)c(1)...c(19)c(20)...c(q-1) * 10^20 > 2^64 - 1
1505
      // <=> 0.c(0)c(1)...c(19)c(20)...c(q-1) * 10^21 > 10 * (2^64 - 1) 
1506
      // <=> C * 10^(21-q) > 0x9fffffffffffffff6, 1<=q<=34
1507
      if (q == 1) {
1508
        // C * 10^20 > 0x9fffffffffffffff6
1509
        __mul_128x64_to_128 (C, C1.w[0], ten2k128[0]);    // 10^20 * C
1510
        if (C.w[1] > 0x09 || (C.w[1] == 0x09
1511
                              && C.w[0] > 0xfffffffffffffff6ull)) {
1512
          // set invalid flag
1513
          *pfpsf |= INVALID_EXCEPTION;
1514
          // return Integer Indefinite
1515
          res = 0x8000000000000000ull;
1516
          BID_RETURN (res);
1517
        }
1518
        // else cases that can be rounded to a 64-bit int fall through
1519
        // to '1 <= q + exp <= 20'
1520
      } else if (q <= 19) {
1521
        // C * 10^(21-q) > 0x9fffffffffffffff6
1522
        __mul_64x64_to_128MACH (C, C1.w[0], ten2k64[21 - q]);
1523
        if (C.w[1] > 0x09 || (C.w[1] == 0x09
1524
                              && C.w[0] > 0xfffffffffffffff6ull)) {
1525
          // set invalid flag
1526
          *pfpsf |= INVALID_EXCEPTION;
1527
          // return Integer Indefinite
1528
          res = 0x8000000000000000ull;
1529
          BID_RETURN (res);
1530
        }
1531
        // else cases that can be rounded to a 64-bit int fall through
1532
        // to '1 <= q + exp <= 20'
1533
      } else if (q == 20) {
1534
        // C > 0xffffffffffffffff
1535
        if (C1.w[1]) {
1536
          // set invalid flag
1537
          *pfpsf |= INVALID_EXCEPTION;
1538
          // return Integer Indefinite
1539
          res = 0x8000000000000000ull;
1540
          BID_RETURN (res);
1541
        }
1542
        // else cases that can be rounded to a 64-bit int fall through
1543
        // to '1 <= q + exp <= 20'
1544
      } else if (q == 21) {
1545
        // C > 0x9fffffffffffffff6
1546
        if (C1.w[1] > 0x09 || (C1.w[1] == 0x09
1547
                               && C1.w[0] > 0xfffffffffffffff6ull)) {
1548
          // set invalid flag
1549
          *pfpsf |= INVALID_EXCEPTION;
1550
          // return Integer Indefinite
1551
          res = 0x8000000000000000ull;
1552
          BID_RETURN (res);
1553
        }
1554
        // else cases that can be rounded to a 64-bit int fall through
1555
        // to '1 <= q + exp <= 20'
1556
      } else {  // if 22 <= q <= 34 => 1 <= q - 21 <= 13
1557
        // C  > 10^(q-21) * 0x9fffffffffffffff6 max 44 bits x 68 bits
1558
        C.w[1] = 0x09;
1559
        C.w[0] = 0xfffffffffffffff6ull;
1560
        __mul_128x64_to_128 (C, ten2k64[q - 21], C);
1561
        if (C1.w[1] > C.w[1] || (C1.w[1] == C.w[1] && C1.w[0] > C.w[0])) {
1562
          // set invalid flag
1563
          *pfpsf |= INVALID_EXCEPTION;
1564
          // return Integer Indefinite
1565
          res = 0x8000000000000000ull;
1566
          BID_RETURN (res);
1567
        }
1568
        // else cases that can be rounded to a 64-bit int fall through
1569
        // to '1 <= q + exp <= 20'
1570
      }
1571
    }
1572
  }
1573
  // n is not too large to be converted to int64 if -1 < n <= 2^64 - 1
1574
  // Note: some of the cases tested for above fall through to this point
1575
  if ((q + exp) <= 0) {  // n = +/-0.[0...0]c(0)c(1)...c(q-1)
1576
    // return 0 or 1
1577
    if (x_sign)
1578
      res = 0x0000000000000000ull;
1579
    else
1580
      res = 0x0000000000000001ull;
1581
    BID_RETURN (res);
1582
  } else {      // if (1 <= q + exp <= 20, 1 <= q <= 34, -33 <= exp <= 19)
1583
    // x <= -1 or 1 <= x < 2^64 so if positive x can be rounded
1584
    // to zero to a 64-bit unsigned signed integer
1585
    if (x_sign) {       // x <= -1
1586
      // set invalid flag
1587
      *pfpsf |= INVALID_EXCEPTION;
1588
      // return Integer Indefinite
1589
      res = 0x8000000000000000ull;
1590
      BID_RETURN (res);
1591
    }
1592
    // 1 <= x <= 2^64 - 1 so x can be rounded
1593
    // to zero to a 64-bit unsigned integer
1594
    if (exp < 0) {       // 2 <= q <= 34, -33 <= exp <= -1, 1 <= q + exp <= 20
1595
      ind = -exp;       // 1 <= ind <= 33; ind is a synonym for 'x'
1596
      // chop off ind digits from the lower part of C1
1597
      // C1 fits in 127 bits
1598
      // calculate C* and f*
1599
      // C* is actually floor(C*) in this case
1600
      // C* and f* need shifting and masking, as shown by
1601
      // shiftright128[] and maskhigh128[]
1602
      // 1 <= x <= 33
1603
      // kx = 10^(-x) = ten2mk128[ind - 1]
1604
      // C* = C1 * 10^(-x)
1605
      // the approximation of 10^(-x) was rounded up to 118 bits
1606
      __mul_128x128_to_256 (P256, C1, ten2mk128[ind - 1]);
1607
      if (ind - 1 <= 21) {      // 0 <= ind - 1 <= 21
1608
        Cstar.w[1] = P256.w[3];
1609
        Cstar.w[0] = P256.w[2];
1610
        fstar.w[3] = 0;
1611
        fstar.w[2] = P256.w[2] & maskhigh128[ind - 1];
1612
        fstar.w[1] = P256.w[1];
1613
        fstar.w[0] = P256.w[0];
1614
      } else {  // 22 <= ind - 1 <= 33
1615
        Cstar.w[1] = 0;
1616
        Cstar.w[0] = P256.w[3];
1617
        fstar.w[3] = P256.w[3] & maskhigh128[ind - 1];
1618
        fstar.w[2] = P256.w[2];
1619
        fstar.w[1] = P256.w[1];
1620
        fstar.w[0] = P256.w[0];
1621
      }
1622
      // the top Ex bits of 10^(-x) are T* = ten2mk128trunc[ind], e.g.
1623
      // if x=1, T*=ten2mk128trunc[0]=0x19999999999999999999999999999999
1624
      // C* = floor(C*) (logical right shift; C has p decimal digits,
1625
      //     correct by Property 1)
1626
      // n = C* * 10^(e+x)
1627
 
1628
      // shift right C* by Ex-128 = shiftright128[ind]
1629
      shift = shiftright128[ind - 1];   // 0 <= shift <= 102
1630
      if (ind - 1 <= 21) {      // 0 <= ind - 1 <= 21
1631
        Cstar.w[0] =
1632
          (Cstar.w[0] >> shift) | (Cstar.w[1] << (64 - shift));
1633
        // redundant, it will be 0! Cstar.w[1] = (Cstar.w[1] >> shift);
1634
      } else {  // 22 <= ind - 1 <= 33
1635
        Cstar.w[0] = (Cstar.w[0] >> (shift - 64));        // 2 <= shift - 64 <= 38
1636
      }
1637
      // if the result is positive and inexact, need to add 1 to it
1638
 
1639
      // determine inexactness of the rounding of C*
1640
      // if (0 < f* < 10^(-x)) then
1641
      //   the result is exact
1642
      // else // if (f* > T*) then
1643
      //   the result is inexact
1644
      if (ind - 1 <= 2) {
1645
        if (fstar.w[1] > ten2mk128trunc[ind - 1].w[1]
1646
            || (fstar.w[1] == ten2mk128trunc[ind - 1].w[1]
1647
                && fstar.w[0] > ten2mk128trunc[ind - 1].w[0])) {
1648
          if (!x_sign) {        // positive and inexact
1649
            Cstar.w[0]++;
1650
            if (Cstar.w[0] == 0x0)
1651
              Cstar.w[1]++;
1652
          }
1653
        }       // else the result is exact
1654
      } else if (ind - 1 <= 21) {       // if 3 <= ind <= 21
1655
        if (fstar.w[2] || fstar.w[1] > ten2mk128trunc[ind - 1].w[1]
1656
            || (fstar.w[1] == ten2mk128trunc[ind - 1].w[1]
1657
                && fstar.w[0] > ten2mk128trunc[ind - 1].w[0])) {
1658
          if (!x_sign) {        // positive and inexact
1659
            Cstar.w[0]++;
1660
            if (Cstar.w[0] == 0x0)
1661
              Cstar.w[1]++;
1662
          }
1663
        }       // else the result is exact
1664
      } else {  // if 22 <= ind <= 33
1665
        if (fstar.w[3] || fstar.w[2]
1666
            || fstar.w[1] > ten2mk128trunc[ind - 1].w[1]
1667
            || (fstar.w[1] == ten2mk128trunc[ind - 1].w[1]
1668
                && fstar.w[0] > ten2mk128trunc[ind - 1].w[0])) {
1669
          if (!x_sign) {        // positive and inexact
1670
            Cstar.w[0]++;
1671
            if (Cstar.w[0] == 0x0)
1672
              Cstar.w[1]++;
1673
          }
1674
        }       // else the result is exact
1675
      }
1676
 
1677
      res = Cstar.w[0];  // the result is positive
1678
    } else if (exp == 0) {
1679
      // 1 <= q <= 20, but x < 2^64 - 1/2 so in this case C1.w[1] has to be 0
1680
      // res = C (exact)
1681
      res = C1.w[0];
1682
    } else {
1683
      // if (exp > 0) => 1 <= exp <= 19, 1 <= q < 19, 2 <= q + exp <= 20
1684
      // res = C * 10^exp (exact) - must fit in 64 bits
1685
      res = C1.w[0] * ten2k64[exp];
1686
    }
1687
  }
1688
}
1689
 
1690
BID_RETURN (res);
1691
}
1692
 
1693
/*****************************************************************************
1694
 *  BID128_to_uint64_xceil
1695
 ****************************************************************************/
1696
 
1697
BID128_FUNCTION_ARG1_NORND_CUSTOMRESTYPE (UINT64,
1698
                                          bid128_to_uint64_xceil, x)
1699
 
1700
     UINT64 res;
1701
     UINT64 x_sign;
1702
     UINT64 x_exp;
1703
     int exp;                   // unbiased exponent
1704
  // Note: C1.w[1], C1.w[0] represent x_signif_hi, x_signif_lo (all are UINT64)
1705
     BID_UI64DOUBLE tmp1;
1706
     unsigned int x_nr_bits;
1707
     int q, ind, shift;
1708
     UINT128 C1, C;
1709
     UINT128 Cstar;             // C* represents up to 34 decimal digits ~ 113 bits
1710
     UINT256 fstar;
1711
     UINT256 P256;
1712
 
1713
  // unpack x
1714
x_sign = x.w[1] & MASK_SIGN;    // 0 for positive, MASK_SIGN for negative
1715
x_exp = x.w[1] & MASK_EXP;      // biased and shifted left 49 bit positions
1716
C1.w[1] = x.w[1] & MASK_COEFF;
1717
C1.w[0] = x.w[0];
1718
 
1719
  // check for NaN or Infinity
1720
if ((x.w[1] & MASK_SPECIAL) == MASK_SPECIAL) {
1721
    // x is special
1722
if ((x.w[1] & MASK_NAN) == MASK_NAN) {  // x is NAN
1723
  if ((x.w[1] & MASK_SNAN) == MASK_SNAN) {      // x is SNAN
1724
    // set invalid flag
1725
    *pfpsf |= INVALID_EXCEPTION;
1726
    // return Integer Indefinite
1727
    res = 0x8000000000000000ull;
1728
  } else {      // x is QNaN
1729
    // set invalid flag
1730
    *pfpsf |= INVALID_EXCEPTION;
1731
    // return Integer Indefinite
1732
    res = 0x8000000000000000ull;
1733
  }
1734
  BID_RETURN (res);
1735
} else {        // x is not a NaN, so it must be infinity
1736
  if (!x_sign) {        // x is +inf
1737
    // set invalid flag
1738
    *pfpsf |= INVALID_EXCEPTION;
1739
    // return Integer Indefinite
1740
    res = 0x8000000000000000ull;
1741
  } else {      // x is -inf
1742
    // set invalid flag
1743
    *pfpsf |= INVALID_EXCEPTION;
1744
    // return Integer Indefinite
1745
    res = 0x8000000000000000ull;
1746
  }
1747
  BID_RETURN (res);
1748
}
1749
}
1750
  // check for non-canonical values (after the check for special values)
1751
if ((C1.w[1] > 0x0001ed09bead87c0ull)
1752
    || (C1.w[1] == 0x0001ed09bead87c0ull
1753
        && (C1.w[0] > 0x378d8e63ffffffffull))
1754
    || ((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull)) {
1755
  res = 0x0000000000000000ull;
1756
  BID_RETURN (res);
1757
} else if ((C1.w[1] == 0x0ull) && (C1.w[0] == 0x0ull)) {
1758
  // x is 0
1759
  res = 0x0000000000000000ull;
1760
  BID_RETURN (res);
1761
} else {        // x is not special and is not zero
1762
 
