| 1 |
734 |
jeremybenn |
/* Copyright (C) 2007, 2009 Free Software Foundation, Inc.
|
| 2 |
|
|
|
| 3 |
|
|
This file is part of GCC.
|
| 4 |
|
|
|
| 5 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
| 6 |
|
|
the terms of the GNU General Public License as published by the Free
|
| 7 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
| 8 |
|
|
version.
|
| 9 |
|
|
|
| 10 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
| 11 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
| 12 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
| 13 |
|
|
for more details.
|
| 14 |
|
|
|
| 15 |
|
|
Under Section 7 of GPL version 3, you are granted additional
|
| 16 |
|
|
permissions described in the GCC Runtime Library Exception, version
|
| 17 |
|
|
3.1, as published by the Free Software Foundation.
|
| 18 |
|
|
|
| 19 |
|
|
You should have received a copy of the GNU General Public License and
|
| 20 |
|
|
a copy of the GCC Runtime Library Exception along with this program;
|
| 21 |
|
|
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
| 22 |
|
|
<http://www.gnu.org/licenses/>. */
|
| 23 |
|
|
|
| 24 |
|
|
/*****************************************************************************
|
| 25 |
|
|
* BID64 add
|
| 26 |
|
|
*****************************************************************************
|
| 27 |
|
|
*
|
| 28 |
|
|
* Algorithm description:
|
| 29 |
|
|
*
|
| 30 |
|
|
* if(exponent_a < exponent_b)
|
| 31 |
|
|
* switch a, b
|
| 32 |
|
|
* diff_expon = exponent_a - exponent_b
|
| 33 |
|
|
* if(diff_expon > 16)
|
| 34 |
|
|
* return normalize(a)
|
| 35 |
|
|
* if(coefficient_a*10^diff_expon guaranteed below 2^62)
|
| 36 |
|
|
* S = sign_a*coefficient_a*10^diff_expon + sign_b*coefficient_b
|
| 37 |
|
|
* if(|S|<10^16)
|
| 38 |
|
|
* return get_BID64(sign(S),exponent_b,|S|)
|
| 39 |
|
|
* else
|
| 40 |
|
|
* determine number of extra digits in S (1, 2, or 3)
|
| 41 |
|
|
* return rounded result
|
| 42 |
|
|
* else // large exponent difference
|
| 43 |
|
|
* if(number_digits(coefficient_a*10^diff_expon) +/- 10^16)
|
| 44 |
|
|
* guaranteed the same as
|
| 45 |
|
|
* number_digits(coefficient_a*10^diff_expon) )
|
| 46 |
|
|
* S = normalize(coefficient_a + (sign_a^sign_b)*10^(16-diff_expon))
|
| 47 |
|
|
* corr = 10^16 + (sign_a^sign_b)*coefficient_b
|
| 48 |
|
|
* corr*10^exponent_b is rounded so it aligns with S*10^exponent_S
|
| 49 |
|
|
* return get_BID64(sign_a,exponent(S),S+rounded(corr))
|
| 50 |
|
|
* else
|
| 51 |
|
|
* add sign_a*coefficient_a*10^diff_expon, sign_b*coefficient_b
|
| 52 |
|
|
* in 128-bit integer arithmetic, then round to 16 decimal digits
|
| 53 |
|
|
*
|
| 54 |
|
|
*
|
| 55 |
|
|
****************************************************************************/
|
| 56 |
|
|
|
| 57 |
|
|
#include "bid_internal.h"
|
| 58 |
|
|
|
| 59 |
|
|
#if DECIMAL_CALL_BY_REFERENCE
|
| 60 |
|
|
void bid64_add (UINT64 * pres, UINT64 * px,
|
| 61 |
|
|
UINT64 *
|
| 62 |
|
|
py _RND_MODE_PARAM _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
|
| 63 |
|
|
_EXC_INFO_PARAM);
|
| 64 |
|
|
#else
|
| 65 |
|
|
UINT64 bid64_add (UINT64 x,
|
| 66 |
|
|
UINT64 y _RND_MODE_PARAM _EXC_FLAGS_PARAM
|
| 67 |
|
|
_EXC_MASKS_PARAM _EXC_INFO_PARAM);
|
| 68 |
|
|
#endif
|
| 69 |
|
|
|
| 70 |
|
|
#if DECIMAL_CALL_BY_REFERENCE
|
| 71 |
|
|
|
| 72 |
|
|
