1 |
734 |
jeremybenn |
/* Copyright (C) 2007, 2009 Free Software Foundation, Inc.
|
2 |
|
|
|
3 |
|
|
This file is part of GCC.
|
4 |
|
|
|
5 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
6 |
|
|
the terms of the GNU General Public License as published by the Free
|
7 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
8 |
|
|
version.
|
9 |
|
|
|
10 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
11 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
12 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
13 |
|
|
for more details.
|
14 |
|
|
|
15 |
|
|
Under Section 7 of GPL version 3, you are granted additional
|
16 |
|
|
permissions described in the GCC Runtime Library Exception, version
|
17 |
|
|
3.1, as published by the Free Software Foundation.
|
18 |
|
|
|
19 |
|
|
You should have received a copy of the GNU General Public License and
|
20 |
|
|
a copy of the GCC Runtime Library Exception along with this program;
|
21 |
|
|
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
22 |
|
|
<http://www.gnu.org/licenses/>. */
|
23 |
|
|
|
24 |
|
|
#include "bid_internal.h"
|
25 |
|
|
|
26 |
|
|
/*****************************************************************************
|
27 |
|
|
* BID64 minimum function - returns greater of two numbers
|
28 |
|
|
*****************************************************************************/
|
29 |
|
|
|
30 |
|
|
static const UINT64 mult_factor[16] = {
|
31 |
|
|
1ull, 10ull, 100ull, 1000ull,
|
32 |
|
|
10000ull, 100000ull, 1000000ull, 10000000ull,
|
33 |
|
|
100000000ull, 1000000000ull, 10000000000ull, 100000000000ull,
|
34 |
|
|
1000000000000ull, 10000000000000ull,
|
35 |
|
|
100000000000000ull, 1000000000000000ull
|
36 |
|
|
};
|
37 |
|
|
|
38 |
|
|
#if DECIMAL_CALL_BY_REFERENCE
|
39 |
|
|
void
|
40 |
|
|
bid64_minnum (UINT64 * pres, UINT64 * px, UINT64 * py _EXC_FLAGS_PARAM) {
|
41 |
|
|
UINT64 x = *px;
|
42 |
|
|
UINT64 y = *py;
|
43 |
|
|
#else
|
44 |
|
|
UINT64
|
45 |
|
|
bid64_minnum (UINT64 x, UINT64 y _EXC_FLAGS_PARAM) {
|
46 |
|
|
#endif
|
47 |
|
|
|
48 |
|
|
UINT64 res;
|
49 |
|
|
int exp_x, exp_y;
|
50 |
|
|
UINT64 sig_x, sig_y;
|
51 |
|
|
UINT128 sig_n_prime;
|
52 |
|
|
char x_is_zero = 0, y_is_zero = 0;
|
53 |
|
|
|
54 |
|
|
// check for non-canonical x
|
55 |
|
|
if ((x & MASK_NAN) == MASK_NAN) { // x is NaN
|
56 |
|
|
x = x & 0xfe03ffffffffffffull; // clear G6-G12
|
57 |
|
|
if ((x & 0x0003ffffffffffffull) > 999999999999999ull) {
|
58 |
|
|
x = x & 0xfe00000000000000ull; // clear G6-G12 and the payload bits
|
59 |
|
|
}
|
60 |
|
|
} else if ((x & MASK_INF) == MASK_INF) { // check for Infinity
|
61 |
|
|
x = x & (MASK_SIGN | MASK_INF);
|
62 |
|
|
} else { // x is not special
|
63 |
|
|
// check for non-canonical values - treated as zero
|
64 |
|
|
if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
|
65 |
|
|
// if the steering bits are 11, then the exponent is G[0:w+1]
|
66 |
|
|
if (((x & MASK_BINARY_SIG2) | MASK_BINARY_OR2) >
|
67 |
|
|
9999999999999999ull) {
|
68 |
|
|
// non-canonical
|
69 |
|
|
x = (x & MASK_SIGN) | ((x & MASK_BINARY_EXPONENT2) << 2);
|
70 |
|
|
} // else canonical
|
71 |
|
|
} // else canonical
|
72 |
|
|
}
|
73 |
|
|
|
74 |
|
|
// check for non-canonical y
|
75 |
|
|
if ((y & MASK_NAN) == MASK_NAN) { // y is NaN
|
76 |
|
|
y = y & 0xfe03ffffffffffffull; // clear G6-G12
|
77 |
|
|
if ((y & 0x0003ffffffffffffull) > 999999999999999ull) {
|
78 |
|
|
y = y & 0xfe00000000000000ull; // clear G6-G12 and the payload bits
|
79 |
|
|
}
|
80 |
|
|
} else if ((y & MASK_INF) == MASK_INF) { // check for Infinity
|
81 |
|
|
y = y & (MASK_SIGN | MASK_INF);
|
82 |
|
|
} else { // y is not special
|
83 |
|
|
// check for non-canonical values - treated as zero
|
84 |
|
|
if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
|
85 |
|
|
// if the steering bits are 11, then the exponent is G[0:w+1]
|
86 |
|
|
if (((y & MASK_BINARY_SIG2) | MASK_BINARY_OR2) >
|
87 |
|
|
9999999999999999ull) {
|
88 |
|
|
// non-canonical
|
89 |
|
|
y = (y & MASK_SIGN) | ((y & MASK_BINARY_EXPONENT2) << 2);
|
90 |
|
|
} // else canonical
|
91 |
|
|
} // else canonical
|
92 |
|
|
}
|
93 |
|
|
|
94 |
|
|
// NaN (CASE1)
|
95 |
|
|
if ((x & MASK_NAN) == MASK_NAN) { // x is NAN
|
96 |
|
|
if ((x & MASK_SNAN) == MASK_SNAN) { // x is SNaN
|
97 |
|
|
// if x is SNAN, then return quiet (x)
|
98 |
|
|
*pfpsf |= INVALID_EXCEPTION; // set exception if SNaN
|
99 |
|
|
x = x & 0xfdffffffffffffffull; // quietize x