1763
  // q = nr. of decimal digits in x
1764
  //  determine first the nr. of bits in x
1765
  if (C1.w[1] == 0) {
1766
    if (C1.w[0] >= 0x0020000000000000ull) {      // x >= 2^53
1767
      // split the 64-bit value in two 32-bit halves to avoid rounding errors
1768
      if (C1.w[0] >= 0x0000000100000000ull) {    // x >= 2^32
1769
        tmp1.d = (double) (C1.w[0] >> 32);       // exact conversion
1770
        x_nr_bits =
1771
          33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
1772
      } else {  // x < 2^32
1773
        tmp1.d = (double) (C1.w[0]);     // exact conversion
1774
        x_nr_bits =
1775
          1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
1776
      }
1777
    } else {    // if x < 2^53
1778
      tmp1.d = (double) C1.w[0]; // exact conversion
1779
      x_nr_bits =
1780
        1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
1781
    }
1782
  } else {      // C1.w[1] != 0 => nr. bits = 64 + nr_bits (C1.w[1])
1783
    tmp1.d = (double) C1.w[1];  // exact conversion
1784
    x_nr_bits =
1785
      65 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
1786
  }
1787
  q = nr_digits[x_nr_bits - 1].digits;
1788
  if (q == 0) {
1789
    q = nr_digits[x_nr_bits - 1].digits1;
1790
    if (C1.w[1] > nr_digits[x_nr_bits - 1].threshold_hi
1791
        || (C1.w[1] == nr_digits[x_nr_bits - 1].threshold_hi
1792
            && C1.w[0] >= nr_digits[x_nr_bits - 1].threshold_lo))
1793
      q++;
1794
  }
1795
  exp = (x_exp >> 49) - 6176;
1796
  if ((q + exp) > 20) { // x >= 10^20 ~= 2^66.45... (cannot fit in 64 bits)
1797
    // set invalid flag
1798
    *pfpsf |= INVALID_EXCEPTION;
1799
    // return Integer Indefinite
1800
    res = 0x8000000000000000ull;
1801
    BID_RETURN (res);
1802
  } else if ((q + exp) == 20) { // x = c(0)c(1)...c(19).c(20)...c(q-1)
1803
    // in this case 2^63.11... ~= 10^19 <= x < 10^20 ~= 2^66.43...
1804
    // so x rounded to an integer may or may not fit in an unsigned 64-bit int
1805
    // the cases that do not fit are identified here; the ones that fit
1806
    // fall through and will be handled with other cases further,
1807
    // under '1 <= q + exp <= 20'
1808
    if (x_sign) {       // if n < 0 and q + exp = 20
1809
      // if n <= -1 then n cannot be converted to uint64 with RZ
1810
      // too large if c(0)c(1)...c(19).c(20)...c(q-1) >= 1
1811
      // <=> 0.c(0)c(1)...c(q-1) * 10^21 >= 0x0a, 1<=q<=34
1812
      // <=> C * 10^(21-q) >= 0x0a, 1<=q<=34
1813
      if (q == 21) {
1814
        // C >= a 
1815
        if (C1.w[1] != 0 || C1.w[0] >= 0x0aull) {
1816
          // set invalid flag
1817
          *pfpsf |= INVALID_EXCEPTION;
1818
          // return Integer Indefinite
1819
          res = 0x8000000000000000ull;
1820
          BID_RETURN (res);
1821
        }
1822
        // else cases that can be rounded to 64-bit unsigned int fall through
1823
        // to '1 <= q + exp <= 20'
1824
      } else {
1825
        // if 1 <= q <= 20
1826
        //   C * 10^(21-q) >= a is true because C >= 1 and 10^(21-q) >= 10
1827
        // if 22 <= q <= 34 => 1 <= q - 21 <= 13
1828
        //  C >= a * 10^(q-21) is true because C > 2^64 and a*10^(q-21) < 2^64
1829
        // set invalid flag
1830
        *pfpsf |= INVALID_EXCEPTION;
1831
        // return Integer Indefinite
1832
        res = 0x8000000000000000ull;
1833
        BID_RETURN (res);
1834
      }
1835
    } else {    // if n > 0 and q + exp = 20
1836
      // if n > 2^64 - 1 then n is too large
1837
      // <=> c(0)c(1)...c(19).c(20)...c(q-1) > 2^64 - 1
1838
      // <=> 0.c(0)c(1)...c(19)c(20)...c(q-1) * 10^20 > 2^64 - 1
1839
      // <=> 0.c(0)c(1)...c(19)c(20)...c(q-1) * 10^21 > 10 * (2^64 - 1) 
1840
      // <=> C * 10^(21-q) > 0x9fffffffffffffff6, 1<=q<=34
1841
      if (q == 1) {
1842
        // C * 10^20 > 0x9fffffffffffffff6
1843
        __mul_128x64_to_128 (C, C1.w[0], ten2k128[0]);    // 10^20 * C
1844
        if (C.w[1] > 0x09 || (C.w[1] == 0x09
1845
                              && C.w[0] > 0xfffffffffffffff6ull)) {
1846
          // set invalid flag
1847
          *pfpsf |= INVALID_EXCEPTION;
1848
          // return Integer Indefinite
1849
          res = 0x8000000000000000ull;
1850
          BID_RETURN (res);
1851
        }
1852
        // else cases that can be rounded to a 64-bit int fall through
1853
        // to '1 <= q + exp <= 20'
1854
      } else if (q <= 19) {
1855
        // C * 10^(21-q) > 0x9fffffffffffffff6
1856
        __mul_64x64_to_128MACH (C, C1.w[0], ten2k64[21 - q]);
1857
        if (C.w[1] > 0x09 || (C.w[1] == 0x09
1858
                              && C.w[0] > 0xfffffffffffffff6ull)) {
1859
          // set invalid flag
1860
          *pfpsf |= INVALID_EXCEPTION;
1861
          // return Integer Indefinite
1862
          res = 0x8000000000000000ull;
1863
          BID_RETURN (res);
1864
        }
1865
        // else cases that can be rounded to a 64-bit int fall through
1866
        // to '1 <= q + exp <= 20'
1867
      } else if (q == 20) {
1868
        // C > 0xffffffffffffffff
1869
        if (C1.w[1]) {
1870
          // set invalid flag
1871
          *pfpsf |= INVALID_EXCEPTION;
1872
          // return Integer Indefinite
1873
          res = 0x8000000000000000ull;
1874
          BID_RETURN (res);
1875
        }
1876
        // else cases that can be rounded to a 64-bit int fall through
1877
        // to '1 <= q + exp <= 20'
1878
      } else if (q == 21) {
1879
        // C > 0x9fffffffffffffff6
1880
        if (C1.w[1] > 0x09 || (C1.w[1] == 0x09
1881
                               && C1.w[0] > 0xfffffffffffffff6ull)) {
1882
          // set invalid flag
1883
          *pfpsf |= INVALID_EXCEPTION;
1884
          // return Integer Indefinite
1885
          res = 0x8000000000000000ull;
1886
          BID_RETURN (res);
1887
        }
1888
        // else cases that can be rounded to a 64-bit int fall through
1889
        // to '1 <= q + exp <= 20'
1890
      } else {  // if 22 <= q <= 34 => 1 <= q - 21 <= 13
1891
        // C  > 10^(q-21) * 0x9fffffffffffffff6 max 44 bits x 68 bits
1892
        C.w[1] = 0x09;
1893
        C.w[0] = 0xfffffffffffffff6ull;
1894
        __mul_128x64_to_128 (C, ten2k64[q - 21], C);
1895
        if (C1.w[1] > C.w[1] || (C1.w[1] == C.w[1] && C1.w[0] > C.w[0])) {
1896
          // set invalid flag
1897
          *pfpsf |= INVALID_EXCEPTION;
1898
          // return Integer Indefinite
1899
          res = 0x8000000000000000ull;
1900
          BID_RETURN (res);
1901
        }
1902
        // else cases that can be rounded to a 64-bit int fall through
1903
        // to '1 <= q + exp <= 20'
1904
      }
1905
    }
1906
  }
1907
  // n is not too large to be converted to int64 if -1 < n <= 2^64 - 1
1908
  // Note: some of the cases tested for above fall through to this point
1909
  if ((q + exp) <= 0) {  // n = +/-0.[0...0]c(0)c(1)...c(q-1)
1910
    // set inexact flag
1911
    *pfpsf |= INEXACT_EXCEPTION;
1912
    // return 0 or 1
1913
    if (x_sign)
1914
      res = 0x0000000000000000ull;
1915
    else
1916
      res = 0x0000000000000001ull;
1917
    BID_RETURN (res);
1918
  } else {      // if (1 <= q + exp <= 20, 1 <= q <= 34, -33 <= exp <= 19)
1919
    // x <= -1 or 1 <= x < 2^64 so if positive x can be rounded
1920
    // to zero to a 64-bit unsigned signed integer
1921
    if (x_sign) {       // x <= -1
1922
      // set invalid flag
1923
      *pfpsf |= INVALID_EXCEPTION;
1924
      // return Integer Indefinite
1925
      res = 0x8000000000000000ull;
1926
      BID_RETURN (res);
1927
    }
1928
    // 1 <= x <= 2^64 - 1 so x can be rounded
1929
    // to zero to a 64-bit unsigned integer
1930
    if (exp < 0) {       // 2 <= q <= 34, -33 <= exp <= -1, 1 <= q + exp <= 20
1931
      ind = -exp;       // 1 <= ind <= 33; ind is a synonym for 'x'
1932
      // chop off ind digits from the lower part of C1
1933
      // C1 fits in 127 bits
1934
      // calculate C* and f*
1935
      // C* is actually floor(C*) in this case
1936
      // C* and f* need shifting and masking, as shown by
1937
      // shiftright128[] and maskhigh128[]
1938
      // 1 <= x <= 33
1939
      // kx = 10^(-x) = ten2mk128[ind - 1]
1940
      // C* = C1 * 10^(-x)
1941
      // the approximation of 10^(-x) was rounded up to 118 bits
1942
      __mul_128x128_to_256 (P256, C1, ten2mk128[ind - 1]);
1943
      if (ind - 1 <= 21) {      // 0 <= ind - 1 <= 21
1944
        Cstar.w[1] = P256.w[3];
1945
        Cstar.w[0] = P256.w[2];
1946
        fstar.w[3] = 0;
1947
        fstar.w[2] = P256.w[2] & maskhigh128[ind - 1];
1948
        fstar.w[1] = P256.w[1];
1949
        fstar.w[0] = P256.w[0];
1950
      } else {  // 22 <= ind - 1 <= 33
1951
        Cstar.w[1] = 0;
1952
        Cstar.w[0] = P256.w[3];
1953
        fstar.w[3] = P256.w[3] & maskhigh128[ind - 1];
1954
        fstar.w[2] = P256.w[2];
1955
        fstar.w[1] = P256.w[1];
1956
        fstar.w[0] = P256.w[0];
1957
      }
1958
      // the top Ex bits of 10^(-x) are T* = ten2mk128trunc[ind], e.g.
1959
      // if x=1, T*=ten2mk128trunc[0]=0x19999999999999999999999999999999
1960
      // C* = floor(C*) (logical right shift; C has p decimal digits,
1961
      //     correct by Property 1)
1962
      // n = C* * 10^(e+x)
1963
 
1964
      // shift right C* by Ex-128 = shiftright128[ind]
1965
      shift = shiftright128[ind - 1];   // 0 <= shift <= 102
1966
      if (ind - 1 <= 21) {      // 0 <= ind - 1 <= 21
1967
        Cstar.w[0] =
1968
          (Cstar.w[0] >> shift) | (Cstar.w[1] << (64 - shift));
1969
        // redundant, it will be 0! Cstar.w[1] = (Cstar.w[1] >> shift);
1970
      } else {  // 22 <= ind - 1 <= 33
1971
        Cstar.w[0] = (Cstar.w[0] >> (shift - 64));        // 2 <= shift - 64 <= 38
1972
      }
1973
      // if the result is positive and inexact, need to add 1 to it
1974
 