void
|
| 73 |
|
|
bid64_sub (UINT64 * pres, UINT64 * px,
|
| 74 |
|
|
UINT64 *
|
| 75 |
|
|
py _RND_MODE_PARAM _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
|
| 76 |
|
|
_EXC_INFO_PARAM) {
|
| 77 |
|
|
UINT64 y = *py;
|
| 78 |
|
|
#if !DECIMAL_GLOBAL_ROUNDING
|
| 79 |
|
|
_IDEC_round rnd_mode = *prnd_mode;
|
| 80 |
|
|
#endif
|
| 81 |
|
|
// check if y is not NaN
|
| 82 |
|
|
if (((y & NAN_MASK64) != NAN_MASK64))
|
| 83 |
|
|
y ^= 0x8000000000000000ull;
|
| 84 |
|
|
bid64_add (pres, px,
|
| 85 |
|
|
&y _RND_MODE_ARG _EXC_FLAGS_ARG _EXC_MASKS_ARG
|
| 86 |
|
|
_EXC_INFO_ARG);
|
| 87 |
|
|
}
|
| 88 |
|
|
#else
|
| 89 |
|
|
|
| 90 |
|
|
UINT64
|
| 91 |
|
|
bid64_sub (UINT64 x,
|
| 92 |
|
|
UINT64 y _RND_MODE_PARAM _EXC_FLAGS_PARAM
|
| 93 |
|
|
_EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
| 94 |
|
|
// check if y is not NaN
|
| 95 |
|
|
if (((y & NAN_MASK64) != NAN_MASK64))
|
| 96 |
|
|
y ^= 0x8000000000000000ull;
|
| 97 |
|
|
|
| 98 |
|
|
return bid64_add (x,
|
| 99 |
|
|
y _RND_MODE_ARG _EXC_FLAGS_ARG _EXC_MASKS_ARG
|
| 100 |
|
|
_EXC_INFO_ARG);
|
| 101 |
|
|
}
|
| 102 |
|
|
#endif
|
| 103 |
|
|
|
| 104 |
|
|
|
| 105 |
|
|
|
| 106 |
|
|
#if DECIMAL_CALL_BY_REFERENCE
|
| 107 |
|
|
|
| 108 |
|
|
void
|
| 109 |
|
|
bid64_add (UINT64 * pres, UINT64 * px,
|
| 110 |
|
|
UINT64 *
|
| 111 |
|
|
py _RND_MODE_PARAM _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
|
| 112 |
|
|
_EXC_INFO_PARAM) {
|
| 113 |
|
|
UINT64 x, y;
|
| 114 |
|
|
#else
|
| 115 |
|
|
|
| 116 |
|
|
UINT64
|
| 117 |
|
|
bid64_add (UINT64 x,
|
| 118 |
|
|
UINT64 y _RND_MODE_PARAM _EXC_FLAGS_PARAM
|
| 119 |
|
|
_EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
| 120 |
|
|
#endif
|
| 121 |
|
|
|
| 122 |
|
|
UINT128 CA, CT, CT_new;
|
| 123 |
|
|
UINT64 sign_x, sign_y, coefficient_x, coefficient_y, C64_new;
|
| 124 |
|
|
UINT64 valid_x, valid_y;
|
| 125 |
|
|
UINT64 res;
|
| 126 |
|
|
UINT64 sign_a, sign_b, coefficient_a, coefficient_b, sign_s, sign_ab,
|
| 127 |
|
|
rem_a;
|
| 128 |
|
|
UINT64 saved_ca, saved_cb, C0_64, C64, remainder_h, T1, carry, tmp;
|
| 129 |
|
|
int_double tempx;
|
| 130 |
|
|
int exponent_x, exponent_y, exponent_a, exponent_b, diff_dec_expon;
|
| 131 |
|
|
int bin_expon_ca, extra_digits, amount, scale_k, scale_ca;
|
| 132 |
|
|
unsigned rmode, status;
|
| 133 |
|
|
|
| 134 |
|
|
#if DECIMAL_CALL_BY_REFERENCE
|
| 135 |
|
|
#if !DECIMAL_GLOBAL_ROUNDING
|
| 136 |
|
|
_IDEC_round rnd_mode = *prnd_mode;
|
| 137 |
|
|
#endif
|
| 138 |
|
|
x = *px;
|
| 139 |
|
|
y = *py;
|
| 140 |
|
|
#endif
|
| 141 |
|
|
|
| 142 |
|
|
valid_x = unpack_BID64 (&sign_x, &exponent_x, &coefficient_x, x);
|
| 143 |
|
|
valid_y = unpack_BID64 (&sign_y, &exponent_y, &coefficient_y, y);
|
| 144 |
|
|
|
| 145 |
|
|
// unpack arguments, check for NaN or Infinity
|
| 146 |
|
|
if (!valid_x) {
|
| 147 |
|
|
// x is Inf. or NaN
|
| 148 |
|
|
|
| 149 |
|
|
// test if x is NaN
|
| 150 |
|
|
if ((x & NAN_MASK64) == NAN_MASK64) {
|
| 151 |
|
|
#ifdef SET_STATUS_FLAGS
|
| 152 |
|
|
if (((x & SNAN_MASK64) == SNAN_MASK64) // sNaN
|
| 153 |
|
|
|| ((y & SNAN_MASK64) == SNAN_MASK64))
|
| 154 |
|
|
__set_status_flags (pfpsf, INVALID_EXCEPTION);
|
| 155 |
|
|
#endif
|
| 156 |
|
|
res = coefficient_x & QUIET_MASK64;
|
| 157 |
|
|
BID_RETURN (res);
|
| 158 |
|
|
}
|
| 159 |
|
|
// x is Infinity?