|
100 |
|
|
res = x;
|
101 |
|
|
} else { // x is QNaN
|
102 |
|
|
if ((y & MASK_NAN) == MASK_NAN) { // y is NAN
|
103 |
|
|
if ((y & MASK_SNAN) == MASK_SNAN) { // y is SNAN
|
104 |
|
|
*pfpsf |= INVALID_EXCEPTION; // set invalid flag
|
105 |
|
|
}
|
106 |
|
|
res = x;
|
107 |
|
|
} else {
|
108 |
|
|
res = y;
|
109 |
|
|
}
|
110 |
|
|
}
|
111 |
|
|
BID_RETURN (res);
|
112 |
|
|
} else if ((y & MASK_NAN) == MASK_NAN) { // y is NaN, but x is not
|
113 |
|
|
if ((y & MASK_SNAN) == MASK_SNAN) {
|
114 |
|
|
*pfpsf |= INVALID_EXCEPTION; // set exception if SNaN
|
115 |
|
|
y = y & 0xfdffffffffffffffull; // quietize y
|
116 |
|
|
res = y;
|
117 |
|
|
} else {
|
118 |
|
|
// will return x (which is not NaN)
|
119 |
|
|
res = x;
|
120 |
|
|
}
|
121 |
|
|
BID_RETURN (res);
|
122 |
|
|
}
|
123 |
|
|
// SIMPLE (CASE2)
|
124 |
|
|
// if all the bits are the same, these numbers are equal, return either number
|
125 |
|
|
if (x == y) {
|
126 |
|
|
res = x;
|
127 |
|
|
BID_RETURN (res);
|
128 |
|
|
}
|
129 |
|
|
// INFINITY (CASE3)
|
130 |
|
|
if ((x & MASK_INF) == MASK_INF) {
|
131 |
|
|
// if x is neg infinity, there is no way it is greater than y, return x
|
132 |
|
|
if (((x & MASK_SIGN) == MASK_SIGN)) {
|
133 |
|
|
res = x;
|
134 |
|
|
BID_RETURN (res);
|
135 |
|
|
}
|
136 |
|
|
// x is pos infinity, return y
|
137 |
|
|
else {
|
138 |
|
|
res = y;
|
139 |
|
|
BID_RETURN (res);
|
140 |
|
|
}
|
141 |
|
|
} else if ((y & MASK_INF) == MASK_INF) {
|
142 |
|
|
// x is finite, so if y is positive infinity, then x is less, return y
|
143 |
|
|
// if y is negative infinity, then x is greater, return x
|
144 |
|
|
res = ((y & MASK_SIGN) == MASK_SIGN) ? y : x;
|
145 |
|
|
BID_RETURN (res);
|
146 |
|
|
}
|
147 |
|
|
// if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
|
148 |
|
|
if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
|
149 |
|
|
exp_x = (x & MASK_BINARY_EXPONENT2) >> 51;
|
150 |
|
|
sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
|
151 |
|
|
} else {
|
152 |
|
|
exp_x = (x & MASK_BINARY_EXPONENT1) >> 53;
|
153 |
|
|
sig_x = (x & MASK_BINARY_SIG1);
|
154 |
|
|
}
|
155 |
|
|
|
156 |
|
|
// if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
|
157 |
|
|
if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
|
158 |
|
|
exp_y = (y & MASK_BINARY_EXPONENT2) >> 51;
|
159 |
|
|
sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
|
160 |
|
|
} else {
|
161 |
|
|
exp_y = (y & MASK_BINARY_EXPONENT1) >> 53;
|
162 |
|
|
sig_y = (y & MASK_BINARY_SIG1);
|
163 |
|
|
}
|
164 |
|
|
|
165 |
|
|
// ZERO (CASE4)
|
166 |
|
|
// some properties:
|
167 |
|
|
// (+ZERO == -ZERO) => therefore
|
168 |
|
|
// ignore the sign, and neither number is greater
|
169 |
|
|
// (ZERO x 10^A == ZERO x 10^B) for any valid A, B =>
|
170 |
|
|
// ignore the exponent field
|
171 |
|
|
// (Any non-canonical # is considered 0)
|
172 |
|
|
if (sig_x == 0) {
|
173 |
|
|
x_is_zero = 1;
|
174 |
|
|
}
|
175 |
|
|
if (sig_y == 0) {
|
176 |
|
|
y_is_zero = 1;
|
177 |
|
|
}
|
178 |
|
|
|
179 |
|
|
if (x_is_zero && y_is_zero) {
|
180 |
|
|
// if both numbers are zero, neither is greater => return either
|
181 |
|
|
res = y;
|
182 |
|
|
BID_RETURN (res);
|
183 |
|
|
} else if (x_is_zero) {
|
184 |
|
|
// is x is zero, it is greater if Y is negative
|
185 |
|
|
res = ((y & MASK_SIGN) == MASK_SIGN) ? y : x;
|
186 |
|
|
BID_RETURN (res);
|
187 |
|
|
} else if (y_is_zero) {
|
188 |
|
|
// is y is zero, X is greater if it is positive
|
189 |
|
|
res = ((x & MASK_SIGN) != MASK_SIGN) ? y : x;;
|
190 |
|
|
BID_RETURN (res);
|
191 |
|
|
}
|
192 |
|
|
// OPPOSITE SIGN (CASE5)
|
193 |
|
|
// now, if the sign bits differ, x is greater if y is negative
|
194 |
|
|
if (((x ^ y) & MASK_SIGN) == MASK_SIGN) {
|
195 |
|
|
res = ((y & MASK_SIGN) == MASK_SIGN) ? y : x;
|
196 |
|
|
BID_RETURN (res);
|
197 |
|
|
}
|
198 |
|
|
// REDUNDANT REPRESENTATIONS (CASE6)
|
199 |
|
|
|
200 |
|
|
// if both components are either bigger or smaller,
|
201 |
|
|
// it is clear what needs to be done
|
202 |
|
|
if (sig_x > sig_y && exp_x >= exp_y) {
|
203 |
|
|
res = ((x & MASK_SIGN) != MASK_SIGN) ? y : x;
|
204 |
|
|
BID_RETURN (res);
|
205 |
|
|
}
|
206 |
|
|
if (sig_x < sig_y && exp_x <= exp_y) {
|
207 |
|
|
res = ((x & MASK_SIGN) == MASK_SIGN) ? y : x;
|
208 |
|
|
BID_RETURN (res);
|
209 |
|
|
}
|
210 |
|
|
// if exp_x is 15 greater than exp_y, no need for compensation
|
211 |
|
|
if (exp_x - exp_y > 15) {
|
212 |