1975
      // determine inexactness of the rounding of C*
1976
      // if (0 < f* < 10^(-x)) then
1977
      //   the result is exact
1978
      // else // if (f* > T*) then
1979
      //   the result is inexact
1980
      if (ind - 1 <= 2) {
1981
        if (fstar.w[1] > ten2mk128trunc[ind - 1].w[1]
1982
            || (fstar.w[1] == ten2mk128trunc[ind - 1].w[1]
1983
                && fstar.w[0] > ten2mk128trunc[ind - 1].w[0])) {
1984
          if (!x_sign) {        // positive and inexact
1985
            Cstar.w[0]++;
1986
            if (Cstar.w[0] == 0x0)
1987
              Cstar.w[1]++;
1988
          }
1989
          // set the inexact flag
1990
          *pfpsf |= INEXACT_EXCEPTION;
1991
        }       // else the result is exact
1992
      } else if (ind - 1 <= 21) {       // if 3 <= ind <= 21
1993
        if (fstar.w[2] || fstar.w[1] > ten2mk128trunc[ind - 1].w[1]
1994
            || (fstar.w[1] == ten2mk128trunc[ind - 1].w[1]
1995
                && fstar.w[0] > ten2mk128trunc[ind - 1].w[0])) {
1996
          if (!x_sign) {        // positive and inexact
1997
            Cstar.w[0]++;
1998
            if (Cstar.w[0] == 0x0)
1999
              Cstar.w[1]++;
2000
          }
2001
          // set the inexact flag
2002
          *pfpsf |= INEXACT_EXCEPTION;
2003
        }       // else the result is exact
2004
      } else {  // if 22 <= ind <= 33
2005
        if (fstar.w[3] || fstar.w[2]
2006
            || fstar.w[1] > ten2mk128trunc[ind - 1].w[1]
2007
            || (fstar.w[1] == ten2mk128trunc[ind - 1].w[1]
2008
                && fstar.w[0] > ten2mk128trunc[ind - 1].w[0])) {
2009
          if (!x_sign) {        // positive and inexact
2010
            Cstar.w[0]++;
2011
            if (Cstar.w[0] == 0x0)
2012
              Cstar.w[1]++;
2013
          }
2014
          // set the inexact flag
2015
          *pfpsf |= INEXACT_EXCEPTION;
2016
        }       // else the result is exact
2017
      }
2018
 
2019
      res = Cstar.w[0];  // the result is positive
2020
    } else if (exp == 0) {
2021
      // 1 <= q <= 20, but x < 2^64 - 1/2 so in this case C1.w[1] has to be 0
2022
      // res = C (exact)
2023
      res = C1.w[0];
2024
    } else {
2025
      // if (exp > 0) => 1 <= exp <= 19, 1 <= q < 19, 2 <= q + exp <= 20
2026
      // res = C * 10^exp (exact) - must fit in 64 bits
2027
      res = C1.w[0] * ten2k64[exp];
2028
    }
2029
  }
2030
}
2031
 
2032
BID_RETURN (res);
2033
}
2034
 
2035
/*****************************************************************************
2036
 *  BID128_to_uint64_int
2037
 ****************************************************************************/
2038
 
2039
BID128_FUNCTION_ARG1_NORND_CUSTOMRESTYPE (UINT64, bid128_to_uint64_int,
2040
                                          x)
2041
 
2042
     UINT64 res;
2043
     UINT64 x_sign;
2044
     UINT64 x_exp;
2045
     int exp;                   // unbiased exponent
2046
  // Note: C1.w[1], C1.w[0] represent x_signif_hi, x_signif_lo (all are UINT64)
2047
     BID_UI64DOUBLE tmp1;
2048
     unsigned int x_nr_bits;
2049
     int q, ind, shift;
2050
     UINT128 C1, C;
2051
     UINT128 Cstar;             // C* represents up to 34 decimal digits ~ 113 bits
2052
     UINT256 P256;
2053
 
2054
  // unpack x
2055
x_sign = x.w[1] & MASK_SIGN;    // 0 for positive, MASK_SIGN for negative
2056
x_exp = x.w[1] & MASK_EXP;      // biased and shifted left 49 bit positions
2057
C1.w[1] = x.w[1] & MASK_COEFF;
2058
C1.w[0] = x.w[0];
2059
 
2060
  // check for NaN or Infinity
2061
if ((x.w[1] & MASK_SPECIAL) == MASK_SPECIAL) {
2062
    // x is special
2063
if ((x.w[1] & MASK_NAN) == MASK_NAN) {  // x is NAN
2064
  if ((x.w[1] & MASK_SNAN) == MASK_SNAN) {      // x is SNAN
2065
    // set invalid flag
2066
    *pfpsf |= INVALID_EXCEPTION;
2067
    // return Integer Indefinite
2068
    res = 0x8000000000000000ull;
2069
  } else {      // x is QNaN
2070
    // set invalid flag
2071
    *pfpsf |= INVALID_EXCEPTION;
2072
    // return Integer Indefinite
2073
    res = 0x8000000000000000ull;
2074
  }
2075
  BID_RETURN (res);
2076
} else {        // x is not a NaN, so it must be infinity
2077
  if (!x_sign) {        // x is +inf
2078
    // set invalid flag
2079
    *pfpsf |= INVALID_EXCEPTION;
2080
    // return Integer Indefinite
2081
    res = 0x8000000000000000ull;
2082
  } else {      // x is -inf
2083
    // set invalid flag
2084
    *pfpsf |= INVALID_EXCEPTION;
2085
    // return Integer Indefinite
2086
    res = 0x8000000000000000ull;
2087
  }
2088
  BID_RETURN (res);
2089
}
2090
}
2091
  // check for non-canonical values (after the check for special values)
2092
if ((C1.w[1] > 0x0001ed09bead87c0ull)
2093
    || (C1.w[1] == 0x0001ed09bead87c0ull
2094
        && (C1.w[0] > 0x378d8e63ffffffffull))
2095
    || ((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull)) {
2096
  res = 0x0000000000000000ull;
2097
  BID_RETURN (res);
2098
} else if ((C1.w[1] == 0x0ull) && (C1.w[0] == 0x0ull)) {
2099
  // x is 0
2100
  res = 0x0000000000000000ull;
2101
  BID_RETURN (res);
2102
} else {        // x is not special and is not zero
2103
 
2104
  // q = nr. of decimal digits in x
2105
  //  determine first the nr. of bits in x
2106
  if (C1.w[1] == 0) {
2107
    if (C1.w[0] >= 0x0020000000000000ull) {      // x >= 2^53
2108
      // split the 64-bit value in two 32-bit halves to avoid rounding errors
2109
      if (C1.w[0] >= 0x0000000100000000ull) {    // x >= 2^32
2110
        tmp1.d = (double) (C1.w[0] >> 32);       // exact conversion
2111
        x_nr_bits =
2112
          33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
2113
      } else {  // x < 2^32
2114
        tmp1.d = (double) (C1.w[0]);     // exact conversion
2115
        x_nr_bits =
2116
          1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
2117
      }
2118
    } else {    // if x < 2^53
2119
      tmp1.d = (double) C1.w[0]; // exact conversion
2120
      x_nr_bits =
2121
        1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
2122
    }
2123
  } else {      // C1.w[1] != 0 => nr. bits = 64 + nr_bits (C1.w[1])
2124
    tmp1.d = (double) C1.w[1];  // exact conversion
2125
    x_nr_bits =
2126
      65 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
2127
  }
2128
  q = nr_digits[x_nr_bits - 1].digits;
2129
  if (q == 0) {
2130
    q = nr_digits[x_nr_bits - 1].digits1;
2131
    if (C1.w[1] > nr_digits[x_nr_bits - 1].threshold_hi
2132
        || (C1.w[1] == nr_digits[x_nr_bits - 1].threshold_hi
2133
            && C1.w[0] >= nr_digits[x_nr_bits - 1].threshold_lo))
2134
      q++;
2135
  }
2136
  exp = (x_exp >> 49) - 6176;
2137
 
2138
  if ((q + exp) > 20) { // x >= 10^20 ~= 2^66.45... (cannot fit in 64 bits)
2139
    // set invalid flag
2140
    *pfpsf |= INVALID_EXCEPTION;
2141
    // return Integer Indefinite
2142
    res = 0x8000000000000000ull;
2143
    BID_RETURN (res);
2144
  } else if ((q + exp) == 20) { // x = c(0)c(1)...c(19).c(20)...c(q-1)
2145
    // in this case 2^63.11... ~= 10^19 <= x < 10^20 ~= 2^66.43...
2146
    // so x rounded to an integer may or may not fit in an unsigned 64-bit int
2147
    // the cases that do not fit are identified here; the ones that fit
2148
    // fall through and will be handled with other cases further,
2149
    // under '1 <= q + exp <= 20'
2150
    if (x_sign) {       // if n < 0 and q + exp = 20
2151
      // if n <= -1 then n cannot be converted to uint64 with RZ
2152
      // too large if c(0)c(1)...c(19).c(20)...c(q-1) >= 1
2153
      // <=> 0.c(0)c(1)...c(q-1) * 10^21 >= 0x0a, 1<=q<=34
2154
      // <=> C * 10^(21-q) >= 0x0a, 1<=q<=34
2155
      if (q == 21) {
2156
        // C >= a 
2157
        if (C1.w[1] != 0 || C1.w[0] >= 0x0aull) {
2158
          // set invalid flag
2159
          *pfpsf |= INVALID_EXCEPTION;
2160
          // return Integer Indefinite
2161
          res = 0x8000000000000000ull;
2162
          BID_RETURN (res);
2163
        }
2164
        // else cases that can be rounded to 64-bit unsigned int fall through
2165
        // to '1 <= q + exp <= 20'
2166
      } else {
2167
        // if 1 <= q <= 20
2168
        //   C * 10^(21-q) >= a is true because C >= 1 and 10^(21-q) >= 10
2169
        // if 22 <= q <= 34 => 1 <= q - 21 <= 13
2170
        //  C >= a * 10^(q-21) is true because C > 2^64 and a*10^(q-21) < 2^64
2171
        // set invalid flag
2172
        *pfpsf |= INVALID_EXCEPTION;
2173
        // return Integer Indefinite
2174
        res = 0x8000000000000000ull;
2175
        BID_RETURN (res);
2176
      }
2177
    } else {    // if n > 0 and q + exp = 20
2178
      // if n >= 2^64 then n is too large
2179
      // <=> c(0)c(1)...c(19).c(20)...c(q-1) >= 2^64
2180
      // <=> 0.c(0)c(1)...c(19)c(20)...c(q-1) * 10^20 >= 2^64
2181
      // <=> 0.c(0)c(1)...c(19)c(20)...c(q-1) * 10^21 >= 5*2^65
2182
      // <=> C * 10^(21-q) >= 0xa0000000000000000, 1<=q<=34
2183
      if (q == 1) {
2184
        // C * 10^20 >= 0xa0000000000000000
2185
        __mul_128x64_to_128 (C, C1.w[0], ten2k128[0]);    // 10^20 * C
2186
        if (C.w[1] >= 0x0a) {
2187
          // actually C.w[1] == 0x0a && C.w[0] >= 0x0000000000000000ull) {
2188
          // set invalid flag
2189
          *pfpsf |= INVALID_EXCEPTION;
2190
          // return Integer Indefinite
2191
          res = 0x8000000000000000ull;
2192
          BID_RETURN (res);
2193
        }
2194
        // else cases that can be rounded to a 64-bit int fall through
2195
        // to '1 <= q + exp <= 20'
2196
      } else if (q <= 19) {
2197
        // C * 10^(21-q) >= 0xa0000000000000000
2198
        __mul_64x64_to_128MACH (C, C1.w[0], ten2k64[21 - q]);
2199
        if (C.w[1] >= 0x0a) {
2200
          // actually C.w[1] == 0x0a && C.w[0] >= 0x0000000000000000ull) {
2201
          // set invalid flag
2202
          *pfpsf |= INVALID_EXCEPTION;
2203
          // return Integer Indefinite
2204
          res = 0x8000000000000000ull;
2205
          BID_RETURN (res);
2206
        }
2207
        // else cases that can be rounded to a 64-bit int fall through
2208
        // to '1 <= q + exp <= 20'
2209
      } else if (q == 20) {
2210
        // C >= 0x10000000000000000
2211
        if (C1.w[1] >= 0x01) {
2212
          // actually C1.w[1] == 0x01 && C1.w[0] >= 0x0000000000000000ull) {
2213
          // set invalid flag
2214
          *pfpsf |= INVALID_EXCEPTION;
2215
          // return Integer Indefinite
2216
          res = 0x8000000000000000ull;
2217
          BID_RETURN (res);
2218
        }
2219
        // else cases that can be rounded to a 64-bit int fall through
2220
        // to '1 <= q + exp <= 20'
2221
      } else if (q == 21) {
2222
        // C >= 0xa0000000000000000
2223
        if (C1.w[1] >= 0x0a) {
2224
          // actually C1.w[1] == 0x0a && C1.w[0] >= 0x0000000000000000ull) {
2225
          // set invalid flag
2226
          *pfpsf |= INVALID_EXCEPTION;
2227
          // return Integer Indefinite
2228
          res = 0x8000000000000000ull;
2229
          BID_RETURN (res);
2230
        }
2231
        // else cases that can be rounded to a 64-bit int fall through
2232
        // to '1 <= q + exp <= 20'
2233
      } else {  // if 22 <= q <= 34 => 1 <= q - 21 <= 13
2234
        // C  >= 10^(q-21) * 0xa0000000000000000 max 44 bits x 68 bits
2235
        C.w[1] = 0x0a;
2236
        C.w[0] = 0x0000000000000000ull;
2237
        __mul_128x64_to_128 (C, ten2k64[q - 21], C);
2238
        if (C1.w[1] > C.w[1]
2239
            || (C1.w[1] == C.w[1] && C1.w[0] >= C.w[0])) {
2240
          // set invalid flag
2241
          *pfpsf |= INVALID_EXCEPTION;
2242
          // return Integer Indefinite
2243
          res = 0x8000000000000000ull;
2244
          BID_RETURN (res);
2245
        }
2246
        // else cases that can be rounded to a 64-bit int fall through
2247
        // to '1 <= q + exp <= 20'
2248
      }
2249
    }
2250
  }
2251
  // n is not too large to be converted to int64 if -1 < n < 2^64
2252
  // Note: some of the cases tested for above fall through to this point
2253
  if ((q + exp) <= 0) {  // n = +/-0.[0...0]c(0)c(1)...c(q-1)
2254
    // return 0
2255
    res = 0x0000000000000000ull;
2256
    BID_RETURN (res);
2257
  } else {      // if (1 <= q + exp <= 20, 1 <= q <= 34, -33 <= exp <= 19)
2258
    // x <= -1 or 1 <= x < 2^64 so if positive x can be rounded
2259
    // to zero to a 64-bit unsigned signed integer
2260
    if (x_sign) {       // x <= -1
2261
      // set invalid flag
2262
      *pfpsf |= INVALID_EXCEPTION;
2263
      // return Integer Indefinite
2264
      res = 0x8000000000000000ull;
2265
      BID_RETURN (res);
2266
    }
2267
    // 1 <= x < 2^64 so x can be rounded
2268
    // to zero to a 64-bit unsigned integer
2269
    if (exp < 0) {       // 2 <= q <= 34, -33 <= exp <= -1, 1 <= q + exp <= 20
2270
      ind = -exp;       // 1 <= ind <= 33; ind is a synonym for 'x'
2271
      // chop off ind digits from the lower part of C1
2272
      // C1 fits in 127 bits
2273
      // calculate C* and f*
2274
      // C* is actually floor(C*) in this case
2275
      // C* and f* need shifting and masking, as shown by
2276
      // shiftright128[] and maskhigh128[]
2277
      // 1 <= x <= 33
2278
      // kx = 10^(-x) = ten2mk128[ind - 1]
2279
      // C* = C1 * 10^(-x)
2280
      // the approximation of 10^(-x) was rounded up to 118 bits
2281
      __mul_128x128_to_256 (P256, C1, ten2mk128[ind - 1]);
2282
      if (ind - 1 <= 21) {      // 0 <= ind - 1 <= 21
2283
        Cstar.w[1] = P256.w[3];
2284
        Cstar.w[0] = P256.w[2];
2285
      } else {  // 22 <= ind - 1 <= 33
2286
        Cstar.w[1] = 0;
2287
        Cstar.w[0] = P256.w[3];
2288
      }
2289
      // the top Ex bits of 10^(-x) are T* = ten2mk128trunc[ind], e.g.
2290
      // if x=1, T*=ten2mk128trunc[0]=0x19999999999999999999999999999999
2291
      // C* = floor(C*) (logical right shift; C has p decimal digits,
2292
      //     correct by Property 1)
2293
      // n = C* * 10^(e+x)
2294
 