|
| 160 |
|
|
if ((x & INFINITY_MASK64) == INFINITY_MASK64) {
|
| 161 |
|
|
// check if y is Inf
|
| 162 |
|
|
if (((y & NAN_MASK64) == INFINITY_MASK64)) {
|
| 163 |
|
|
if (sign_x == (y & 0x8000000000000000ull)) {
|
| 164 |
|
|
res = coefficient_x;
|
| 165 |
|
|
BID_RETURN (res);
|
| 166 |
|
|
}
|
| 167 |
|
|
// return NaN
|
| 168 |
|
|
{
|
| 169 |
|
|
#ifdef SET_STATUS_FLAGS
|
| 170 |
|
|
__set_status_flags (pfpsf, INVALID_EXCEPTION);
|
| 171 |
|
|
#endif
|
| 172 |
|
|
res = NAN_MASK64;
|
| 173 |
|
|
BID_RETURN (res);
|
| 174 |
|
|
}
|
| 175 |
|
|
}
|
| 176 |
|
|
// check if y is NaN
|
| 177 |
|
|
if (((y & NAN_MASK64) == NAN_MASK64)) {
|
| 178 |
|
|
res = coefficient_y & QUIET_MASK64;
|
| 179 |
|
|
#ifdef SET_STATUS_FLAGS
|
| 180 |
|
|
if (((y & SNAN_MASK64) == SNAN_MASK64))
|
| 181 |
|
|
__set_status_flags (pfpsf, INVALID_EXCEPTION);
|
| 182 |
|
|
#endif
|
| 183 |
|
|
BID_RETURN (res);
|
| 184 |
|
|
}
|
| 185 |
|
|
// otherwise return +/-Inf
|
| 186 |
|
|
{
|
| 187 |
|
|
res = coefficient_x;
|
| 188 |
|
|
BID_RETURN (res);
|
| 189 |
|
|
}
|
| 190 |
|
|
}
|
| 191 |
|
|
// x is 0
|
| 192 |
|
|
{
|
| 193 |
|
|
if (((y & INFINITY_MASK64) != INFINITY_MASK64) && coefficient_y) {
|
| 194 |
|
|
if (exponent_y <= exponent_x) {
|
| 195 |
|
|
res = y;
|
| 196 |
|
|
BID_RETURN (res);
|
| 197 |
|
|
}
|
| 198 |
|
|
}
|
| 199 |
|
|
}
|
| 200 |
|
|
|
| 201 |
|
|
}
|
| 202 |
|
|
if (!valid_y) {
|
| 203 |
|
|
// y is Inf. or NaN?