|
|
res = ((x & MASK_SIGN) != MASK_SIGN) ? y : x; // difference cannot be >10^15
|
213 |
|
|
BID_RETURN (res);
|
214 |
|
|
}
|
215 |
|
|
// if exp_x is 15 less than exp_y, no need for compensation
|
216 |
|
|
if (exp_y - exp_x > 15) {
|
217 |
|
|
res = ((x & MASK_SIGN) == MASK_SIGN) ? y : x;
|
218 |
|
|
BID_RETURN (res);
|
219 |
|
|
}
|
220 |
|
|
// if |exp_x - exp_y| < 15, it comes down to the compensated significand
|
221 |
|
|
if (exp_x > exp_y) { // to simplify the loop below,
|
222 |
|
|
|
223 |
|
|
// otherwise adjust the x significand upwards
|
224 |
|
|
__mul_64x64_to_128MACH (sig_n_prime, sig_x,
|
225 |
|
|
mult_factor[exp_x - exp_y]);
|
226 |
|
|
// if postitive, return whichever significand is larger
|
227 |
|
|
// (converse if negative)
|
228 |
|
|
if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) {
|
229 |
|
|
res = y;
|
230 |
|
|
BID_RETURN (res);
|
231 |
|
|
}
|
232 |
|
|
|
233 |
|
|
res = (((sig_n_prime.w[1] > 0)
|
234 |
|
|
|| sig_n_prime.w[0] > sig_y) ^ ((x & MASK_SIGN) ==
|
235 |
|
|
MASK_SIGN)) ? y : x;
|
236 |
|
|
BID_RETURN (res);
|
237 |
|
|
}
|
238 |
|
|
// adjust the y significand upwards
|
239 |
|
|
__mul_64x64_to_128MACH (sig_n_prime, sig_y,
|
240 |
|
|
mult_factor[exp_y - exp_x]);
|
241 |
|
|
|
242 |
|
|
// if postitive, return whichever significand is larger (converse if negative)
|
243 |
|
|
if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) {
|
244 |
|
|
res = y;
|
245 |
|
|
BID_RETURN (res);
|
246 |
|
|
}
|
247 |
|
|
res = (((sig_n_prime.w[1] == 0)
|
248 |
|
|
&& (sig_x > sig_n_prime.w[0])) ^ ((x & MASK_SIGN) ==
|
249 |
|
|
MASK_SIGN)) ? y : x;
|
250 |
|
|
BID_RETURN (res);
|
251 |
|
|
}
|
252 |
|
|
|
253 |
|
|
/*****************************************************************************
|
254 |
|
|
* BID64 minimum magnitude function - returns greater of two numbers
|
255 |
|
|
*****************************************************************************/
|
256 |
|
|
|
257 |
|
|
#if DECIMAL_CALL_BY_REFERENCE
|
258 |
|
|
void
|
259 |
|
|
bid64_minnum_mag (UINT64 * pres, UINT64 * px,
|
260 |
|
|
UINT64 * py _EXC_FLAGS_PARAM) {
|
261 |
|
|
UINT64 x = *px;
|
262 |
|
|
UINT64 y = *py;
|
263 |
|
|
#else
|
264 |
|
|
UINT64
|
265 |
|
|
bid64_minnum_mag (UINT64 x, UINT64 y _EXC_FLAGS_PARAM) {
|
266 |
|
|
#endif
|
267 |
|
|
|
268 |
|
|
UINT64 res;
|
269 |
|
|
int exp_x, exp_y;
|
270 |
|
|
UINT64 sig_x, sig_y;
|
271 |
|
|
UINT128 sig_n_prime;
|
272 |
|
|
|
273 |
|
|
// check for non-canonical x
|
274 |
|
|
if ((x & MASK_NAN) == MASK_NAN) { // x is NaN
|
275 |
|
|
x = x & 0xfe03ffffffffffffull; // clear G6-G12
|
276 |
|
|
if ((x & 0x0003ffffffffffffull) > 999999999999999ull) {
|
277 |
|
|
x = x & 0xfe00000000000000ull; // clear G6-G12 and the payload bits
|
278 |
|
|
}
|
279 |
|
|
} else if ((x & MASK_INF) == MASK_INF) { // check for Infinity
|
280 |
|
|
x = x & (MASK_SIGN | MASK_INF);
|
281 |
|
|
} else { // x is not special
|
282 |
|
|
// check for non-canonical values - treated as zero
|
283 |
|
|
if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
|
284 |
|
|
// if the steering bits are 11, then the exponent is G[0:w+1]
|
285 |
|
|
if (((x & MASK_BINARY_SIG2) | MASK_BINARY_OR2) >
|
286 |
|
|
9999999999999999ull) {
|
287 |
|
|
// non-canonical
|
288 |
|
|
x = (x & MASK_SIGN) | ((x & MASK_BINARY_EXPONENT2) << 2);
|
289 |
|
|
} // else canonical
|
290 |
|
|
} // else canonical
|
291 |
|
|
}
|
292 |
|
|
|
293 |
|
|
// check for non-canonical y
|
294 |
|
|
if ((y & MASK_NAN) == MASK_NAN) { // y is NaN
|
295 |
|
|
y = y & 0xfe03ffffffffffffull; // clear G6-G12
|
296 |
|
|
if ((y & 0x0003ffffffffffffull) > 999999999999999ull) {
|
297 |
|
|
y = y & 0xfe00000000000000ull; // clear G6-G12 and the payload bits
|
298 |
|
|
}
|
299 |
|
|
} else if ((y & MASK_INF) == MASK_INF) { // check for Infinity
|
300 |
|
|
y = y & (MASK_SIGN | MASK_INF);
|
301 |
|
|
} else { // y is not special
|
302 |
|
|
// check for non-canonical values - treated as zero
|
303 |
|
|
if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
|
304 |
|
|
// if the steering bits are 11, then the exponent is G[0:w+1]
|
305 |
|
|
if (((y & MASK_BINARY_SIG2) | MASK_BINARY_OR2) >
|
306 |
|
|
9999999999999999ull) {
|
307 |
|
|
// non-canonical
|
308 |
|
|
y = (y & MASK_SIGN) | ((y & MASK_BINARY_EXPONENT2) << 2);
|
309 |
|
|
} // else canonical
|
310 |
|
|
} // else canonical
|
311 |
|
|
}
|
312 |
|
|
|
313 |
|
|
// NaN (CASE1)
|
314 |
|
|
if ((x & MASK_NAN) == MASK_NAN) { // x is NAN