2295
      // shift right C* by Ex-128 = shiftright128[ind]
2296
      shift = shiftright128[ind - 1];   // 0 <= shift <= 102
2297
      if (ind - 1 <= 21) {      // 0 <= ind - 1 <= 21
2298
        Cstar.w[0] =
2299
          (Cstar.w[0] >> shift) | (Cstar.w[1] << (64 - shift));
2300
        // redundant, it will be 0! Cstar.w[1] = (Cstar.w[1] >> shift);
2301
      } else {  // 22 <= ind - 1 <= 33
2302
        Cstar.w[0] = (Cstar.w[0] >> (shift - 64));        // 2 <= shift - 64 <= 38
2303
      }
2304
      res = Cstar.w[0];  // the result is positive
2305
    } else if (exp == 0) {
2306
      // 1 <= q <= 20, but x < 2^64 - 1/2 so in this case C1.w[1] has to be 0
2307
      // res = C (exact)
2308
      res = C1.w[0];
2309
    } else {
2310
      // if (exp > 0) => 1 <= exp <= 19, 1 <= q < 19, 2 <= q + exp <= 20
2311
      // res = C * 10^exp (exact) - must fit in 64 bits
2312
      res = C1.w[0] * ten2k64[exp];
2313
    }
2314
  }
2315
}
2316
 
2317
BID_RETURN (res);
2318
}
2319
 
2320
/*****************************************************************************
2321
 *  BID128_to_uint64_xint
2322
 ****************************************************************************/
2323
 
2324
BID128_FUNCTION_ARG1_NORND_CUSTOMRESTYPE (UINT64, bid128_to_uint64_xint,
2325
                                          x)
2326
 
2327
     UINT64 res;
2328
     UINT64 x_sign;
2329
     UINT64 x_exp;
2330
     int exp;                   // unbiased exponent
2331
  // Note: C1.w[1], C1.w[0] represent x_signif_hi, x_signif_lo (all are UINT64)
2332
     BID_UI64DOUBLE tmp1;
2333
     unsigned int x_nr_bits;
2334
     int q, ind, shift;
2335
     UINT128 C1, C;
2336
     UINT128 Cstar;             // C* represents up to 34 decimal digits ~ 113 bits
2337
     UINT256 fstar;
2338
     UINT256 P256;
2339
 
2340
  // unpack x
2341
x_sign = x.w[1] & MASK_SIGN;    // 0 for positive, MASK_SIGN for negative
2342
x_exp = x.w[1] & MASK_EXP;      // biased and shifted left 49 bit positions
2343
C1.w[1] = x.w[1] & MASK_COEFF;
2344
C1.w[0] = x.w[0];
2345
 
2346
  // check for NaN or Infinity
2347
if ((x.w[1] & MASK_SPECIAL) == MASK_SPECIAL) {
2348
    // x is special
2349
if ((x.w[1] & MASK_NAN) == MASK_NAN) {  // x is NAN
2350
  if ((x.w[1] & MASK_SNAN) == MASK_SNAN) {      // x is SNAN
2351
    // set invalid flag
2352
    *pfpsf |= INVALID_EXCEPTION;
2353
    // return Integer Indefinite
2354
    res = 0x8000000000000000ull;
2355
  } else {      // x is QNaN
2356
    // set invalid flag
2357
    *pfpsf |= INVALID_EXCEPTION;
2358
    // return Integer Indefinite
2359
    res = 0x8000000000000000ull;
2360
  }
2361
  BID_RETURN (res);
2362
} else {        // x is not a NaN, so it must be infinity
2363
  if (!x_sign) {        // x is +inf
2364
    // set invalid flag
2365
    *pfpsf |= INVALID_EXCEPTION;
2366
    // return Integer Indefinite
2367
    res = 0x8000000000000000ull;
2368
  } else {      // x is -inf
2369
    // set invalid flag
2370
    *pfpsf |= INVALID_EXCEPTION;
2371
    // return Integer Indefinite
2372
    res = 0x8000000000000000ull;
2373
  }
2374
  BID_RETURN (res);
2375
}
2376
}
2377
  // check for non-canonical values (after the check for special values)
2378
if ((C1.w[1] > 0x0001ed09bead87c0ull)
2379
    || (C1.w[1] == 0x0001ed09bead87c0ull
2380
        && (C1.w[0] > 0x378d8e63ffffffffull))
2381
    || ((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull)) {
2382
  res = 0x0000000000000000ull;
2383
  BID_RETURN (res);
2384
} else if ((C1.w[1] == 0x0ull) && (C1.w[0] == 0x0ull)) {
2385
  // x is 0
2386
  res = 0x0000000000000000ull;
2387
  BID_RETURN (res);
2388
} else {        // x is not special and is not zero
2389
 