|
| 204 |
|
|
if (((y & INFINITY_MASK64) == INFINITY_MASK64)) {
|
| 205 |
|
|
#ifdef SET_STATUS_FLAGS
|
| 206 |
|
|
if ((y & SNAN_MASK64) == SNAN_MASK64) // sNaN
|
| 207 |
|
|
__set_status_flags (pfpsf, INVALID_EXCEPTION);
|
| 208 |
|
|
#endif
|
| 209 |
|
|
res = coefficient_y & QUIET_MASK64;
|
| 210 |
|
|
BID_RETURN (res);
|
| 211 |
|
|
}
|
| 212 |
|
|
// y is 0
|
| 213 |
|
|
if (!coefficient_x) { // x==0
|
| 214 |
|
|
if (exponent_x <= exponent_y)
|
| 215 |
|
|
res = ((UINT64) exponent_x) << 53;
|
| 216 |
|
|
else
|
| 217 |
|
|
res = ((UINT64) exponent_y) << 53;
|
| 218 |
|
|
if (sign_x == sign_y)
|
| 219 |
|
|
res |= sign_x;
|
| 220 |
|
|
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
|
| 221 |
|
|
#ifndef IEEE_ROUND_NEAREST
|
| 222 |
|
|
if (rnd_mode == ROUNDING_DOWN && sign_x != sign_y)
|
| 223 |
|
|
res |= 0x8000000000000000ull;
|
| 224 |
|
|
#endif
|
| 225 |
|
|
#endif
|
| 226 |
|
|
BID_RETURN (res);
|
| 227 |
|
|
} else if (exponent_y >= exponent_x) {
|
| 228 |
|
|
res = x;
|
| 229 |
|
|
BID_RETURN (res);
|
| 230 |
|
|
}
|
| 231 |
|
|
}
|
| 232 |
|
|
// sort arguments by exponent
|
| 233 |
|
|
if (exponent_x < exponent_y) {
|
| 234 |
|
|
sign_a = sign_y;
|
| 235 |
|
|
exponent_a = exponent_y;
|
| 236 |
|
|
coefficient_a = coefficient_y;
|
| 237 |
|
|
sign_b = sign_x;
|
| 238 |
|
|
exponent_b = exponent_x;
|
| 239 |
|
|
coefficient_b = coefficient_x;
|
| 240 |
|
|
} else {
|
| 241 |
|
|
sign_a = sign_x;
|
| 242 |
|
|
exponent_a = exponent_x;
|
| 243 |
|
|
coefficient_a = coefficient_x;
|
| 244 |
|
|
sign_b = sign_y;
|
| 245 |
|
|
exponent_b = exponent_y;
|
| 246 |
|
|
coefficient_b = coefficient_y;
|
| 247 |
|
|
}
|
| 248 |
|
|
|
| 249 |
|
|
// exponent difference
|
| 250 |
|
|
diff_dec_expon = exponent_a - exponent_b;
|
| 251 |
|
|
|
| 252 |
|
|
/* get binary coefficients of x and y */
|
| 253 |
|
|
|
| 254 |
|
|
//--- get number of bits in the coefficients of x and y ---
|
| 255 |
|
|
|
| 256 |
|
|
// version 2 (original)
|
| 257 |
|
|
tempx.d = (double) coefficient_a;
|
| 258 |
|
|
bin_expon_ca = ((tempx.i & MASK_BINARY_EXPONENT) >> 52) - 0x3ff;
|
| 259 |
|
|
|
| 260 |
|
|
if (diff_dec_expon > MAX_FORMAT_DIGITS) {
|
| 261 |
|
|
// normalize a to a 16-digit coefficient
|
| 262 |
|
|
|
| 263 |
|
|
scale_ca = estimate_decimal_digits[bin_expon_ca];
|
| 264 |
|
|
if (coefficient_a >= power10_table_128[scale_ca].w[0])
|
| 265 |
|
|
scale_ca++;
|
| 266 |
|
|
|
| 267 |
|
|
scale_k = 16 - scale_ca;
|
| 268 |
|
|
|
| 269 |
|
|
coefficient_a *= power10_table_128[scale_k].w[0];
|
| 270 |
|
|
|
| 271 |
|
|
diff_dec_expon -= scale_k;
|
| 272 |
|
|
exponent_a -= scale_k;
|
| 273 |
|
|
|
| 274 |
|
|
/* get binary coefficients of x and y */
|
| 275 |
|
|
|
| 276 |
|
|
//--- get number of bits in the coefficients of x and y ---
|
| 277 |
|
|
tempx.d = (double) coefficient_a;
|
| 278 |
|
|
bin_expon_ca = ((tempx.i & MASK_BINARY_EXPONENT) >> 52) - 0x3ff;
|
| 279 |
|
|
|
| 280 |
|
|
if (diff_dec_expon > MAX_FORMAT_DIGITS) {
|
| 281 |
|
|
#ifdef SET_STATUS_FLAGS
|
| 282 |
|
|
if (coefficient_b) {
|
| 283 |
|
|
__set_status_flags (pfpsf, INEXACT_EXCEPTION);
|
| 284 |
|
|
}
|
| 285 |
|
|
