1 |
734 |
jeremybenn |
/* Copyright (C) 2007, 2009 Free Software Foundation, Inc.
|
2 |
|
|
|
3 |
|
|
This file is part of GCC.
|
4 |
|
|
|
5 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
6 |
|
|
the terms of the GNU General Public License as published by the Free
|
7 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
8 |
|
|
version.
|
9 |
|
|
|
10 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
11 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
12 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
13 |
|
|
for more details.
|
14 |
|
|
|
15 |
|
|
Under Section 7 of GPL version 3, you are granted additional
|
16 |
|
|
permissions described in the GCC Runtime Library Exception, version
|
17 |
|
|
3.1, as published by the Free Software Foundation.
|
18 |
|
|
|
19 |
|
|
You should have received a copy of the GNU General Public License and
|
20 |
|
|
a copy of the GCC Runtime Library Exception along with this program;
|
21 |
|
|
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
22 |
|
|
<http://www.gnu.org/licenses/>. */
|
23 |
|
|
|
24 |
|
|
#include "bid_internal.h"
|
25 |
|
|
|
26 |
|
|
static const UINT64 mult_factor[16] = {
|
27 |
|
|
1ull, 10ull, 100ull, 1000ull,
|
28 |
|
|
10000ull, 100000ull, 1000000ull, 10000000ull,
|
29 |
|
|
100000000ull, 1000000000ull, 10000000000ull, 100000000000ull,
|
30 |
|
|
1000000000000ull, 10000000000000ull,
|
31 |
|
|
100000000000000ull, 1000000000000000ull
|
32 |
|
|
};
|
33 |
|
|
|
34 |
|
|
/*****************************************************************************
|
35 |
|
|
* BID64 non-computational functions:
|
36 |
|
|
* - bid64_isSigned
|
37 |
|
|
* - bid64_isNormal
|
38 |
|
|
* - bid64_isSubnormal
|
39 |
|
|
* - bid64_isFinite
|
40 |
|
|
* - bid64_isZero
|
41 |
|
|
* - bid64_isInf
|
42 |
|
|
* - bid64_isSignaling
|
43 |
|
|
* - bid64_isCanonical
|
44 |
|
|
* - bid64_isNaN
|
45 |
|
|
* - bid64_copy
|
46 |
|
|
* - bid64_negate
|
47 |
|
|
* - bid64_abs
|
48 |
|
|
* - bid64_copySign
|
49 |
|
|
* - bid64_class
|
50 |
|
|
* - bid64_sameQuantum
|
51 |
|
|
* - bid64_totalOrder
|
52 |
|
|
* - bid64_totalOrderMag
|
53 |
|
|
* - bid64_radix
|
54 |
|
|
****************************************************************************/
|
55 |
|
|
|
56 |
|
|
#if DECIMAL_CALL_BY_REFERENCE
|
57 |
|
|
void
|
58 |
|
|
bid64_isSigned (int *pres, UINT64 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
59 |
|
|
UINT64 x = *px;
|
60 |
|
|
#else
|
61 |
|
|
int
|
62 |
|
|
bid64_isSigned (UINT64 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
63 |
|
|
#endif
|
64 |
|
|
int res;
|
65 |
|
|
|
66 |
|
|
res = ((x & MASK_SIGN) == MASK_SIGN);
|
67 |
|
|
BID_RETURN (res);
|
68 |
|
|
}
|
69 |
|
|
|
70 |
|
|
// return 1 iff x is not zero, nor NaN nor subnormal nor infinity
|
71 |
|
|
#if DECIMAL_CALL_BY_REFERENCE
|
72 |
|
|
void
|
73 |
|
|
bid64_isNormal (int *pres, UINT64 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
74 |
|
|
UINT64 x = *px;
|
75 |
|
|
#else
|
76 |
|
|
int
|
77 |
|
|
bid64_isNormal (UINT64 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
78 |
|
|
#endif
|
79 |
|
|
int res;
|
80 |
|
|
UINT128 sig_x_prime;
|
81 |
|
|
UINT64 sig_x;
|
82 |
|
|
unsigned int exp_x;
|
83 |
|
|
|
84 |
|
|