2390
  // q = nr. of decimal digits in x
2391
  //  determine first the nr. of bits in x
2392
  if (C1.w[1] == 0) {
2393
    if (C1.w[0] >= 0x0020000000000000ull) {      // x >= 2^53
2394
      // split the 64-bit value in two 32-bit halves to avoid rounding errors
2395
      if (C1.w[0] >= 0x0000000100000000ull) {    // x >= 2^32
2396
        tmp1.d = (double) (C1.w[0] >> 32);       // exact conversion
2397
        x_nr_bits =
2398
          33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
2399
      } else {  // x < 2^32
2400
        tmp1.d = (double) (C1.w[0]);     // exact conversion
2401
        x_nr_bits =
2402
          1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
2403
      }
2404
    } else {    // if x < 2^53
2405
      tmp1.d = (double) C1.w[0]; // exact conversion
2406
      x_nr_bits =
2407
        1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
2408
    }
2409
  } else {      // C1.w[1] != 0 => nr. bits = 64 + nr_bits (C1.w[1])
2410
    tmp1.d = (double) C1.w[1];  // exact conversion
2411
    x_nr_bits =
2412
      65 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
2413
  }
2414
  q = nr_digits[x_nr_bits - 1].digits;
2415
  if (q == 0) {
2416
    q = nr_digits[x_nr_bits - 1].digits1;
2417
    if (C1.w[1] > nr_digits[x_nr_bits - 1].threshold_hi
2418
        || (C1.w[1] == nr_digits[x_nr_bits - 1].threshold_hi
2419
            && C1.w[0] >= nr_digits[x_nr_bits - 1].threshold_lo))
2420
      q++;
2421
  }
2422
  exp = (x_exp >> 49) - 6176;
2423
  if ((q + exp) > 20) { // x >= 10^20 ~= 2^66.45... (cannot fit in 64 bits)
2424
    // set invalid flag
2425
    *pfpsf |= INVALID_EXCEPTION;
2426
    // return Integer Indefinite
2427
    res = 0x8000000000000000ull;
2428
    BID_RETURN (res);
2429
  } else if ((q + exp) == 20) { // x = c(0)c(1)...c(19).c(20)...c(q-1)
2430
    // in this case 2^63.11... ~= 10^19 <= x < 10^20 ~= 2^66.43...
2431
    // so x rounded to an integer may or may not fit in an unsigned 64-bit int
2432
    // the cases that do not fit are identified here; the ones that fit
2433
    // fall through and will be handled with other cases further,
2434
    // under '1 <= q + exp <= 20'
2435
    if (x_sign) {       // if n < 0 and q + exp = 20
2436
      // if n <= -1 then n cannot be converted to uint64 with RZ
2437
      // too large if c(0)c(1)...c(19).c(20)...c(q-1) >= 1
2438
      // <=> 0.c(0)c(1)...c(q-1) * 10^21 >= 0x0a, 1<=q<=34
2439
      // <=> C * 10^(21-q) >= 0x0a, 1<=q<=34
2440
      if (q == 21) {
2441
        // C >= a 
2442
        if (C1.w[1] != 0 || C1.w[0] >= 0x0aull) {
2443
          // set invalid flag
2444
          *pfpsf |= INVALID_EXCEPTION;
2445
          // return Integer Indefinite
2446
          res = 0x8000000000000000ull;
2447
          BID_RETURN (res);
2448
        }
2449
        // else cases that can be rounded to 64-bit unsigned int fall through
2450
        // to '1 <= q + exp <= 20'
2451
      } else {
2452
        // if 1 <= q <= 20
2453
        //   C * 10^(21-q) >= a is true because C >= 1 and 10^(21-q) >= 10
2454
        // if 22 <= q <= 34 => 1 <= q - 21 <= 13
2455
        //  C >= a * 10^(q-21) is true because C > 2^64 and a*10^(q-21) < 2^64
2456
        // set invalid flag
2457
        *pfpsf |= INVALID_EXCEPTION;
2458
        // return Integer Indefinite
2459
        res = 0x8000000000000000ull;
2460
        BID_RETURN (res);
2461
      }
2462
    } else {    // if n > 0 and q + exp = 20
2463
      // if n >= 2^64 then n is too large
2464
      // <=> c(0)c(1)...c(19).c(20)...c(q-1) >= 2^64
2465
      // <=> 0.c(0)c(1)...c(19)c(20)...c(q-1) * 10^20 >= 2^64
2466
      // <=> 0.c(0)c(1)...c(19)c(20)...c(q-1) * 10^21 >= 5*2^65
2467
      // <=> C * 10^(21-q) >= 0xa0000000000000000, 1<=q<=34
2468
      if (q == 1) {
2469
        // C * 10^20 >= 0xa0000000000000000
2470
        __mul_128x64_to_128 (C, C1.w[0], ten2k128[0]);    // 10^20 * C
2471
        if (C.w[1] >= 0x0a) {
2472
          // actually C.w[1] == 0x0a && C.w[0] >= 0x0000000000000000ull) {
2473
          // set invalid flag
2474
          *pfpsf |= INVALID_EXCEPTION;
2475
          // return Integer Indefinite
2476
          res = 0x8000000000000000ull;
2477
          BID_RETURN (res);
2478
        }
2479
        // else cases that can be rounded to a 64-bit int fall through
2480
        // to '1 <= q + exp <= 20'
2481
      } else if (q <= 19) {
2482
        // C * 10^(21-q) >= 0xa0000000000000000
2483
        __mul_64x64_to_128MACH (C, C1.w[0], ten2k64[21 - q]);
2484
        if (C.w[1] >= 0x0a) {
2485
          // actually C.w[1] == 0x0a && C.w[0] >= 0x0000000000000000ull) {
2486
          // set invalid flag
2487
          *pfpsf |= INVALID_EXCEPTION;
2488
          // return Integer Indefinite
2489
          res = 0x8000000000000000ull;
2490
          BID_RETURN (res);
2491
        }
2492
        // else cases that can be rounded to a 64-bit int fall through
2493
        // to '1 <= q + exp <= 20'
2494
      } else if (q == 20) {
2495
        // C >= 0x10000000000000000
2496
        if (C1.w[1] >= 0x01) {
2497
          // actually C1.w[1] == 0x01 && C1.w[0] >= 0x0000000000000000ull) {
2498
          // set invalid flag
2499
          *pfpsf |= INVALID_EXCEPTION;
2500
          // return Integer Indefinite
2501
          res = 0x8000000000000000ull;
2502
          BID_RETURN (res);
2503
        }
2504
        // else cases that can be rounded to a 64-bit int fall through
2505
        // to '1 <= q + exp <= 20'
2506
      } else if (q == 21) {
2507
        // C >= 0xa0000000000000000
2508
        if (C1.w[1] >= 0x0a) {
2509
          // actually C1.w[1] == 0x0a && C1.w[0] >= 0x0000000000000000ull) {
2510
          // set invalid flag
2511
          *pfpsf |= INVALID_EXCEPTION;
2512
          // return Integer Indefinite
2513
          res = 0x8000000000000000ull;
2514
          BID_RETURN (res);
2515
        }
2516
        // else cases that can be rounded to a 64-bit int fall through
2517
        // to '1 <= q + exp <= 20'
2518
      } else {  // if 22 <= q <= 34 => 1 <= q - 21 <= 13
2519
        // C  >= 10^(q-21) * 0xa0000000000000000 max 44 bits x 68 bits
2520
        C.w[1] = 0x0a;
2521
        C.w[0] = 0x0000000000000000ull;
2522
        __mul_128x64_to_128 (C, ten2k64[q - 21], C);
2523
        if (C1.w[1] > C.w[1]
2524
            || (C1.w[1] == C.w[1] && C1.w[0] >= C.w[0])) {
2525
          // set invalid flag
2526
          *pfpsf |= INVALID_EXCEPTION;
2527
          // return Integer Indefinite
2528
          res = 0x8000000000000000ull;
2529
          BID_RETURN (res);
2530
        }
2531
        // else cases that can be rounded to a 64-bit int fall through
2532
        // to '1 <= q + exp <= 20'
2533
      }
2534
    }
2535
  }
2536
  // n is not too large to be converted to int64 if -1 < n < 2^64
2537
  // Note: some of the cases tested for above fall through to this point
2538
  if ((q + exp) <= 0) {  // n = +/-0.[0...0]c(0)c(1)...c(q-1)
2539
    // set inexact flag
2540
    *pfpsf |= INEXACT_EXCEPTION;
2541
    // return 0
2542
    res = 0x0000000000000000ull;
2543
    BID_RETURN (res);
2544
  } else {      // if (1 <= q + exp <= 20, 1 <= q <= 34, -33 <= exp <= 19)
2545
    // x <= -1 or 1 <= x < 2^64 so if positive x can be rounded
2546
    // to zero to a 64-bit unsigned signed integer
2547
    if (x_sign) {       // x <= -1
2548
      // set invalid flag
2549
      *pfpsf |= INVALID_EXCEPTION;
2550
      // return Integer Indefinite
2551
      res = 0x8000000000000000ull;
2552
      BID_RETURN (res);
2553
    }
2554
    // 1 <= x < 2^64 so x can be rounded
2555
    // to zero to a 64-bit unsigned integer
2556
    if (exp < 0) {       // 2 <= q <= 34, -33 <= exp <= -1, 1 <= q + exp <= 20
2557
      ind = -exp;       // 1 <= ind <= 33; ind is a synonym for 'x'
2558
      // chop off ind digits from the lower part of C1
2559
      // C1 fits in 127 bits
2560
      // calculate C* and f*
2561
      // C* is actually floor(C*) in this case
2562
      // C* and f* need shifting and masking, as shown by
2563
      // shiftright128[] and maskhigh128[]
2564
      // 1 <= x <= 33
2565
      // kx = 10^(-x) = ten2mk128[ind - 1]
2566
      // C* = C1 * 10^(-x)
2567
      // the approximation of 10^(-x) was rounded up to 118 bits
2568
      __mul_128x128_to_256 (P256, C1, ten2mk128[ind - 1]);
2569
      if (ind - 1 <= 21) {      // 0 <= ind - 1 <= 21
2570
        Cstar.w[1] = P256.w[3];
2571
        Cstar.w[0] = P256.w[2];
2572
        fstar.w[3] = 0;
2573
        fstar.w[2] = P256.w[2] & maskhigh128[ind - 1];
2574
        fstar.w[1] = P256.w[1];
2575
        fstar.w[0] = P256.w[0];
2576
      } else {  // 22 <= ind - 1 <= 33
2577
        Cstar.w[1] = 0;
2578
        Cstar.w[0] = P256.w[3];
2579
        fstar.w[3] = P256.w[3] & maskhigh128[ind - 1];
2580
        fstar.w[2] = P256.w[2];
2581
        fstar.w[1] = P256.w[1];
2582
        fstar.w[0] = P256.w[0];
2583
      }
2584
      // the top Ex bits of 10^(-x) are T* = ten2mk128trunc[ind], e.g.
2585
      // if x=1, T*=ten2mk128trunc[0]=0x19999999999999999999999999999999
2586
      // C* = floor(C*) (logical right shift; C has p decimal digits,
2587
      //     correct by Property 1)
2588
      // n = C* * 10^(e+x)
2589
 
2590
      // shift right C* by Ex-128 = shiftright128[ind]
2591
      shift = shiftright128[ind - 1];   // 0 <= shift <= 102
2592
      if (ind - 1 <= 21) {      // 0 <= ind - 1 <= 21
2593
        Cstar.w[0] =
2594
          (Cstar.w[0] >> shift) | (Cstar.w[1] << (64 - shift));
2595
        // redundant, it will be 0! Cstar.w[1] = (Cstar.w[1] >> shift);
2596
      } else {  // 22 <= ind - 1 <= 33
2597
        Cstar.w[0] = (Cstar.w[0] >> (shift - 64));        // 2 <= shift - 64 <= 38
2598
      }
2599
      // determine inexactness of the rounding of C*
2600
      // if (0 < f* < 10^(-x)) then
2601
      //   the result is exact
2602
      // else // if (f* > T*) then
2603
      //   the result is inexact
2604
      if (ind - 1 <= 2) {
2605
        if (fstar.w[1] > ten2mk128trunc[ind - 1].w[1]
2606
            || (fstar.w[1] == ten2mk128trunc[ind - 1].w[1]
2607
                && fstar.w[0] > ten2mk128trunc[ind - 1].w[0])) {
2608
          // set the inexact flag
2609
          *pfpsf |= INEXACT_EXCEPTION;
2610
        }       // else the result is exact
2611
      } else if (ind - 1 <= 21) {       // if 3 <= ind <= 21
2612
        if (fstar.w[2] || fstar.w[1] > ten2mk128trunc[ind - 1].w[1]
2613
            || (fstar.w[1] == ten2mk128trunc[ind - 1].w[1]
2614
                && fstar.w[0] > ten2mk128trunc[ind - 1].w[0])) {
2615
          // set the inexact flag
2616
          *pfpsf |= INEXACT_EXCEPTION;
2617
        }       // else the result is exact
2618
      } else {  // if 22 <= ind <= 33
2619
        if (fstar.w[3] || fstar.w[2]
2620
            || fstar.w[1] > ten2mk128trunc[ind - 1].w[1]
2621
            || (fstar.w[1] == ten2mk128trunc[ind - 1].w[1]
2622
                && fstar.w[0] > ten2mk128trunc[ind - 1].w[0])) {
2623
          // set the inexact flag
2624
          *pfpsf |= INEXACT_EXCEPTION;
2625
        }       // else the result is exact
2626
      }
2627
 
2628
      res = Cstar.w[0];  // the result is positive
2629
    } else if (exp == 0) {
2630
      // 1 <= q <= 20, but x < 2^64 - 1/2 so in this case C1.w[1] has to be 0
2631
      // res = C (exact)
2632
      res = C1.w[0];
2633
    } else {
2634
      // if (exp > 0) => 1 <= exp <= 19, 1 <= q < 19, 2 <= q + exp <= 20
2635
      // res = C * 10^exp (exact) - must fit in 64 bits
2636
      res = C1.w[0] * ten2k64[exp];
2637
    }
2638
  }
2639
}
2640
 
2641
BID_RETURN (res);
2642
}
2643
 
2644
/*****************************************************************************
2645
 *  BID128_to_uint64_rninta
2646
 ****************************************************************************/
2647
 
2648
BID128_FUNCTION_ARG1_NORND_CUSTOMRESTYPE (UINT64,
2649
                                          bid128_to_uint64_rninta, x)
2650
 
2651
     UINT64 res;
2652
     UINT64 x_sign;
2653
     UINT64 x_exp;
2654
     int exp;                   // unbiased exponent
2655
  // Note: C1.w[1], C1.w[0] represent x_signif_hi, x_signif_lo (all are UINT64)
2656
     UINT64 tmp64;
2657
     BID_UI64DOUBLE tmp1;
2658
     unsigned int x_nr_bits;
2659
     int q, ind, shift;
2660
     UINT128 C1, C;
2661
     UINT128 Cstar;             // C* represents up to 34 decimal digits ~ 113 bits
2662
     UINT256 P256;
2663
 
2664
  // unpack x
2665
x_sign = x.w[1] & MASK_SIGN;    // 0 for positive, MASK_SIGN for negative
2666
x_exp = x.w[1] & MASK_EXP;      // biased and shifted left 49 bit positions
2667
C1.w[1] = x.w[1] & MASK_COEFF;
2668
C1.w[0] = x.w[0];
2669
 
2670
  // check for NaN or Infinity
2671
if ((x.w[1] & MASK_SPECIAL) == MASK_SPECIAL) {
2672
    // x is special
2673
if ((x.w[1] & MASK_NAN) == MASK_NAN) {  // x is NAN
2674
  if ((x.w[1] & MASK_SNAN) == MASK_SNAN) {      // x is SNAN
2675
    // set invalid flag
2676
    *pfpsf |= INVALID_EXCEPTION;
2677
    // return Integer Indefinite
2678
    res = 0x8000000000000000ull;
2679
  } else {      // x is QNaN
2680
    // set invalid flag
2681
    *pfpsf |= INVALID_EXCEPTION;
2682
    // return Integer Indefinite
2683
    res = 0x8000000000000000ull;
2684
  }
2685
  BID_RETURN (res);
2686
} else {        // x is not a NaN, so it must be infinity
2687
  if (!x_sign) {        // x is +inf
2688
    // set invalid flag
2689
    *pfpsf |= INVALID_EXCEPTION;
2690
    // return Integer Indefinite
2691
    res = 0x8000000000000000ull;
2692
  } else {      // x is -inf
2693
    // set invalid flag
2694
    *pfpsf |= INVALID_EXCEPTION;
2695
    // return Integer Indefinite
2696
    res = 0x8000000000000000ull;
2697
  }
2698
  BID_RETURN (res);
2699
}
2700
}
2701
  // check for non-canonical values (after the check for special values)
2702
if ((C1.w[1] > 0x0001ed09bead87c0ull)
2703
    || (C1.w[1] == 0x0001ed09bead87c0ull
2704
        && (C1.w[0] > 0x378d8e63ffffffffull))
2705
    || ((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull)) {
2706
  res = 0x0000000000000000ull;
2707
  BID_RETURN (res);
2708
} else if ((C1.w[1] == 0x0ull) && (C1.w[0] == 0x0ull)) {
2709
  // x is 0
2710
  res = 0x0000000000000000ull;
2711
  BID_RETURN (res);
2712
} else {        // x is not special and is not zero
2713
 