#endif
|
| 286 |
|
|
|
| 287 |
|
|
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
|
| 288 |
|
|
#ifndef IEEE_ROUND_NEAREST
|
| 289 |
|
|
if (((rnd_mode) & 3) && coefficient_b) // not ROUNDING_TO_NEAREST
|
| 290 |
|
|
{
|
| 291 |
|
|
switch (rnd_mode) {
|
| 292 |
|
|
case ROUNDING_DOWN:
|
| 293 |
|
|
if (sign_b) {
|
| 294 |
|
|
coefficient_a -= ((((SINT64) sign_a) >> 63) | 1);
|
| 295 |
|
|
if (coefficient_a < 1000000000000000ull) {
|
| 296 |
|
|
exponent_a--;
|
| 297 |
|
|
coefficient_a = 9999999999999999ull;
|
| 298 |
|
|
} else if (coefficient_a >= 10000000000000000ull) {
|
| 299 |
|
|
exponent_a++;
|
| 300 |
|
|
coefficient_a = 1000000000000000ull;
|
| 301 |
|
|
}
|
| 302 |
|
|
}
|
| 303 |
|
|
break;
|
| 304 |
|
|
case ROUNDING_UP:
|
| 305 |
|
|
if (!sign_b) {
|
| 306 |
|
|
coefficient_a += ((((SINT64) sign_a) >> 63) | 1);
|
| 307 |
|
|
if (coefficient_a < 1000000000000000ull) {
|
| 308 |
|
|
exponent_a--;
|
| 309 |
|
|
coefficient_a = 9999999999999999ull;
|
| 310 |
|
|
} else if (coefficient_a >= 10000000000000000ull) {
|
| 311 |
|
|
exponent_a++;
|
| 312 |
|
|
coefficient_a = 1000000000000000ull;
|
| 313 |
|
|
}
|
| 314 |
|
|
}
|
| 315 |
|
|
break;
|
| 316 |
|
|
default: // RZ
|
| 317 |
|
|
if (sign_a != sign_b) {
|
| 318 |
|
|
coefficient_a--;
|
| 319 |
|
|
if (coefficient_a < 1000000000000000ull) {
|
| 320 |
|
|
exponent_a--;
|
| 321 |
|
|
coefficient_a = 9999999999999999ull;
|
| 322 |
|
|
}
|
| 323 |
|
|
}
|
| 324 |
|
|
break;
|
| 325 |
|
|
}
|
| 326 |
|
|
} else
|
| 327 |
|
|
#endif
|
| 328 |
|
|
#endif
|
| 329 |
|
|
// check special case here
|
| 330 |
|
|
if ((coefficient_a == 1000000000000000ull)
|
| 331 |
|
|
&& (diff_dec_expon == MAX_FORMAT_DIGITS + 1)
|
| 332 |
|
|
&& (sign_a ^ sign_b)
|
| 333 |
|
|
&& (coefficient_b > 5000000000000000ull)) {
|
| 334 |
|
|
coefficient_a = 9999999999999999ull;
|
| 335 |
|
|
exponent_a--;
|
| 336 |
|
|
}
|
| 337 |
|
|
|
| 338 |
|
|
res =
|
| 339 |
|
|
fast_get_BID64_check_OF (sign_a, exponent_a, coefficient_a,
|
| 340 |
|
|
rnd_mode, pfpsf);
|
| 341 |
|
|
BID_RETURN (res);
|
| 342 |
|
|
}
|
| 343 |
|
|
}
|
| 344 |
|
|
// test whether coefficient_a*10^(exponent_a-exponent_b) may exceed 2^62
|
| 345 |
|
|
if (bin_expon_ca + estimate_bin_expon[diff_dec_expon] < 60) {
|
| 346 |
|
|
// coefficient_a*10^(exponent_a-exponent_b)<2^63
|
| 347 |
|
|
|
| 348 |
|
|
// multiply by 10^(exponent_a-exponent_b)
|
| 349 |
|
|
coefficient_a *= power10_table_128[diff_dec_expon].w[0];
|
| 350 |
|
|
|
| 351 |
|
|
// sign mask
|
| 352 |
|
|
sign_b = ((SINT64) sign_b) >> 63;
|
| 353 |
|
|
// apply sign to coeff. of b
|
| 354 |
|
|
coefficient_b = (coefficient_b + sign_b) ^ sign_b;
|
| 355 |
|
|
|
| 356 |
|
|
// apply sign to coefficient a
|
| 357 |
|
|
sign_a = ((SINT64) sign_a) >> 63;
|
| 358 |
|
|
coefficient_a = (coefficient_a + sign_a) ^ sign_a;
|
| 359 |
|
|
|
| 360 |
|
|
coefficient_a += coefficient_b;
|
| 361 |
|
|
// get sign
|
| 362 |
|
|
sign_s = ((SINT64) coefficient_a) >> 63;
|
| 363 |
|
|
coefficient_a = (coefficient_a + sign_s) ^ sign_s;
|
| 364 |
|
|
sign_s &= 0x8000000000000000ull;
|
| 365 |
|
|
|
| 366 |
|
|
// coefficient_a < 10^16 ?