if ((x & MASK_INF) == MASK_INF) { // x is either INF or NaN
|
85 |
|
|
res = 0;
|
86 |
|
|
} else {
|
87 |
|
|
// decode number into exponent and significand
|
88 |
|
|
if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
|
89 |
|
|
sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
|
90 |
|
|
// check for zero or non-canonical
|
91 |
|
|
if (sig_x > 9999999999999999ull || sig_x == 0) {
|
92 |
|
|
res = 0; // zero or non-canonical
|
93 |
|
|
BID_RETURN (res);
|
94 |
|
|
}
|
95 |
|
|
exp_x = (x & MASK_BINARY_EXPONENT2) >> 51;
|
96 |
|
|
} else {
|
97 |
|
|
sig_x = (x & MASK_BINARY_SIG1);
|
98 |
|
|
if (sig_x == 0) {
|
99 |
|
|
res = 0; // zero
|
100 |
|
|
BID_RETURN (res);
|
101 |
|
|
}
|
102 |
|
|
exp_x = (x & MASK_BINARY_EXPONENT1) >> 53;
|
103 |
|
|
}
|
104 |
|
|
// if exponent is less than -383, the number may be subnormal
|
105 |
|
|
// if (exp_x - 398 = -383) the number may be subnormal
|
106 |
|
|
if (exp_x < 15) {
|
107 |
|
|
__mul_64x64_to_128MACH (sig_x_prime, sig_x, mult_factor[exp_x]);
|
108 |
|
|
if (sig_x_prime.w[1] == 0
|
109 |
|
|
&& sig_x_prime.w[0] < 1000000000000000ull) {
|
110 |
|
|
res = 0; // subnormal
|
111 |
|
|
} else {
|
112 |
|
|
res = 1; // normal
|
113 |
|
|
}
|
114 |
|
|
} else {
|
115 |
|
|
res = 1; // normal
|
116 |
|
|
}
|
117 |
|
|
}
|
118 |
|
|
BID_RETURN (res);
|
119 |
|
|
}
|
120 |
|
|
|
121 |
|
|
// return 1 iff x is not zero, nor NaN nor normal nor infinity
|
122 |
|
|
#if DECIMAL_CALL_BY_REFERENCE
|
123 |
|
|
void
|
124 |
|
|
bid64_isSubnormal (int *pres,
|
125 |
|
|
UINT64 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
126 |
|
|
UINT64 x = *px;
|
127 |
|
|
#else
|
128 |
|
|
int
|
129 |
|
|
bid64_isSubnormal (UINT64 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
130 |
|
|
#endif
|
131 |
|
|
int res;
|
132 |
|
|
UINT128 sig_x_prime;
|
133 |
|
|
UINT64 sig_x;
|
134 |
|
|
unsigned int exp_x;
|
135 |
|
|
|
136 |
|
|
if ((x & MASK_INF) == MASK_INF) { // x is either INF or NaN
|
137 |
|
|
res = 0;
|
138 |
|
|
} else {
|
139 |
|
|
// decode number into exponent and significand
|
140 |
|
|
if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
|
141 |
|
|
sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
|
142 |
|
|
// check for zero or non-canonical
|
143 |
|
|
if (sig_x > 9999999999999999ull || sig_x == 0) {
|
144 |
|
|
res = 0; // zero or non-canonical
|
145 |
|
|
BID_RETURN (res);
|
146 |
|
|
}
|
147 |
|
|
exp_x = (x & MASK_BINARY_EXPONENT2) >> 51;
|
148 |
|
|
} else {
|
149 |
|
|
sig_x = (x & MASK_BINARY_SIG1);
|
150 |
|
|
if (sig_x == 0) {
|
151 |
|
|
res = 0; // zero
|
152 |
|
|
BID_RETURN (res);
|
153 |
|
|
}
|
154 |
|
|
exp_x = (x & MASK_BINARY_EXPONENT1) >> 53;
|
155 |
|
|
}
|
156 |
|
|
// if exponent is less than -383, the number may be subnormal
|
157 |
|
|
// if (exp_x - 398 = -383) the number may be subnormal
|
158 |
|
|
if (exp_x < 15) {
|
159 |
|
|
__mul_64x64_to_128MACH (sig_x_prime, sig_x, mult_factor[exp_x]);
|
160 |
|
|
if (sig_x_prime.w[1] == 0
|
161 |
|
|
&& sig_x_prime.w[0] < 1000000000000000ull) {
|
162 |
|
|
res = 1; // subnormal
|
163 |
|
|
} else {
|
164 |
|
|
res = 0; // normal
|
165 |
|
|
}
|
166 |
|
|
} else {
|
167 |
|
|
res = 0; // normal
|
168 |
|
|
}
|
169 |
|
|
}
|
170 |
|
|
BID_RETURN (res);
|
171 |
|
|