2714
  // q = nr. of decimal digits in x
2715
  //  determine first the nr. of bits in x
2716
  if (C1.w[1] == 0) {
2717
    if (C1.w[0] >= 0x0020000000000000ull) {      // x >= 2^53
2718
      // split the 64-bit value in two 32-bit halves to avoid rounding errors
2719
      if (C1.w[0] >= 0x0000000100000000ull) {    // x >= 2^32
2720
        tmp1.d = (double) (C1.w[0] >> 32);       // exact conversion
2721
        x_nr_bits =
2722
          33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
2723
      } else {  // x < 2^32
2724
        tmp1.d = (double) (C1.w[0]);     // exact conversion
2725
        x_nr_bits =
2726
          1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
2727
      }
2728
    } else {    // if x < 2^53
2729
      tmp1.d = (double) C1.w[0]; // exact conversion
2730
      x_nr_bits =
2731
        1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
2732
    }
2733
  } else {      // C1.w[1] != 0 => nr. bits = 64 + nr_bits (C1.w[1])
2734
    tmp1.d = (double) C1.w[1];  // exact conversion
2735
    x_nr_bits =
2736
      65 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
2737
  }
2738
  q = nr_digits[x_nr_bits - 1].digits;
2739
  if (q == 0) {
2740
    q = nr_digits[x_nr_bits - 1].digits1;
2741
    if (C1.w[1] > nr_digits[x_nr_bits - 1].threshold_hi
2742
        || (C1.w[1] == nr_digits[x_nr_bits - 1].threshold_hi
2743
            && C1.w[0] >= nr_digits[x_nr_bits - 1].threshold_lo))
2744
      q++;
2745
  }
2746
  exp = (x_exp >> 49) - 6176;
2747
  if ((q + exp) > 20) { // x >= 10^20 ~= 2^66.45... (cannot fit in 64 bits)
2748
    // set invalid flag
2749
    *pfpsf |= INVALID_EXCEPTION;
2750
    // return Integer Indefinite
2751
    res = 0x8000000000000000ull;
2752
    BID_RETURN (res);
2753
  } else if ((q + exp) == 20) { // x = c(0)c(1)...c(19).c(20)...c(q-1)
2754
    // in this case 2^63.11... ~= 10^19 <= x < 10^20 ~= 2^66.43...
2755
    // so x rounded to an integer may or may not fit in an unsigned 64-bit int
2756
    // the cases that do not fit are identified here; the ones that fit
2757
    // fall through and will be handled with other cases further,
2758
    // under '1 <= q + exp <= 20'
2759
    if (x_sign) {       // if n < 0 and q + exp = 20
2760
      // if n <= -1/2 then n cannot be converted to uint64 with RN
2761
      // too large if c(0)c(1)...c(19).c(20)...c(q-1) >= 1/2
2762
      // <=> 0.c(0)c(1)...c(q-1) * 10^21 >= 0x05, 1<=q<=34
2763
      // <=> C * 10^(21-q) >= 0x05, 1<=q<=34
2764
      if (q == 21) {
2765
        // C >= 5 
2766
        if (C1.w[1] != 0 || C1.w[0] >= 0x05ull) {
2767
          // set invalid flag
2768
          *pfpsf |= INVALID_EXCEPTION;
2769
          // return Integer Indefinite
2770
          res = 0x8000000000000000ull;
2771
          BID_RETURN (res);
2772
        }
2773
        // else cases that can be rounded to 64-bit unsigned int fall through
2774
        // to '1 <= q + exp <= 20'
2775
      } else {
2776
        // if 1 <= q <= 20
2777
        //   C * 10^(21-q) >= 5 is true because C >= 1 and 10^(21-q) >= 10
2778
        // if 22 <= q <= 34 => 1 <= q - 21 <= 13
2779
        //  C >= 5 * 10^(q-21) is true because C > 2^64 and 5*10^(q-21) < 2^64
2780
        // set invalid flag
2781
        *pfpsf |= INVALID_EXCEPTION;
2782
        // return Integer Indefinite
2783
        res = 0x8000000000000000ull;
2784
        BID_RETURN (res);
2785
      }
2786
    } else {    // if n > 0 and q + exp = 20
2787
      // if n >= 2^64 - 1/2 then n is too large
2788
      // <=> c(0)c(1)...c(19).c(20)...c(q-1) >= 2^64-1/2
2789
      // <=> 0.c(0)c(1)...c(19)c(20)...c(q-1) * 10^20 >= 2^64-1/2
2790
      // <=> 0.c(0)c(1)...c(19)c(20)...c(q-1) * 10^21 >= 5*(2^65-1)
2791
      // <=> C * 10^(21-q) >= 0x9fffffffffffffffb, 1<=q<=34
2792
      if (q == 1) {
2793
        // C * 10^20 >= 0x9fffffffffffffffb
2794
        __mul_128x64_to_128 (C, C1.w[0], ten2k128[0]);    // 10^20 * C
2795
        if (C.w[1] > 0x09 || (C.w[1] == 0x09
2796
                              && C.w[0] >= 0xfffffffffffffffbull)) {
2797
          // set invalid flag
2798
          *pfpsf |= INVALID_EXCEPTION;
2799
          // return Integer Indefinite
2800
          res = 0x8000000000000000ull;
2801
          BID_RETURN (res);
2802
        }
2803
        // else cases that can be rounded to a 64-bit int fall through
2804
        // to '1 <= q + exp <= 20'
2805
      } else if (q <= 19) {
2806
        // C * 10^(21-q) >= 0x9fffffffffffffffb
2807
        __mul_64x64_to_128MACH (C, C1.w[0], ten2k64[21 - q]);
2808
        if (C.w[1] > 0x09 || (C.w[1] == 0x09
2809
                              && C.w[0] >= 0xfffffffffffffffbull)) {
2810
          // set invalid flag
2811
          *pfpsf |= INVALID_EXCEPTION;
2812
          // return Integer Indefinite
2813
          res = 0x8000000000000000ull;
2814
          BID_RETURN (res);
2815
        }
2816
        // else cases that can be rounded to a 64-bit int fall through
2817
        // to '1 <= q + exp <= 20'
2818
      } else if (q == 20) {
2819
        // C * 10 >= 0x9fffffffffffffffb <=> C * 2 > 1ffffffffffffffff
2820
        C.w[0] = C1.w[0] + C1.w[0];
2821
        C.w[1] = C1.w[1] + C1.w[1];
2822
        if (C.w[0] < C1.w[0])
2823
          C.w[1]++;
2824
        if (C.w[1] > 0x01 || (C.w[1] == 0x01
2825
                              && C.w[0] >= 0xffffffffffffffffull)) {
2826
          // set invalid flag
2827
          *pfpsf |= INVALID_EXCEPTION;
2828
          // return Integer Indefinite
2829
          res = 0x8000000000000000ull;
2830
          BID_RETURN (res);
2831
        }
2832
        // else cases that can be rounded to a 64-bit int fall through
2833
        // to '1 <= q + exp <= 20'
2834
      } else if (q == 21) {
2835
        // C >= 0x9fffffffffffffffb
2836
        if (C1.w[1] > 0x09 || (C1.w[1] == 0x09
2837
                               && C1.w[0] >= 0xfffffffffffffffbull)) {
2838
          // set invalid flag
2839
          *pfpsf |= INVALID_EXCEPTION;
2840
          // return Integer Indefinite
2841
          res = 0x8000000000000000ull;
2842
          BID_RETURN (res);
2843
        }
2844
        // else cases that can be rounded to a 64-bit int fall through
2845
        // to '1 <= q + exp <= 20'
2846
      } else {  // if 22 <= q <= 34 => 1 <= q - 21 <= 13
2847
        // C  >= 10^(q-21) * 0x9fffffffffffffffb max 44 bits x 68 bits
2848
        C.w[1] = 0x09;
2849
        C.w[0] = 0xfffffffffffffffbull;
2850
        __mul_128x64_to_128 (C, ten2k64[q - 21], C);
2851
        if (C1.w[1] > C.w[1]
2852
            || (C1.w[1] == C.w[1] && C1.w[0] >= C.w[0])) {
2853
          // set invalid flag
2854
          *pfpsf |= INVALID_EXCEPTION;
2855
          // return Integer Indefinite
2856
          res = 0x8000000000000000ull;
2857
          BID_RETURN (res);
2858
        }
2859
        // else cases that can be rounded to a 64-bit int fall through
2860
        // to '1 <= q + exp <= 20'
2861
      }
2862
    }
2863
  }
2864
  // n is not too large to be converted to int64 if -1/2 < n < 2^64 - 1/2
2865
  // Note: some of the cases tested for above fall through to this point
2866
  if ((q + exp) < 0) {   // n = +/-0.0...c(0)c(1)...c(q-1)
2867
    // return 0
2868
    res = 0x0000000000000000ull;
2869
    BID_RETURN (res);
2870
  } else if ((q + exp) == 0) {   // n = +/-0.c(0)c(1)...c(q-1)
2871
    // if 0.c(0)c(1)...c(q-1) < 0.5 <=> c(0)c(1)...c(q-1) < 5 * 10^(q-1)
2872
    //   res = 0
2873
    // else if x > 0
2874
    //   res = +1
2875
    // else // if x < 0
2876
    //   invalid exc
2877
    ind = q - 1;
2878
    if (ind <= 18) {    // 0 <= ind <= 18
2879
      if ((C1.w[1] == 0) && (C1.w[0] < midpoint64[ind])) {
2880
        res = 0x0000000000000000ull;    // return 0
2881
      } else if (!x_sign) {     // n > 0
2882
        res = 0x00000001;       // return +1
2883
      } else {
2884
        // set invalid flag
2885
        *pfpsf |= INVALID_EXCEPTION;
2886
        // return Integer Indefinite
2887
        res = 0x8000000000000000ull;
2888
        BID_RETURN (res);
2889
      }
2890
    } else {    // 19 <= ind <= 33
2891
      if ((C1.w[1] < midpoint128[ind - 19].w[1])
2892
          || ((C1.w[1] == midpoint128[ind - 19].w[1])
2893
              && (C1.w[0] < midpoint128[ind - 19].w[0]))) {
2894
        res = 0x0000000000000000ull;    // return 0
2895
      } else if (!x_sign) {     // n > 0
2896
        res = 0x00000001;       // return +1
2897
      } else {
2898
        // set invalid flag
2899
        *pfpsf |= INVALID_EXCEPTION;
2900
        // return Integer Indefinite
2901
        res = 0x8000000000000000ull;
2902
        BID_RETURN (res);
2903
      }
2904
    }
2905
  } else {      // if (1 <= q + exp <= 20, 1 <= q <= 34, -33 <= exp <= 19)
2906
    // x <= -1 or 1 <= x < 2^64-1/2 so if positive x can be rounded
2907
    // to nearest to a 64-bit unsigned signed integer
2908
    if (x_sign) {       // x <= -1
2909
      // set invalid flag
2910
      *pfpsf |= INVALID_EXCEPTION;
2911
      // return Integer Indefinite
2912
      res = 0x8000000000000000ull;
2913
      BID_RETURN (res);
2914
    }
2915
    // 1 <= x < 2^64-1/2 so x can be rounded
2916
    // to nearest to a 64-bit unsigned integer
2917
    if (exp < 0) {       // 2 <= q <= 34, -33 <= exp <= -1, 1 <= q + exp <= 20
2918
      ind = -exp;       // 1 <= ind <= 33; ind is a synonym for 'x'
2919
      // chop off ind digits from the lower part of C1
2920
      // C1 = C1 + 1/2 * 10^ind where the result C1 fits in 127 bits
2921
      tmp64 = C1.w[0];
2922
      if (ind <= 19) {
2923
        C1.w[0] = C1.w[0] + midpoint64[ind - 1];
2924
      } else {
2925
        C1.w[0] = C1.w[0] + midpoint128[ind - 20].w[0];
2926
        C1.w[1] = C1.w[1] + midpoint128[ind - 20].w[1];
2927
      }
2928
      if (C1.w[0] < tmp64)
2929
        C1.w[1]++;
2930
      // calculate C* and f*
2931
      // C* is actually floor(C*) in this case
2932
      // C* and f* need shifting and masking, as shown by
2933
      // shiftright128[] and maskhigh128[]
2934
      // 1 <= x <= 33
2935
      // kx = 10^(-x) = ten2mk128[ind - 1]
2936
      // C* = (C1 + 1/2 * 10^x) * 10^(-x)
2937
      // the approximation of 10^(-x) was rounded up to 118 bits
2938
      __mul_128x128_to_256 (P256, C1, ten2mk128[ind - 1]);
2939
      if (ind - 1 <= 21) {      // 0 <= ind - 1 <= 21
2940
        Cstar.w[1] = P256.w[3];
2941
        Cstar.w[0] = P256.w[2];
2942
      } else {  // 22 <= ind - 1 <= 33
2943
        Cstar.w[1] = 0;
2944
        Cstar.w[0] = P256.w[3];
2945
      }
2946
      // the top Ex bits of 10^(-x) are T* = ten2mk128trunc[ind], e.g.
2947
      // if x=1, T*=ten2mk128trunc[0]=0x19999999999999999999999999999999
2948
      // if (0 < f* < 10^(-x)) then the result is a midpoint
2949
      //   if floor(C*) is even then C* = floor(C*) - logical right
2950
      //       shift; C* has p decimal digits, correct by Prop. 1)
2951
      //   else if floor(C*) is odd C* = floor(C*)-1 (logical right
2952
      //       shift; C* has p decimal digits, correct by Pr. 1)
2953
      // else
2954
      //   C* = floor(C*) (logical right shift; C has p decimal digits,
2955
      //       correct by Property 1)
2956
      // n = C* * 10^(e+x)
2957
 