|
315 |
|
|
if ((x & MASK_SNAN) == MASK_SNAN) { // x is SNaN
|
316 |
|
|
// if x is SNAN, then return quiet (x)
|
317 |
|
|
*pfpsf |= INVALID_EXCEPTION; // set exception if SNaN
|
318 |
|
|
x = x & 0xfdffffffffffffffull; // quietize x
|
319 |
|
|
res = x;
|
320 |
|
|
} else { // x is QNaN
|
321 |
|
|
if ((y & MASK_NAN) == MASK_NAN) { // y is NAN
|
322 |
|
|
if ((y & MASK_SNAN) == MASK_SNAN) { // y is SNAN
|
323 |
|
|
*pfpsf |= INVALID_EXCEPTION; // set invalid flag
|
324 |
|
|
}
|
325 |
|
|
res = x;
|
326 |
|
|
} else {
|
327 |
|
|
res = y;
|
328 |
|
|
}
|
329 |
|
|
}
|
330 |
|
|
BID_RETURN (res);
|
331 |
|
|
} else if ((y & MASK_NAN) == MASK_NAN) { // y is NaN, but x is not
|
332 |
|
|
if ((y & MASK_SNAN) == MASK_SNAN) {
|
333 |
|
|
*pfpsf |= INVALID_EXCEPTION; // set exception if SNaN
|
334 |
|
|
y = y & 0xfdffffffffffffffull; // quietize y
|
335 |
|
|
res = y;
|
336 |
|
|
} else {
|
337 |
|
|
// will return x (which is not NaN)
|
338 |
|
|
res = x;
|
339 |
|
|
}
|
340 |
|
|
BID_RETURN (res);
|
341 |
|
|
}
|
342 |
|
|
// SIMPLE (CASE2)
|
343 |
|
|
// if all the bits are the same, these numbers are equal, return either number
|
344 |
|
|
if (x == y) {
|
345 |
|
|
res = x;
|
346 |
|
|
BID_RETURN (res);
|
347 |
|
|
}
|
348 |
|
|
// INFINITY (CASE3)
|
349 |
|
|
if ((x & MASK_INF) == MASK_INF) {
|
350 |
|
|
// x is infinity, its magnitude is greater than or equal to y
|
351 |
|
|
// return x only if y is infinity and x is negative
|
352 |
|
|
res = ((x & MASK_SIGN) == MASK_SIGN
|
353 |
|
|
&& (y & MASK_INF) == MASK_INF) ? x : y;
|
354 |
|
|
BID_RETURN (res);
|
355 |
|
|
} else if ((y & MASK_INF) == MASK_INF) {
|
356 |
|
|
// y is infinity, then it must be greater in magnitude, return x
|
357 |
|
|
res = x;
|
358 |
|
|
BID_RETURN (res);
|
359 |
|
|
}
|
360 |
|
|
// if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
|
361 |
|
|
if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
|
362 |
|
|
exp_x = (x & MASK_BINARY_EXPONENT2) >> 51;
|
363 |
|
|
sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
|
364 |
|
|
} else {
|
365 |
|
|
exp_x = (x & MASK_BINARY_EXPONENT1) >> 53;
|
366 |
|
|
sig_x = (x & MASK_BINARY_SIG1);
|
367 |
|
|
}
|
368 |
|
|
|
369 |
|
|
// if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
|
370 |
|
|
if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
|
371 |
|
|
exp_y = (y & MASK_BINARY_EXPONENT2) >> 51;
|
372 |
|
|
sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
|
373 |
|
|
} else {
|
374 |
|
|
exp_y = (y & MASK_BINARY_EXPONENT1) >> 53;
|
375 |
|
|
sig_y = (y & MASK_BINARY_SIG1);
|
376 |
|
|
}
|
377 |
|
|
|
378 |
|
|
// ZERO (CASE4)
|
379 |
|
|
// some properties:
|
380 |
|
|
// (+ZERO == -ZERO) => therefore
|
381 |
|
|
// ignore the sign, and neither number is greater
|
382 |
|
|
// (ZERO x 10^A == ZERO x 10^B) for any valid A, B =>
|
383 |
|
|
// ignore the exponent field
|
384 |
|
|
// (Any non-canonical # is considered 0)
|
385 |
|
|
if (sig_x == 0) {
|
386 |
|
|
res = x; // x_is_zero, its magnitude must be smaller than y
|
387 |
|
|
BID_RETURN (res);
|
388 |
|
|
}
|
389 |
|
|
if (sig_y == 0) {
|
390 |
|
|
res = y; // y_is_zero, its magnitude must be smaller than x
|
391 |
|
|
BID_RETURN (res);
|
392 |
|
|
}
|
393 |
|
|
// REDUNDANT REPRESENTATIONS (CASE6)
|
394 |
|
|
// if both components are either bigger or smaller,
|
395 |
|
|
// it is clear what needs to be done
|
396 |
|
|
if (sig_x > sig_y && exp_x >= exp_y) {
|
397 |
|
|
res = y;
|
398 |
|
|
BID_RETURN (res);
|
399 |
|
|
}
|
400 |
|
|
if (sig_x < sig_y && exp_x <= exp_y) {
|
401 |
|
|
res = x;
|
402 |
|
|
BID_RETURN (res);
|
403 |
|
|
}
|
404 |
|
|
// if exp_x is 15 greater than exp_y, no need for compensation
|
405 |
|
|
if (exp_x - exp_y > 15) {
|
406 |
|
|
res = y; // difference cannot be greater than 10^15
|
407 |
|
|
BID_RETURN (res);
|
408 |
|
|
}
|
409 |
|
|
// if exp_x is 15 less than exp_y, no need for compensation
|
410 |
|
|
if (exp_y - exp_x > 15) {
|
411 |
|
|
res = x;
|
412 |
|
|
BID_RETURN (res);
|
413 |
|
|
}
|
414 |
|
|
// if |exp_x - exp_y| < 15, it comes down to the compensated significand
|
415 |
|
|
if (exp_x > exp_y) { // to simplify the loop below,
|
416 |
|
|
// otherwise adjust the x significand upwards
|
417 |
|
|
__mul_64x64_to_128MACH (sig_n_prime, sig_x,
|
418 |
|
|
mult_factor[exp_x - exp_y]);
|
419 |
|
|
// now, sig_n_prime has: sig_x * 10^(exp_x-exp_y), this is
|
420 |
|
|
// the compensated signif.