|
| 367 |
|
|
if (coefficient_a < power10_table_128[MAX_FORMAT_DIGITS].w[0]) {
|
| 368 |
|
|
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
|
| 369 |
|
|
#ifndef IEEE_ROUND_NEAREST
|
| 370 |
|
|
if (rnd_mode == ROUNDING_DOWN && (!coefficient_a)
|
| 371 |
|
|
&& sign_a != sign_b)
|
| 372 |
|
|
sign_s = 0x8000000000000000ull;
|
| 373 |
|
|
#endif
|
| 374 |
|
|
#endif
|
| 375 |
|
|
res = very_fast_get_BID64 (sign_s, exponent_b, coefficient_a);
|
| 376 |
|
|
BID_RETURN (res);
|
| 377 |
|
|
}
|
| 378 |
|
|
// otherwise rounding is necessary
|
| 379 |
|
|
|
| 380 |
|
|
// already know coefficient_a<10^19
|
| 381 |
|
|
// coefficient_a < 10^17 ?
|
| 382 |
|
|
if (coefficient_a < power10_table_128[17].w[0])
|
| 383 |
|
|
extra_digits = 1;
|
| 384 |
|
|
else if (coefficient_a < power10_table_128[18].w[0])
|
| 385 |
|
|
extra_digits = 2;
|
| 386 |
|
|
else
|
| 387 |
|
|
extra_digits = 3;
|
| 388 |
|
|
|
| 389 |
|
|
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
|
| 390 |
|
|
#ifndef IEEE_ROUND_NEAREST
|
| 391 |
|
|
rmode = rnd_mode;
|
| 392 |
|
|
if (sign_s && (unsigned) (rmode - 1) < 2)
|
| 393 |
|
|
rmode = 3 - rmode;
|
| 394 |
|
|
#else
|
| 395 |
|
|
rmode = 0;
|
| 396 |
|
|
#endif
|
| 397 |
|
|
#else
|
| 398 |
|
|
rmode = 0;
|
| 399 |
|
|
#endif
|
| 400 |
|
|
coefficient_a += round_const_table[rmode][extra_digits];
|
| 401 |
|
|
|
| 402 |
|
|
// get P*(2^M[extra_digits])/10^extra_digits
|
| 403 |
|
|
__mul_64x64_to_128 (CT, coefficient_a,
|
| 404 |
|
|
reciprocals10_64[extra_digits]);
|
| 405 |
|
|
|
| 406 |
|
|
// now get P/10^extra_digits: shift C64 right by M[extra_digits]-128
|
| 407 |
|
|
amount = short_recip_scale[extra_digits];
|
| 408 |
|
|
C64 = CT.w[1] >> amount;
|
| 409 |
|
|
|
| 410 |
|
|
} else {
|
| 411 |
|
|
// coefficient_a*10^(exponent_a-exponent_b) is large
|
| 412 |
|
|
sign_s = sign_a;
|
| 413 |
|
|
|
| 414 |
|
|
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
|
| 415 |
|
|
#ifndef IEEE_ROUND_NEAREST
|
| 416 |
|
|
rmode = rnd_mode;
|
| 417 |
|
|
if (sign_s && (unsigned) (rmode - 1) < 2)
|
| 418 |
|
|
rmode = 3 - rmode;
|
| 419 |
|
|
#else
|
| 420 |
|
|
rmode = 0;
|
| 421 |
|
|
#endif
|
| 422 |
|
|
#else
|
| 423 |
|
|
rmode = 0;
|
| 424 |
|
|
#endif
|
| 425 |
|
|
|
| 426 |
|
|
// check whether we can take faster path
|
| 427 |
|
|
scale_ca = estimate_decimal_digits[bin_expon_ca];
|
| 428 |
|
|
|
| 429 |
|
|
sign_ab = sign_a ^ sign_b;
|
| 430 |
|
|
sign_ab = ((SINT64) sign_ab) >> 63;
|
| 431 |
|
|
|
| 432 |
|
|
// T1 = 10^(16-diff_dec_expon)
|
| 433 |
|
|
T1 = power10_table_128[16 - diff_dec_expon].w[0];
|
| 434 |
|
|
|
| 435 |
|
|
// get number of digits in coefficient_a
|
| 436 |
|
|
if (coefficient_a >= power10_table_128[scale_ca].w[0]) {
|
| 437 |
|
|
scale_ca++;
|
| 438 |
|
|
}
|
| 439 |
|
|
|
| 440 |
|
|
scale_k = 16 - scale_ca;
|
| 441 |
|
|
|
| 442 |
|
|
// addition
|
| 443 |
|
|
saved_ca = coefficient_a - T1;
|
| 444 |
|
|
coefficient_a =
|
| 445 |
|
|
(SINT64) saved_ca *(SINT64) power10_table_128[scale_k].w[0];