2958
      // shift right C* by Ex-128 = shiftright128[ind]
2959
      shift = shiftright128[ind - 1];   // 0 <= shift <= 102
2960
      if (ind - 1 <= 21) {      // 0 <= ind - 1 <= 21
2961
        Cstar.w[0] =
2962
          (Cstar.w[0] >> shift) | (Cstar.w[1] << (64 - shift));
2963
        // redundant, it will be 0! Cstar.w[1] = (Cstar.w[1] >> shift);
2964
      } else {  // 22 <= ind - 1 <= 33
2965
        Cstar.w[0] = (Cstar.w[0] >> (shift - 64));        // 2 <= shift - 64 <= 38
2966
      }
2967
 
2968
      // if the result was a midpoint it was rounded away from zero
2969
      res = Cstar.w[0];  // the result is positive
2970
    } else if (exp == 0) {
2971
      // 1 <= q <= 20, but x < 2^64 - 1/2 so in this case C1.w[1] has to be 0
2972
      // res = C (exact)
2973
      res = C1.w[0];
2974
    } else {
2975
      // if (exp > 0) => 1 <= exp <= 19, 1 <= q < 19, 2 <= q + exp <= 20
2976
      // res = C * 10^exp (exact) - must fit in 64 bits
2977
      res = C1.w[0] * ten2k64[exp];
2978
    }
2979
  }
2980
}
2981
 
2982
BID_RETURN (res);
2983
}
2984
 
2985
/*****************************************************************************
2986
 *  BID128_to_uint64_xrninta
2987
 ****************************************************************************/
2988
 
2989
BID128_FUNCTION_ARG1_NORND_CUSTOMRESTYPE (UINT64,
2990
                                          bid128_to_uint64_xrninta, x)
2991
 
2992
     UINT64 res;
2993
     UINT64 x_sign;
2994
     UINT64 x_exp;
2995
     int exp;                   // unbiased exponent
2996
  // Note: C1.w[1], C1.w[0] represent x_signif_hi, x_signif_lo (all are UINT64)
2997
     UINT64 tmp64, tmp64A;
2998
     BID_UI64DOUBLE tmp1;
2999
     unsigned int x_nr_bits;
3000
     int q, ind, shift;
3001
     UINT128 C1, C;
3002
     UINT128 Cstar;             // C* represents up to 34 decimal digits ~ 113 bits
3003
     UINT256 fstar;
3004
     UINT256 P256;
3005
 
3006
  // unpack x
3007
x_sign = x.w[1] & MASK_SIGN;    // 0 for positive, MASK_SIGN for negative
3008
x_exp = x.w[1] & MASK_EXP;      // biased and shifted left 49 bit positions
3009
C1.w[1] = x.w[1] & MASK_COEFF;
3010
C1.w[0] = x.w[0];
3011
 
3012
  // check for NaN or Infinity
3013
if ((x.w[1] & MASK_SPECIAL) == MASK_SPECIAL) {
3014
    // x is special
3015
if ((x.w[1] & MASK_NAN) == MASK_NAN) {  // x is NAN
3016
  if ((x.w[1] & MASK_SNAN) == MASK_SNAN) {      // x is SNAN
3017
    // set invalid flag
3018
    *pfpsf |= INVALID_EXCEPTION;
3019
    // return Integer Indefinite
3020
    res = 0x8000000000000000ull;
3021
  } else {      // x is QNaN
3022
    // set invalid flag
3023
    *pfpsf |= INVALID_EXCEPTION;
3024
    // return Integer Indefinite
3025
    res = 0x8000000000000000ull;
3026
  }
3027
  BID_RETURN (res);
3028
} else {        // x is not a NaN, so it must be infinity
3029
  if (!x_sign) {        // x is +inf
3030
    // set invalid flag
3031
    *pfpsf |= INVALID_EXCEPTION;
3032
    // return Integer Indefinite
3033
    res = 0x8000000000000000ull;
3034
  } else {      // x is -inf
3035
    // set invalid flag
3036
    *pfpsf |= INVALID_EXCEPTION;
3037
    // return Integer Indefinite
3038
    res = 0x8000000000000000ull;
3039
  }
3040
  BID_RETURN (res);
3041
}
3042
}
3043
  // check for non-canonical values (after the check for special values)
3044
if ((C1.w[1] > 0x0001ed09bead87c0ull)
3045
    || (C1.w[1] == 0x0001ed09bead87c0ull
3046
        && (C1.w[0] > 0x378d8e63ffffffffull))
3047
    || ((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull)) {
3048
  res = 0x0000000000000000ull;
3049
  BID_RETURN (res);
3050
} else if ((C1.w[1] == 0x0ull) && (C1.w[0] == 0x0ull)) {
3051
  // x is 0
3052
  res = 0x0000000000000000ull;
3053
  BID_RETURN (res);
3054
} else {        // x is not special and is not zero
3055
 
3056
  // q = nr. of decimal digits in x
3057
  //  determine first the nr. of bits in x
3058
  if (C1.w[1] == 0) {
3059
    if (C1.w[0] >= 0x0020000000000000ull) {      // x >= 2^53
3060
      // split the 64-bit value in two 32-bit halves to avoid rounding errors
3061
      if (C1.w[0] >= 0x0000000100000000ull) {    // x >= 2^32
3062
        tmp1.d = (double) (C1.w[0] >> 32);       // exact conversion
3063
        x_nr_bits =
3064
          33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
3065
      } else {  // x < 2^32
3066
        tmp1.d = (double) (C1.w[0]);     // exact conversion
3067
        x_nr_bits =
3068
          1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
3069
      }
3070
    } else {    // if x < 2^53
3071
      tmp1.d = (double) C1.w[0]; // exact conversion
3072
      x_nr_bits =
3073
        1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
3074
    }
3075
  } else {      // C1.w[1] != 0 => nr. bits = 64 + nr_bits (C1.w[1])
3076
    tmp1.d = (double) C1.w[1];  // exact conversion
3077
    x_nr_bits =
3078
      65 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
3079
  }
3080
  q = nr_digits[x_nr_bits - 1].digits;
3081
  if (q == 0) {
3082
    q = nr_digits[x_nr_bits - 1].digits1;
3083
    if (C1.w[1] > nr_digits[x_nr_bits - 1].threshold_hi
3084
        || (C1.w[1] == nr_digits[x_nr_bits - 1].threshold_hi
3085
            && C1.w[0] >= nr_digits[x_nr_bits - 1].threshold_lo))
3086
      q++;
3087
  }
3088
  exp = (x_exp >> 49) - 6176;
3089
 