|
421 |
|
|
if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) {
|
422 |
|
|
// two numbers are equal, return minNum(x,y)
|
423 |
|
|
res = ((y & MASK_SIGN) == MASK_SIGN) ? y : x;
|
424 |
|
|
BID_RETURN (res);
|
425 |
|
|
}
|
426 |
|
|
// now, if compensated_x (sig_n_prime) is greater than y, return y,
|
427 |
|
|
// otherwise return x
|
428 |
|
|
res = ((sig_n_prime.w[1] != 0) || sig_n_prime.w[0] > sig_y) ? y : x;
|
429 |
|
|
BID_RETURN (res);
|
430 |
|
|
}
|
431 |
|
|
// exp_y must be greater than exp_x, thus adjust the y significand upwards
|
432 |
|
|
__mul_64x64_to_128MACH (sig_n_prime, sig_y,
|
433 |
|
|
mult_factor[exp_y - exp_x]);
|
434 |
|
|
|
435 |
|
|
if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) {
|
436 |
|
|
res = ((y & MASK_SIGN) == MASK_SIGN) ? y : x;
|
437 |
|
|
// two numbers are equal, return either
|
438 |
|
|
BID_RETURN (res);
|
439 |
|
|
}
|
440 |
|
|
|
441 |
|
|
res = ((sig_n_prime.w[1] == 0) && (sig_x > sig_n_prime.w[0])) ? y : x;
|
442 |
|
|
BID_RETURN (res);
|
443 |
|
|
}
|
444 |
|
|
|
445 |
|
|
/*****************************************************************************
|
446 |
|
|
* BID64 maximum function - returns greater of two numbers
|
447 |
|
|
*****************************************************************************/
|
448 |
|
|
|
449 |
|
|
#if DECIMAL_CALL_BY_REFERENCE
|
450 |
|
|
void
|
451 |
|
|
bid64_maxnum (UINT64 * pres, UINT64 * px, UINT64 * py _EXC_FLAGS_PARAM) {
|
452 |
|
|
UINT64 x = *px;
|
453 |
|
|
UINT64 y = *py;
|
454 |
|
|
#else
|
455 |
|
|
UINT64
|
456 |
|
|
bid64_maxnum (UINT64 x, UINT64 y _EXC_FLAGS_PARAM) {
|
457 |
|
|
#endif
|
458 |
|
|
|
459 |
|
|
UINT64 res;
|
460 |
|
|
int exp_x, exp_y;
|
461 |
|
|
UINT64 sig_x, sig_y;
|
462 |
|
|
UINT128 sig_n_prime;
|
463 |
|
|
char x_is_zero = 0, y_is_zero = 0;
|
464 |
|
|
|
465 |
|
|
// check for non-canonical x
|
466 |
|
|
if ((x & MASK_NAN) == MASK_NAN) { // x is NaN
|
467 |
|
|
x = x & 0xfe03ffffffffffffull; // clear G6-G12
|
468 |
|
|
if ((x & 0x0003ffffffffffffull) > 999999999999999ull) {
|
469 |
|
|
x = x & 0xfe00000000000000ull; // clear G6-G12 and the payload bits
|
470 |
|
|
}
|
471 |
|
|
} else if ((x & MASK_INF) == MASK_INF) { // check for Infinity
|
472 |
|
|
x = x & (MASK_SIGN | MASK_INF);
|
473 |
|
|
} else { // x is not special
|
474 |
|
|
// check for non-canonical values - treated as zero
|
475 |
|
|
if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
|
476 |
|
|
// if the steering bits are 11, then the exponent is G[0:w+1]
|
477 |
|
|
if (((x & MASK_BINARY_SIG2) | MASK_BINARY_OR2) >
|
478 |
|
|
9999999999999999ull) {
|
479 |
|
|
// non-canonical
|
480 |
|
|
x = (x & MASK_SIGN) | ((x & MASK_BINARY_EXPONENT2) << 2);
|
481 |
|
|
} // else canonical
|
482 |
|
|
} // else canonical
|
483 |
|
|
}
|
484 |
|
|
|
485 |
|
|
// check for non-canonical y
|
486 |
|
|
if ((y & MASK_NAN) == MASK_NAN) { // y is NaN
|
487 |
|
|
y = y & 0xfe03ffffffffffffull; // clear G6-G12
|
488 |
|
|
if ((y & 0x0003ffffffffffffull) > 999999999999999ull) {
|
489 |
|
|
y = y & 0xfe00000000000000ull; // clear G6-G12 and the payload bits
|
490 |
|
|
}
|
491 |
|
|
} else if ((y & MASK_INF) == MASK_INF) { // check for Infinity
|
492 |
|
|
y = y & (MASK_SIGN | MASK_INF);
|
493 |
|
|
} else { // y is not special
|
494 |
|
|
// check for non-canonical values - treated as zero
|
495 |
|
|
if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
|
496 |
|
|
// if the steering bits are 11, then the exponent is G[0:w+1]
|
497 |
|
|
if (((y & MASK_BINARY_SIG2) | MASK_BINARY_OR2) >
|
498 |
|
|
9999999999999999ull) {
|
499 |
|
|
// non-canonical
|
500 |
|
|
y = (y & MASK_SIGN) | ((y & MASK_BINARY_EXPONENT2) << 2);
|
501 |
|
|
} // else canonical
|
502 |
|
|
} // else canonical
|
503 |
|
|
}
|
504 |
|
|
|
505 |
|
|
// NaN (CASE1)
|
506 |
|
|
if ((x & MASK_NAN) == MASK_NAN) { // x is NAN
|
507 |
|
|
if ((x & MASK_SNAN) == MASK_SNAN) { // x is SNaN
|
508 |
|
|
// if x is SNAN, then return quiet (x)
|
509 |
|
|
*pfpsf |= INVALID_EXCEPTION; // set exception if SNaN
|
510 |
|
|
x = x & 0xfdffffffffffffffull; // quietize x
|
511 |
|
|
res = x;
|
512 |
|
|
} else { // x is QNaN
|
513 |
|
|
if ((y & MASK_NAN) == MASK_NAN) { // y is NAN
|
514 |
|
|
if ((y & MASK_SNAN) == MASK_SNAN) { // y is SNAN
|
515 |
|
|
*pfpsf |= INVALID_EXCEPTION; // set invalid flag
|
516 |
|
|
}
|
517 |
|
|
res = x;
|
518 |
|
|
} else {
|
519 |
|
|
res = y;
|
520 |
|
|
}
|
521 |
|
|
}
|
522 |
|
|
BID_RETURN (res);
|
523 |
|
|
} else if ((y & MASK_NAN) == MASK_NAN) { // y is NaN, but x is not
|
524 |
|
|
if ((y & MASK_SNAN) == MASK_SNAN) {
|
525 |
|
|
*pfpsf |= INVALID_EXCEPTION; // set exception if SNaN
|
526 |
|
|
y = y & 0xfdffffffffffffffull; // quietize y
|
527 |
|
|
res = y;
|
528 |
|
|
} else {
|
529 |
|
|
// will return x (which is not NaN)
|
530 |
|
|
res = x;
|
531 |
|
|
}
|
532 |
|
|
BID_RETURN (res);
|
533 |
|
|
}
|
534 |
|
|
// SIMPLE (CASE2)
|
535 |
|
|
// if all the bits are the same, these numbers are equal (not Greater).