|
| 446 |
|
|
extra_digits = diff_dec_expon - scale_k;
|
| 447 |
|
|
|
| 448 |
|
|
// apply sign
|
| 449 |
|
|
saved_cb = (coefficient_b + sign_ab) ^ sign_ab;
|
| 450 |
|
|
// add 10^16 and rounding constant
|
| 451 |
|
|
coefficient_b =
|
| 452 |
|
|
saved_cb + 10000000000000000ull +
|
| 453 |
|
|
round_const_table[rmode][extra_digits];
|
| 454 |
|
|
|
| 455 |
|
|
// get P*(2^M[extra_digits])/10^extra_digits
|
| 456 |
|
|
__mul_64x64_to_128 (CT, coefficient_b,
|
| 457 |
|
|
reciprocals10_64[extra_digits]);
|
| 458 |
|
|
|
| 459 |
|
|
// now get P/10^extra_digits: shift C64 right by M[extra_digits]-128
|
| 460 |
|
|
amount = short_recip_scale[extra_digits];
|
| 461 |
|
|
C0_64 = CT.w[1] >> amount;
|
| 462 |
|
|
|
| 463 |
|
|
// result coefficient
|
| 464 |
|
|
C64 = C0_64 + coefficient_a;
|
| 465 |
|
|
// filter out difficult (corner) cases
|
| 466 |
|
|
// this test ensures the number of digits in coefficient_a does not change
|
| 467 |
|
|
// after adding (the appropriately scaled and rounded) coefficient_b
|
| 468 |
|
|
if ((UINT64) (C64 - 1000000000000000ull - 1) >
|
| 469 |
|
|
9000000000000000ull - 2) {
|
| 470 |
|
|
if (C64 >= 10000000000000000ull) {
|
| 471 |
|
|
// result has more than 16 digits
|
| 472 |
|
|
if (!scale_k) {
|
| 473 |
|
|
// must divide coeff_a by 10
|
| 474 |
|
|
saved_ca = saved_ca + T1;
|
| 475 |
|
|
__mul_64x64_to_128 (CA, saved_ca, 0x3333333333333334ull);
|
| 476 |
|
|
//reciprocals10_64[1]);
|
| 477 |
|
|
coefficient_a = CA.w[1] >> 1;
|
| 478 |
|
|
rem_a =
|
| 479 |
|
|
saved_ca - (coefficient_a << 3) - (coefficient_a << 1);
|
| 480 |
|
|
coefficient_a = coefficient_a - T1;
|
| 481 |
|
|
|
| 482 |
|
|
saved_cb += rem_a * power10_table_128[diff_dec_expon].w[0];
|
| 483 |
|
|
} else
|
| 484 |
|
|
coefficient_a =
|
| 485 |
|
|
(SINT64) (saved_ca - T1 -
|
| 486 |
|
|
(T1 << 3)) * (SINT64) power10_table_128[scale_k -
|
| 487 |
|
|
1].w[0];
|
| 488 |
|
|
|
| 489 |
|
|
extra_digits++;
|
| 490 |
|
|
coefficient_b =
|
| 491 |
|
|
saved_cb + 100000000000000000ull +
|
| 492 |
|
|
round_const_table[rmode][extra_digits];
|
| 493 |
|
|
|
| 494 |
|
|
// get P*(2^M[extra_digits])/10^extra_digits
|
| 495 |
|
|
__mul_64x64_to_128 (CT, coefficient_b,
|
| 496 |
|
|
reciprocals10_64[extra_digits]);
|
| 497 |
|
|
|
| 498 |
|
|
// now get P/10^extra_digits: shift C64 right by M[extra_digits]-128
|
| 499 |
|
|
amount = short_recip_scale[extra_digits];
|
| 500 |
|
|
C0_64 = CT.w[1] >> amount;
|
| 501 |
|
|
|
| 502 |
|
|
// result coefficient
|
| 503 |
|
|
C64 = C0_64 + coefficient_a;
|
| 504 |
|
|
} else if (C64 <= 1000000000000000ull) {
|
| 505 |
|
|
// less than 16 digits in result
|
| 506 |
|
|
coefficient_a =
|
| 507 |
|
|
(SINT64) saved_ca *(SINT64) power10_table_128[scale_k +
|
| 508 |
|
|
1].w[0];
|
| 509 |
|
|
//extra_digits --;
|
| 510 |
|
|
exponent_b--;
|
| 511 |
|
|
coefficient_b =
|
| 512 |
|
|
(saved_cb << 3) + (saved_cb << 1) + 100000000000000000ull +
|
| 513 |
|
|
round_const_table[rmode][extra_digits];