3090
  if ((q + exp) > 20) { // x >= 10^20 ~= 2^66.45... (cannot fit in 64 bits)
3091
    // set invalid flag
3092
    *pfpsf |= INVALID_EXCEPTION;
3093
    // return Integer Indefinite
3094
    res = 0x8000000000000000ull;
3095
    BID_RETURN (res);
3096
  } else if ((q + exp) == 20) { // x = c(0)c(1)...c(19).c(20)...c(q-1)
3097
    // in this case 2^63.11... ~= 10^19 <= x < 10^20 ~= 2^66.43...
3098
    // so x rounded to an integer may or may not fit in an unsigned 64-bit int
3099
    // the cases that do not fit are identified here; the ones that fit
3100
    // fall through and will be handled with other cases further,
3101
    // under '1 <= q + exp <= 20'
3102
    if (x_sign) {       // if n < 0 and q + exp = 20
3103
      // if n <= -1/2 then n cannot be converted to uint64 with RN
3104
      // too large if c(0)c(1)...c(19).c(20)...c(q-1) >= 1/2
3105
      // <=> 0.c(0)c(1)...c(q-1) * 10^21 >= 0x05, 1<=q<=34
3106
      // <=> C * 10^(21-q) >= 0x05, 1<=q<=34
3107
      if (q == 21) {
3108
        // C >= 5 
3109
        if (C1.w[1] != 0 || C1.w[0] >= 0x05ull) {
3110
          // set invalid flag
3111
          *pfpsf |= INVALID_EXCEPTION;
3112
          // return Integer Indefinite
3113
          res = 0x8000000000000000ull;
3114
          BID_RETURN (res);
3115
        }
3116
        // else cases that can be rounded to 64-bit unsigned int fall through
3117
        // to '1 <= q + exp <= 20'
3118
      } else {
3119
        // if 1 <= q <= 20
3120
        //   C * 10^(21-q) >= 5 is true because C >= 1 and 10^(21-q) >= 10
3121
        // if 22 <= q <= 34 => 1 <= q - 21 <= 13
3122
        //  C >= 5 * 10^(q-21) is true because C > 2^64 and 5*10^(q-21) < 2^64
3123
        // set invalid flag
3124
        *pfpsf |= INVALID_EXCEPTION;
3125
        // return Integer Indefinite
3126
        res = 0x8000000000000000ull;
3127
        BID_RETURN (res);
3128
      }
3129
    } else {    // if n > 0 and q + exp = 20
3130
      // if n >= 2^64 - 1/2 then n is too large
3131
      // <=> c(0)c(1)...c(19).c(20)...c(q-1) >= 2^64-1/2
3132
      // <=> 0.c(0)c(1)...c(19)c(20)...c(q-1) * 10^20 >= 2^64-1/2
3133
      // <=> 0.c(0)c(1)...c(19)c(20)...c(q-1) * 10^21 >= 5*(2^65-1)
3134
      // <=> C * 10^(21-q) >= 0x9fffffffffffffffb, 1<=q<=34
3135
      if (q == 1) {
3136
        // C * 10^20 >= 0x9fffffffffffffffb
3137
        __mul_128x64_to_128 (C, C1.w[0], ten2k128[0]);    // 10^20 * C
3138
        if (C.w[1] > 0x09 || (C.w[1] == 0x09
3139
                              && C.w[0] >= 0xfffffffffffffffbull)) {
3140
          // set invalid flag
3141
          *pfpsf |= INVALID_EXCEPTION;
3142
          // return Integer Indefinite
3143
          res = 0x8000000000000000ull;
3144
          BID_RETURN (res);
3145
        }
3146
        // else cases that can be rounded to a 64-bit int fall through
3147
        // to '1 <= q + exp <= 20'
3148
      } else if (q <= 19) {
3149
        // C * 10^(21-q) >= 0x9fffffffffffffffb
3150
        __mul_64x64_to_128MACH (C, C1.w[0], ten2k64[21 - q]);
3151
        if (C.w[1] > 0x09 || (C.w[1] == 0x09
3152
                              && C.w[0] >= 0xfffffffffffffffbull)) {
3153
          // set invalid flag
3154
          *pfpsf |= INVALID_EXCEPTION;
3155
          // return Integer Indefinite
3156
          res = 0x8000000000000000ull;
3157
          BID_RETURN (res);
3158
        }
3159
        // else cases that can be rounded to a 64-bit int fall through
3160
        // to '1 <= q + exp <= 20'
3161
      } else if (q == 20) {
3162
        // C * 10 >= 0x9fffffffffffffffb <=> C * 2 > 1ffffffffffffffff
3163
        C.w[0] = C1.w[0] + C1.w[0];
3164
        C.w[1] = C1.w[1] + C1.w[1];
3165
        if (C.w[0] < C1.w[0])
3166
          C.w[1]++;
3167
        if (C.w[1] > 0x01 || (C.w[1] == 0x01
3168
                              && C.w[0] >= 0xffffffffffffffffull)) {
3169
          // set invalid flag
3170
          *pfpsf |= INVALID_EXCEPTION;
3171
          // return Integer Indefinite
3172
          res = 0x8000000000000000ull;
3173
          BID_RETURN (res);
3174
        }
3175
        // else cases that can be rounded to a 64-bit int fall through
3176
        // to '1 <= q + exp <= 20'
3177
      } else if (q == 21) {
3178
        // C >= 0x9fffffffffffffffb
3179
        if (C1.w[1] > 0x09 || (C1.w[1] == 0x09
3180
                               && C1.w[0] >= 0xfffffffffffffffbull)) {
3181
          // set invalid flag
3182
          *pfpsf |= INVALID_EXCEPTION;
3183
          // return Integer Indefinite
3184
          res = 0x8000000000000000ull;
3185
          BID_RETURN (res);
3186
        }
3187
        // else cases that can be rounded to a 64-bit int fall through
3188
        // to '1 <= q + exp <= 20'
3189
      } else {  // if 22 <= q <= 34 => 1 <= q - 21 <= 13
3190
        // C  >= 10^(q-21) * 0x9fffffffffffffffb max 44 bits x 68 bits
3191
        C.w[1] = 0x09;
3192
        C.w[0] = 0xfffffffffffffffbull;
3193
        __mul_128x64_to_128 (C, ten2k64[q - 21], C);
3194
        if (C1.w[1] > C.w[1]
3195
            || (C1.w[1] == C.w[1] && C1.w[0] >= C.w[0])) {
3196
          // set invalid flag
3197
          *pfpsf |= INVALID_EXCEPTION;
3198
          // return Integer Indefinite
3199
          res = 0x8000000000000000ull;
3200
          BID_RETURN (res);
3201
        }
3202
        // else cases that can be rounded to a 64-bit int fall through
3203
        // to '1 <= q + exp <= 20'
3204
      }
3205
    }
3206
  }
3207
  // n is not too large to be converted to int64 if -1/2 < n < 2^64 - 1/2
3208
  // Note: some of the cases tested for above fall through to this point
3209
  if ((q + exp) < 0) {   // n = +/-0.0...c(0)c(1)...c(q-1)
3210
    // set inexact flag
3211
    *pfpsf |= INEXACT_EXCEPTION;
3212
    // return 0
3213
    res = 0x0000000000000000ull;
3214
    BID_RETURN (res);
3215
  } else if ((q + exp) == 0) {   // n = +/-0.c(0)c(1)...c(q-1)
3216
    // if 0.c(0)c(1)...c(q-1) < 0.5 <=> c(0)c(1)...c(q-1) < 5 * 10^(q-1)
3217
    //   res = 0
3218
    // else if x > 0
3219
    //   res = +1
3220
    // else // if x < 0
3221
    //   invalid exc
3222
    ind = q - 1;
3223
    if (ind <= 18) {    // 0 <= ind <= 18
3224
      if ((C1.w[1] == 0) && (C1.w[0] < midpoint64[ind])) {
3225
        res = 0x0000000000000000ull;    // return 0
3226
      } else if (!x_sign) {     // n > 0
3227
        res = 0x00000001;       // return +1
3228
      } else {
3229
        res = 0x8000000000000000ull;
3230
        // set invalid flag
3231
        *pfpsf |= INVALID_EXCEPTION;
3232
        // return Integer Indefinite
3233
        res = 0x8000000000000000ull;
3234
        BID_RETURN (res);
3235
      }
3236
    } else {    // 19 <= ind <= 33
3237
      if ((C1.w[1] < midpoint128[ind - 19].w[1])
3238
          || ((C1.w[1] == midpoint128[ind - 19].w[1])
3239
              && (C1.w[0] < midpoint128[ind - 19].w[0]))) {
3240
        res = 0x0000000000000000ull;    // return 0
3241
      } else if (!x_sign) {     // n > 0
3242
        res = 0x00000001;       // return +1
3243
      } else {
3244
        res = 0x8000000000000000ull;
3245
        *pfpsf |= INVALID_EXCEPTION;
3246
        // return Integer Indefinite
3247
        res = 0x8000000000000000ull;
3248
        BID_RETURN (res);
3249
      }
3250
    }
3251
    // set inexact flag
3252
    *pfpsf |= INEXACT_EXCEPTION;
3253
  } else {      // if (1 <= q + exp <= 20, 1 <= q <= 34, -33 <= exp <= 19)
3254
    // x <= -1 or 1 <= x < 2^64-1/2 so if positive x can be rounded
3255
    // to nearest to a 64-bit unsigned signed integer
3256
    if (x_sign) {       // x <= -1
3257
      // set invalid flag
3258
      *pfpsf |= INVALID_EXCEPTION;
3259
      // return Integer Indefinite
3260
      res = 0x8000000000000000ull;
3261
      BID_RETURN (res);
3262
    }
3263
    // 1 <= x < 2^64-1/2 so x can be rounded
3264
    // to nearest to a 64-bit unsigned integer
3265
    if (exp < 0) {       // 2 <= q <= 34, -33 <= exp <= -1, 1 <= q + exp <= 20
3266
      ind = -exp;       // 1 <= ind <= 33; ind is a synonym for 'x'
3267
      // chop off ind digits from the lower part of C1
3268
      // C1 = C1 + 1/2 * 10^ind where the result C1 fits in 127 bits
3269
      tmp64 = C1.w[0];
3270
      if (ind <= 19) {
3271
        C1.w[0] = C1.w[0] + midpoint64[ind - 1];
3272
      } else {
3273
        C1.w[0] = C1.w[0] + midpoint128[ind - 20].w[0];
3274
        C1.w[1] = C1.w[1] + midpoint128[ind - 20].w[1];
3275
      }
3276
      if (C1.w[0] < tmp64)
3277
        C1.w[1]++;
3278
      // calculate C* and f*
3279
      // C* is actually floor(C*) in this case
3280
      // C* and f* need shifting and masking, as shown by
3281
      // shiftright128[] and maskhigh128[]
3282
      // 1 <= x <= 33
3283
      // kx = 10^(-x) = ten2mk128[ind - 1]
3284
      // C* = (C1 + 1/2 * 10^x) * 10^(-x)
3285
      // the approximation of 10^(-x) was rounded up to 118 bits
3286
      __mul_128x128_to_256 (P256, C1, ten2mk128[ind - 1]);
3287
      if (ind - 1 <= 21) {      // 0 <= ind - 1 <= 21
3288
        Cstar.w[1] = P256.w[3];
3289
        Cstar.w[0] = P256.w[2];
3290
        fstar.w[3] = 0;
3291
        fstar.w[2] = P256.w[2] & maskhigh128[ind - 1];
3292
        fstar.w[1] = P256.w[1];
3293
        fstar.w[0] = P256.w[0];
3294
      } else {  // 22 <= ind - 1 <= 33
3295
        Cstar.w[1] = 0;
3296
        Cstar.w[0] = P256.w[3];
3297
        fstar.w[3] = P256.w[3] & maskhigh128[ind - 1];
3298
        fstar.w[2] = P256.w[2];
3299
        fstar.w[1] = P256.w[1];
3300
        fstar.w[0] = P256.w[0];
3301
      }
3302
      // the top Ex bits of 10^(-x) are T* = ten2mk128trunc[ind], e.g.
3303
      // if x=1, T*=ten2mk128trunc[0]=0x19999999999999999999999999999999
3304
      // if (0 < f* < 10^(-x)) then the result is a midpoint
3305
      //   if floor(C*) is even then C* = floor(C*) - logical right
3306
      //       shift; C* has p decimal digits, correct by Prop. 1)
3307
      //   else if floor(C*) is odd C* = floor(C*)-1 (logical right
3308
      //       shift; C* has p decimal digits, correct by Pr. 1)
3309
      // else
3310
      //   C* = floor(C*) (logical right shift; C has p decimal digits,
3311
      //       correct by Property 1)
3312
      // n = C* * 10^(e+x)
3313
 
3314
      // shift right C* by Ex-128 = shiftright128[ind]
3315
      shift = shiftright128[ind - 1];   // 0 <= shift <= 102
3316
      if (ind - 1 <= 21) {      // 0 <= ind - 1 <= 21
3317
        Cstar.w[0] =
3318
          (Cstar.w[0] >> shift) | (Cstar.w[1] << (64 - shift));
3319
        // redundant, it will be 0! Cstar.w[1] = (Cstar.w[1] >> shift);
3320
      } else {  // 22 <= ind - 1 <= 33
3321
        Cstar.w[0] = (Cstar.w[0] >> (shift - 64));        // 2 <= shift - 64 <= 38
3322
      }
3323
      // determine inexactness of the rounding of C*
3324
      // if (0 < f* - 1/2 < 10^(-x)) then
3325
      //   the result is exact
3326
      // else // if (f* - 1/2 > T*) then
3327
      //   the result is inexact
3328
      if (ind - 1 <= 2) {
3329
        if (fstar.w[1] > 0x8000000000000000ull ||
3330
            (fstar.w[1] == 0x8000000000000000ull
3331
             && fstar.w[0] > 0x0ull)) {
3332
          // f* > 1/2 and the result may be exact
3333
          tmp64 = fstar.w[1] - 0x8000000000000000ull;   // f* - 1/2
3334
          if (tmp64 > ten2mk128trunc[ind - 1].w[1]
3335
              || (tmp64 == ten2mk128trunc[ind - 1].w[1]
3336
                  && fstar.w[0] >= ten2mk128trunc[ind - 1].w[0])) {
3337
            // set the inexact flag
3338
            *pfpsf |= INEXACT_EXCEPTION;
3339
          }     // else the result is exact
3340
        } else {        // the result is inexact; f2* <= 1/2
3341
          // set the inexact flag
3342
          *pfpsf |= INEXACT_EXCEPTION;
3343
        }
3344
      } else if (ind - 1 <= 21) {       // if 3 <= ind <= 21
3345
        if (fstar.w[3] > 0x0 ||
3346
            (fstar.w[3] == 0x0 && fstar.w[2] > onehalf128[ind - 1]) ||
3347
            (fstar.w[3] == 0x0 && fstar.w[2] == onehalf128[ind - 1] &&
3348
             (fstar.w[1] || fstar.w[0]))) {
3349
          // f2* > 1/2 and the result may be exact
3350
          // Calculate f2* - 1/2
3351
          tmp64 = fstar.w[2] - onehalf128[ind - 1];
3352
          tmp64A = fstar.w[3];
3353
          if (tmp64 > fstar.w[2])
3354
            tmp64A--;
3355
          if (tmp64A || tmp64
3356
              || fstar.w[1] > ten2mk128trunc[ind - 1].w[1]
3357
              || (fstar.w[1] == ten2mk128trunc[ind - 1].w[1]
3358
                  && fstar.w[0] > ten2mk128trunc[ind - 1].w[0])) {
3359
            // set the inexact flag
3360
            *pfpsf |= INEXACT_EXCEPTION;
3361
          }     // else the result is exact
3362
        } else {        // the result is inexact; f2* <= 1/2
3363
          // set the inexact flag
3364
          *pfpsf |= INEXACT_EXCEPTION;
3365
        }
3366
      } else {  // if 22 <= ind <= 33
3367
        if (fstar.w[3] > onehalf128[ind - 1] ||
3368
            (fstar.w[3] == onehalf128[ind - 1] &&
3369
             (fstar.w[2] || fstar.w[1] || fstar.w[0]))) {
3370
          // f2* > 1/2 and the result may be exact
3371
          // Calculate f2* - 1/2
3372
          tmp64 = fstar.w[3] - onehalf128[ind - 1];
3373
          if (tmp64 || fstar.w[2]
3374
              || fstar.w[1] > ten2mk128trunc[ind - 1].w[1]
3375
              || (fstar.w[1] == ten2mk128trunc[ind - 1].w[1]
3376
                  && fstar.w[0] > ten2mk128trunc[ind - 1].w[0])) {
3377
            // set the inexact flag
3378
            *pfpsf |= INEXACT_EXCEPTION;
3379
          }     // else the result is exact
3380
        } else {        // the result is inexact; f2* <= 1/2
3381
          // set the inexact flag
3382
          *pfpsf |= INEXACT_EXCEPTION;
3383
        }
3384
      }
3385
 
3386
      // if the result was a midpoint it was rounded away from zero
3387
      res = Cstar.w[0];  // the result is positive
3388
    } else if (exp == 0) {
3389
      // 1 <= q <= 20, but x < 2^64 - 1/2 so in this case C1.w[1] has to be 0
3390
      // res = C (exact)
3391
      res = C1.w[0];
3392
    } else {
3393
      // if (exp > 0) => 1 <= exp <= 19, 1 <= q < 19, 2 <= q + exp <= 20
3394
      // res = C * 10^exp (exact) - must fit in 64 bits
3395
      res = C1.w[0] * ten2k64[exp];
3396
    }
3397
  }
3398
}
3399
 
3400
BID_RETURN (res);
3401
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.