|
536 |
|
|
if (x == y) {
|
537 |
|
|
res = x;
|
538 |
|
|
BID_RETURN (res);
|
539 |
|
|
}
|
540 |
|
|
// INFINITY (CASE3)
|
541 |
|
|
if ((x & MASK_INF) == MASK_INF) {
|
542 |
|
|
// if x is neg infinity, there is no way it is greater than y, return y
|
543 |
|
|
// x is pos infinity, it is greater, unless y is positive infinity =>
|
544 |
|
|
// return y!=pos_infinity
|
545 |
|
|
if (((x & MASK_SIGN) == MASK_SIGN)) {
|
546 |
|
|
res = y;
|
547 |
|
|
BID_RETURN (res);
|
548 |
|
|
} else {
|
549 |
|
|
res = (((y & MASK_INF) != MASK_INF)
|
550 |
|
|
|| ((y & MASK_SIGN) == MASK_SIGN)) ? x : y;
|
551 |
|
|
BID_RETURN (res);
|
552 |
|
|
}
|
553 |
|
|
} else if ((y & MASK_INF) == MASK_INF) {
|
554 |
|
|
// x is finite, so if y is positive infinity, then x is less, return y
|
555 |
|
|
// if y is negative infinity, then x is greater, return x
|
556 |
|
|
res = ((y & MASK_SIGN) == MASK_SIGN) ? x : y;
|
557 |
|
|
BID_RETURN (res);
|
558 |
|
|
}
|
559 |
|
|
// if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
|
560 |
|
|
if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
|
561 |
|
|
exp_x = (x & MASK_BINARY_EXPONENT2) >> 51;
|
562 |
|
|
sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
|
563 |
|
|
} else {
|
564 |
|
|
exp_x = (x & MASK_BINARY_EXPONENT1) >> 53;
|
565 |
|
|
sig_x = (x & MASK_BINARY_SIG1);
|
566 |
|
|
}
|
567 |
|
|
|
568 |
|
|
// if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
|
569 |
|
|
if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
|
570 |
|
|
exp_y = (y & MASK_BINARY_EXPONENT2) >> 51;
|
571 |
|
|
sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
|
572 |
|
|
} else {
|
573 |
|
|
exp_y = (y & MASK_BINARY_EXPONENT1) >> 53;
|
574 |
|
|
sig_y = (y & MASK_BINARY_SIG1);
|
575 |
|
|
}
|
576 |
|
|
|
577 |
|
|
// ZERO (CASE4)
|
578 |
|
|
// some properties:
|
579 |
|
|
// (+ZERO == -ZERO) => therefore
|
580 |
|
|
// ignore the sign, and neither number is greater
|
581 |
|
|
// (ZERO x 10^A == ZERO x 10^B) for any valid A, B =>
|
582 |
|
|
// ignore the exponent field
|
583 |
|
|
// (Any non-canonical # is considered 0)
|
584 |
|
|
if (sig_x == 0) {
|
585 |
|
|
x_is_zero = 1;
|
586 |
|
|
}
|
587 |
|
|
if (sig_y == 0) {
|
588 |
|
|
y_is_zero = 1;
|
589 |
|
|
}
|
590 |
|
|
|
591 |
|
|
if (x_is_zero && y_is_zero) {
|
592 |
|
|
// if both numbers are zero, neither is greater => return NOTGREATERTHAN
|
593 |
|
|
res = y;
|
594 |
|
|
BID_RETURN (res);
|
595 |
|
|
} else if (x_is_zero) {
|
596 |
|
|
// is x is zero, it is greater if Y is negative
|
597 |
|
|
res = ((y & MASK_SIGN) == MASK_SIGN) ? x : y;
|
598 |
|
|
BID_RETURN (res);
|
599 |
|
|
} else if (y_is_zero) {
|
600 |
|
|
// is y is zero, X is greater if it is positive
|
601 |
|
|
res = ((x & MASK_SIGN) != MASK_SIGN) ? x : y;;
|
602 |
|
|
BID_RETURN (res);
|
603 |
|
|
}
|
604 |
|
|
// OPPOSITE SIGN (CASE5)
|
605 |
|
|
// now, if the sign bits differ, x is greater if y is negative
|
606 |
|
|
if (((x ^ y) & MASK_SIGN) == MASK_SIGN) {
|
607 |
|
|
res = ((y & MASK_SIGN) == MASK_SIGN) ? x : y;
|
608 |
|
|
BID_RETURN (res);
|
609 |
|
|
}
|
610 |
|
|
// REDUNDANT REPRESENTATIONS (CASE6)
|
611 |
|
|
|
612 |
|
|
// if both components are either bigger or smaller,
|
613 |
|
|
// it is clear what needs to be done
|
614 |
|
|
if (sig_x > sig_y && exp_x >= exp_y) {
|
615 |
|
|
res = ((x & MASK_SIGN) != MASK_SIGN) ? x : y;
|
616 |
|
|
BID_RETURN (res);
|
617 |
|
|
}
|
618 |
|
|
if (sig_x < sig_y && exp_x <= exp_y) {
|
619 |
|
|
res = ((x & MASK_SIGN) == MASK_SIGN) ? x : y;
|
620 |
|
|
BID_RETURN (res);
|
621 |
|
|
}
|
622 |
|
|
// if exp_x is 15 greater than exp_y, no need for compensation
|
623 |
|
|
if (exp_x - exp_y > 15) {
|
624 |
|
|
res = ((x & MASK_SIGN) != MASK_SIGN) ? x : y;
|
625 |
|
|
// difference cannot be > 10^15
|
626 |
|
|
BID_RETURN (res);
|
627 |
|
|
}
|
628 |
|
|
// if exp_x is 15 less than exp_y, no need for compensation
|
629 |
|
|
if (exp_y - exp_x > 15) {
|
630 |
|
|
res = ((x & MASK_SIGN) == MASK_SIGN) ? x : y;
|
631 |
|
|
BID_RETURN (res);
|
632 |
|
|
}
|
633 |
|
|
// if |exp_x - exp_y| < 15, it comes down to the compensated significand
|
634 |
|
|
if (exp_x > exp_y) { // to simplify the loop below,
|
635 |
|
|
// otherwise adjust the x significand upwards
|
636 |
|
|
__mul_64x64_to_128MACH (sig_n_prime, sig_x,
|
637 |
|
|
mult_factor[exp_x - exp_y]);
|
638 |
|
|
// if postitive, return whichever significand is larger
|
639 |
|
|
// (converse if negative)
|
640 |
|
|
if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) {
|
641 |
|