|
| 514 |
|
|
|
| 515 |
|
|
// get P*(2^M[extra_digits])/10^extra_digits
|
| 516 |
|
|
__mul_64x64_to_128 (CT_new, coefficient_b,
|
| 517 |
|
|
reciprocals10_64[extra_digits]);
|
| 518 |
|
|
|
| 519 |
|
|
// now get P/10^extra_digits: shift C64 right by M[extra_digits]-128
|
| 520 |
|
|
amount = short_recip_scale[extra_digits];
|
| 521 |
|
|
C0_64 = CT_new.w[1] >> amount;
|
| 522 |
|
|
|
| 523 |
|
|
// result coefficient
|
| 524 |
|
|
C64_new = C0_64 + coefficient_a;
|
| 525 |
|
|
if (C64_new < 10000000000000000ull) {
|
| 526 |
|
|
C64 = C64_new;
|
| 527 |
|
|
#ifdef SET_STATUS_FLAGS
|
| 528 |
|
|
CT = CT_new;
|
| 529 |
|
|
#endif
|
| 530 |
|
|
} else
|
| 531 |
|
|
exponent_b++;
|
| 532 |
|
|
}
|
| 533 |
|
|
|
| 534 |
|
|
}
|
| 535 |
|
|
|
| 536 |
|
|
}
|
| 537 |
|
|
|
| 538 |
|
|
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
|
| 539 |
|
|
#ifndef IEEE_ROUND_NEAREST
|
| 540 |
|
|
if (rmode == 0) //ROUNDING_TO_NEAREST
|
| 541 |
|
|
#endif
|
| 542 |
|
|
if (C64 & 1) {
|
| 543 |
|
|
// check whether fractional part of initial_P/10^extra_digits is
|
| 544 |
|
|
// exactly .5
|
| 545 |
|
|
// this is the same as fractional part of
|
| 546 |
|
|
// (initial_P + 0.5*10^extra_digits)/10^extra_digits is exactly zero
|
| 547 |
|
|
|
| 548 |
|
|
// get remainder
|
| 549 |
|
|
remainder_h = CT.w[1] << (64 - amount);
|
| 550 |
|
|
|
| 551 |
|
|
// test whether fractional part is 0
|
| 552 |
|
|
if (!remainder_h && (CT.w[0] < reciprocals10_64[extra_digits])) {
|
| 553 |
|
|
C64--;
|
| 554 |
|
|
}
|
| 555 |
|
|
}
|
| 556 |
|
|
#endif
|
| 557 |
|
|
|
| 558 |
|
|
#ifdef SET_STATUS_FLAGS
|
| 559 |
|
|
status = INEXACT_EXCEPTION;
|
| 560 |
|
|
|
| 561 |
|
|
// get remainder
|
| 562 |
|
|
remainder_h = CT.w[1] << (64 - amount);
|
| 563 |
|
|
|
| 564 |
|
|
switch (rmode) {
|
| 565 |
|
|
case ROUNDING_TO_NEAREST:
|
| 566 |
|
|
case ROUNDING_TIES_AWAY:
|
| 567 |
|
|
// test whether fractional part is 0
|
| 568 |
|
|
if ((remainder_h == 0x8000000000000000ull)
|
| 569 |
|
|
&& (CT.w[0] < reciprocals10_64[extra_digits]))
|
| 570 |
|
|
status = EXACT_STATUS;
|
| 571 |
|
|
break;
|
| 572 |
|
|
case ROUNDING_DOWN:
|
| 573 |
|
|
case ROUNDING_TO_ZERO:
|
| 574 |
|
|
if (!remainder_h && (CT.w[0] < reciprocals10_64[extra_digits]))
|
| 575 |
|
|
status = EXACT_STATUS;
|
| 576 |
|
|
//if(!C64 && rmode==ROUNDING_DOWN) sign_s=sign_y;
|
| 577 |
|
|
break;
|
| 578 |
|
|
default:
|
| 579 |
|
|
// round up
|
| 580 |
|
|
__add_carry_out (tmp, carry, CT.w[0],
|
| 581 |
|
|
reciprocals10_64[extra_digits]);
|
| 582 |
|
|
if ((remainder_h >> (64 - amount)) + carry >=
|
| 583 |
|
|
(((UINT64) 1) << amount))
|
| 584 |
|
|
status = EXACT_STATUS;
|
| 585 |
|
|
break;
|
| 586 |
|
|
}
|
| 587 |
|
|
__set_status_flags (pfpsf, status);
|
| 588 |
|
|
|
| 589 |
|
|
#endif
|
| 590 |
|
|
|
| 591 |
|
|
res =
|
| 592 |
|
|
fast_get_BID64_check_OF (sign_s, exponent_b + extra_digits, C64,
|
| 593 |
|
|
rnd_mode, pfpsf);
|
| 594 |
|
|
BID_RETURN (res);
|
| 595 |
|
|
}
|