|
res = y;
|
642 |
|
|
BID_RETURN (res);
|
643 |
|
|
}
|
644 |
|
|
res = (((sig_n_prime.w[1] > 0)
|
645 |
|
|
|| sig_n_prime.w[0] > sig_y) ^ ((x & MASK_SIGN) ==
|
646 |
|
|
MASK_SIGN)) ? x : y;
|
647 |
|
|
BID_RETURN (res);
|
648 |
|
|
}
|
649 |
|
|
// adjust the y significand upwards
|
650 |
|
|
__mul_64x64_to_128MACH (sig_n_prime, sig_y,
|
651 |
|
|
mult_factor[exp_y - exp_x]);
|
652 |
|
|
|
653 |
|
|
// if postitive, return whichever significand is larger (converse if negative)
|
654 |
|
|
if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) {
|
655 |
|
|
res = y;
|
656 |
|
|
BID_RETURN (res);
|
657 |
|
|
}
|
658 |
|
|
res = (((sig_n_prime.w[1] == 0)
|
659 |
|
|
&& (sig_x > sig_n_prime.w[0])) ^ ((x & MASK_SIGN) ==
|
660 |
|
|
MASK_SIGN)) ? x : y;
|
661 |
|
|
BID_RETURN (res);
|
662 |
|
|
}
|
663 |
|
|
|
664 |
|
|
/*****************************************************************************
|
665 |
|
|
* BID64 maximum magnitude function - returns greater of two numbers
|
666 |
|
|
*****************************************************************************/
|
667 |
|
|
|
668 |
|
|
#if DECIMAL_CALL_BY_REFERENCE
|
669 |
|
|
void
|
670 |
|
|
bid64_maxnum_mag (UINT64 * pres, UINT64 * px,
|
671 |
|
|
UINT64 * py _EXC_FLAGS_PARAM) {
|
672 |
|
|
UINT64 x = *px;
|
673 |
|
|
UINT64 y = *py;
|
674 |
|
|
#else
|
675 |
|
|
UINT64
|
676 |
|
|
bid64_maxnum_mag (UINT64 x, UINT64 y _EXC_FLAGS_PARAM) {
|
677 |
|
|
#endif
|
678 |
|
|
|
679 |
|
|
UINT64 res;
|
680 |
|
|
int exp_x, exp_y;
|
681 |
|
|
UINT64 sig_x, sig_y;
|
682 |
|
|
UINT128 sig_n_prime;
|
683 |
|
|
|
684 |
|
|
// check for non-canonical x
|
685 |
|
|
if ((x & MASK_NAN) == MASK_NAN) { // x is NaN
|
686 |
|
|
x = x & 0xfe03ffffffffffffull; // clear G6-G12
|
687 |
|
|
if ((x & 0x0003ffffffffffffull) > 999999999999999ull) {
|
688 |
|
|
x = x & 0xfe00000000000000ull; // clear G6-G12 and the payload bits
|
689 |
|
|
}
|
690 |
|
|
} else if ((x & MASK_INF) == MASK_INF) { // check for Infinity
|
691 |
|
|
x = x & (MASK_SIGN | MASK_INF);
|
692 |
|
|
} else { // x is not special
|
693 |
|
|
// check for non-canonical values - treated as zero
|
694 |
|
|
if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
|
695 |
|
|
// if the steering bits are 11, then the exponent is G[0:w+1]
|
696 |
|
|
if (((x & MASK_BINARY_SIG2) | MASK_BINARY_OR2) >
|
697 |
|
|
9999999999999999ull) {
|
698 |
|
|
// non-canonical
|
699 |
|
|
x = (x & MASK_SIGN) | ((x & MASK_BINARY_EXPONENT2) << 2);
|
700 |
|
|
} // else canonical
|
701 |
|
|
} // else canonical
|
702 |
|
|
}
|
703 |
|
|
|
704 |
|
|
// check for non-canonical y
|
705 |
|
|
if ((y & MASK_NAN) == MASK_NAN) { // y is NaN
|
706 |
|
|
y = y & 0xfe03ffffffffffffull; // clear G6-G12
|
707 |
|
|
if ((y & 0x0003ffffffffffffull) > 999999999999999ull) {
|
708 |
|
|
y = y & 0xfe00000000000000ull; // clear G6-G12 and the payload bits
|
709 |
|
|
}
|
710 |
|
|
} else if ((y & MASK_INF) == MASK_INF) { // check for Infinity
|
711 |
|
|
y = y & (MASK_SIGN | MASK_INF);
|
712 |
|
|
} else { // y is not special
|
713 |
|
|
// check for non-canonical values - treated as zero
|
714 |
|
|
if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
|
715 |
|
|
// if the steering bits are 11, then the exponent is G[0:w+1]
|
716 |
|
|
if (((y & MASK_BINARY_SIG2) | MASK_BINARY_OR2) >
|
717 |
|
|
9999999999999999ull) {
|
718 |
|
|
// non-canonical
|
719 |
|
|
y = (y & MASK_SIGN) | ((y & MASK_BINARY_EXPONENT2) << 2);
|
720 |
|
|
} // else canonical
|
721 |
|
|
} // else canonical
|
722 |
|
|
}
|
723 |
|
|
|
724 |
|
|
// NaN (CASE1)
|
725 |
|
|
if ((x & MASK_NAN) == MASK_NAN) { // x is NAN
|
726 |
|
|
if ((x & MASK_SNAN) == MASK_SNAN) { // x is SNaN
|
727 |
|
|
// if x is SNAN, then return quiet (x)
|
728 |
|
|
*pfpsf |= INVALID_EXCEPTION; // set exception if SNaN
|
729 |
|
|
x = x & 0xfdffffffffffffffull; // quietize x
|
730 |
|
|
res = x;
|
731 |
|
|
} else { // x is QNaN
|
732 |
|
|
if ((y & MASK_NAN) == MASK_NAN) { // y is NAN
|
733 |
|
|
if ((y & MASK_SNAN) == MASK_SNAN) { // y is SNAN
|
734 |
|
|
*pfpsf |= INVALID_EXCEPTION; // set invalid flag
|
735 |
|
|
}
|
736 |
|
|
res = x;
|
737 |
|
|
} else {
|
738 |
|
|
res = y;
|
739 |
|
|
}
|
740 |
|
|
}
|
741 |
|
|
BID_RETURN (res);
|
742 |
|
|
} else if ((y & MASK_NAN) == MASK_NAN) { // y is NaN, but x is not
|
743 |
|
|
if ((y & MASK_SNAN) == MASK_SNAN) {
|
744 |
|
|
*pfpsf |= INVALID_EXCEPTION; // set exception if SNaN
|
745 |
|
|
y = y & 0xfdffffffffffffffull; // quietize y
|
746 |
|
|
res = y;
|
747 |
|
|
} else {
|
748 |
|
|
// will return x (which is not NaN)
|
749 |
|
|
res = x;
|
750 |
|
|
}
|
751 |
|
|
BID_RETURN (res);
|
752 |
|
|
}
|
753 |
|
|
// SIMPLE (CASE2)
|
754 |
|
|
// if all the bits are the same, these numbers are equal, return either number
|
755 |
|
|
if (x == y) {
|
756 |
|
|
res = x;
|
757 |
|
|
BID_RETURN (res);
|
758 |
|
|
}
|
759 |
|
|
// INFINITY (CASE3)
|
760 |
|
|
if ((x & MASK_INF) == MASK_INF) {
|
761 |
|
|
// x is infinity, its magnitude is greater than or equal to y
|
762 |
|
|
// return y as long as x isn't negative infinity
|
763 |
|
|
res = ((x & MASK_SIGN) == MASK_SIGN
|
764 |
|
|
&& (y & MASK_INF) == MASK_INF) ? y : x;
|
765 |
|
|
BID_RETURN (res);
|
766 |
|
|
} else if ((y & MASK_INF) == MASK_INF) {
|
767 |
|
|
// y is infinity, then it must be greater in magnitude
|
768 |
|
|
res = y;
|
769 |
|
|
BID_RETURN (res);
|
770 |
|
|
}
|
771 |
|
|
// if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
|
772 |
|
|
if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
|
773 |
|
|
exp_x = (x & MASK_BINARY_EXPONENT2) >> 51;
|
774 |
|
|
sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
|
775 |
|
|
} else {
|
776 |
|
|
exp_x = (x & MASK_BINARY_EXPONENT1) >> 53;
|
777 |
|
|
sig_x = (x & MASK_BINARY_SIG1);
|
778 |
|
|
}
|
779 |
|
|
|
780 |
|
|
// if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
|
781 |
|
|
if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
|
782 |
|
|
exp_y = (y & MASK_BINARY_EXPONENT2) >> 51;
|
783 |
|
|
sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
|
784 |
|
|
} else {
|
785 |
|
|
exp_y = (y & MASK_BINARY_EXPONENT1) >> 53;
|
786 |
|
|
sig_y = (y & MASK_BINARY_SIG1);
|
787 |
|
|
}
|
788 |
|
|
|
789 |
|
|
// ZERO (CASE4)
|
790 |
|
|
// some properties:
|
791 |
|
|
// (+ZERO == -ZERO) => therefore
|
792 |
|
|
// ignore the sign, and neither number is greater
|
793 |
|
|
// (ZERO x 10^A == ZERO x 10^B) for any valid A, B =>
|
794 |
|
|
// ignore the exponent field
|
795 |
|
|
// (Any non-canonical # is considered 0)
|
796 |
|
|
if (sig_x == 0) {
|
797 |
|
|
res = y; // x_is_zero, its magnitude must be smaller than y
|
798 |
|
|
BID_RETURN (res);
|
799 |
|
|
}
|
800 |
|
|
if (sig_y == 0) {
|
801 |
|
|
res = x; // y_is_zero, its magnitude must be smaller than x
|
802 |
|
|
BID_RETURN (res);
|
803 |
|
|
}
|
804 |
|
|
// REDUNDANT REPRESENTATIONS (CASE6)
|
805 |
|
|
// if both components are either bigger or smaller,
|
806 |
|
|
// it is clear what needs to be done
|
807 |
|
|
if (sig_x > sig_y && exp_x >= exp_y) {
|
808 |
|
|
res = x;
|
809 |
|
|
BID_RETURN (res);
|
810 |
|
|
}
|
811 |
|
|
if (sig_x < sig_y && exp_x <= exp_y) {
|
812 |
|
|
res = y;
|
813 |
|
|
BID_RETURN (res);
|
814 |
|
|
}
|
815 |
|
|
// if exp_x is 15 greater than exp_y, no need for compensation
|
816 |
|
|
if (exp_x - exp_y > 15) {
|
817 |
|
|
res = x; // difference cannot be greater than 10^15
|
818 |
|
|
BID_RETURN (res);
|
819 |
|
|
}
|
820 |
|
|
// if exp_x is 15 less than exp_y, no need for compensation
|
821 |
|
|
if (exp_y - exp_x > 15) {
|
822 |
|
|
res = y;
|
823 |
|
|
BID_RETURN (res);
|
824 |
|
|
}
|
825 |
|
|
// if |exp_x - exp_y| < 15, it comes down to the compensated significand
|
826 |
|
|
if (exp_x > exp_y) { // to simplify the loop below,
|
827 |
|
|
// otherwise adjust the x significand upwards
|
828 |
|
|
__mul_64x64_to_128MACH (sig_n_prime, sig_x,
|
829 |
|
|
mult_factor[exp_x - exp_y]);
|
830 |
|
|
// now, sig_n_prime has: sig_x * 10^(exp_x-exp_y),
|
831 |
|
|
// this is the compensated signif.
|
832 |
|
|
if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) {
|
833 |
|
|
// two numbers are equal, return maxNum(x,y)
|
834 |
|
|
res = ((y & MASK_SIGN) == MASK_SIGN) ? x : y;
|
835 |
|
|
BID_RETURN (res);
|
836 |
|
|
}
|
837 |
|
|
// now, if compensated_x (sig_n_prime) is greater than y return y,
|
838 |
|
|
// otherwise return x
|
839 |
|
|
res = ((sig_n_prime.w[1] != 0) || sig_n_prime.w[0] > sig_y) ? x : y;
|
840 |
|
|
BID_RETURN (res);
|
841 |
|
|
}
|
842 |
|
|
// exp_y must be greater than exp_x, thus adjust the y significand upwards
|
843 |
|
|
__mul_64x64_to_128MACH (sig_n_prime, sig_y,
|
844 |
|
|
mult_factor[exp_y - exp_x]);
|
845 |
|
|
|
846 |
|
|
if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) {
|
847 |
|
|
res = ((y & MASK_SIGN) == MASK_SIGN) ? x : y;
|
848 |
|
|
// two numbers are equal, return either
|
849 |
|
|
BID_RETURN (res);
|
850 |
|
|
}
|
851 |
|
|
|
852 |
|
|
res = ((sig_n_prime.w[1] == 0) && (sig_x > sig_n_prime.w[0])) ? x : y;
|
853 |
|
|
BID_RETURN (res);
|
854 |
|
|
}
|