}
|
172 |
|
|
|
173 |
|
|
//iff x is zero, subnormal or normal (not infinity or NaN)
|
174 |
|
|
#if DECIMAL_CALL_BY_REFERENCE
|
175 |
|
|
void
|
176 |
|
|
bid64_isFinite (int *pres, UINT64 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
177 |
|
|
UINT64 x = *px;
|
178 |
|
|
#else
|
179 |
|
|
int
|
180 |
|
|
bid64_isFinite (UINT64 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
181 |
|
|
#endif
|
182 |
|
|
int res;
|
183 |
|
|
|
184 |
|
|
res = ((x & MASK_INF) != MASK_INF);
|
185 |
|
|
BID_RETURN (res);
|
186 |
|
|
}
|
187 |
|
|
|
188 |
|
|
#if DECIMAL_CALL_BY_REFERENCE
|
189 |
|
|
void
|
190 |
|
|
bid64_isZero (int *pres, UINT64 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
191 |
|
|
UINT64 x = *px;
|
192 |
|
|
#else
|
193 |
|
|
int
|
194 |
|
|
bid64_isZero (UINT64 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
195 |
|
|
#endif
|
196 |
|
|
int res;
|
197 |
|
|
|
198 |
|
|
// if infinity or nan, return 0
|
199 |
|
|
if ((x & MASK_INF) == MASK_INF) {
|
200 |
|
|
res = 0;
|
201 |
|
|
} else if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
|
202 |
|
|
// if steering bits are 11 (condition will be 0), then exponent is G[0:w+1]
|
203 |
|
|
// => sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
|
204 |
|
|
// if(sig_x > 9999999999999999ull) {return 1;}
|
205 |
|
|
res =
|
206 |
|
|
(((x & MASK_BINARY_SIG2) | MASK_BINARY_OR2) >
|
207 |
|
|
9999999999999999ull);
|
208 |
|
|
} else {
|
209 |
|
|
res = ((x & MASK_BINARY_SIG1) == 0);
|
210 |
|
|
}
|
211 |
|
|
BID_RETURN (res);
|
212 |
|
|
}
|
213 |
|
|
|
214 |
|
|
#if DECIMAL_CALL_BY_REFERENCE
|
215 |
|
|
void
|
216 |
|
|
bid64_isInf (int *pres, UINT64 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
217 |
|
|
UINT64 x = *px;
|
218 |
|
|
#else
|
219 |
|
|
int
|
220 |
|
|
bid64_isInf (UINT64 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
221 |
|
|
#endif
|
222 |
|
|
int res;
|
223 |
|
|
|
224 |
|
|
res = ((x & MASK_INF) == MASK_INF) && ((x & MASK_NAN) != MASK_NAN);
|
225 |
|
|
BID_RETURN (res);
|
226 |
|
|
}
|
227 |
|
|
|
228 |
|
|
#if DECIMAL_CALL_BY_REFERENCE
|
229 |
|
|
void
|
230 |
|
|
bid64_isSignaling (int *pres,
|
231 |
|
|
UINT64 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
232 |
|
|
UINT64 x = *px;
|
233 |
|
|
#else
|
234 |
|
|
int
|
235 |
|
|
bid64_isSignaling (UINT64 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
236 |
|
|
#endif
|
237 |
|
|
int res;
|
238 |
|
|
|
239 |
|
|
res = ((x & MASK_SNAN) == MASK_SNAN);
|
240 |
|
|
BID_RETURN (res);
|
241 |
|
|
}
|
242 |
|
|
|
243 |
|
|
#if DECIMAL_CALL_BY_REFERENCE
|
244 |
|
|
void
|
245 |
|
|
bid64_isCanonical (int *pres,
|
246 |
|
|
UINT64 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
247 |
|
|
UINT64 x = *px;
|
248 |
|
|
#else
|
249 |
|
|
int
|
250 |
|
|
bid64_isCanonical (UINT64 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
251 |
|
|
#endif
|
252 |
|
|
int res;
|
253 |
|
|
|
254 |
|
|
if ((x & MASK_NAN) == MASK_NAN) { // NaN
|
255 |
|
|
if (x & 0x01fc000000000000ull) {
|
256 |
|
|
res = 0;
|
257 |
|
|
} else if ((x & 0x0003ffffffffffffull) > 999999999999999ull) { // payload
|
258 |
|
|
res = 0;
|
259 |
|
|
} else {
|
260 |
|
|
res = 1;
|
261 |
|
|
}
|
262 |
|
|
} else if ((x & MASK_INF) == MASK_INF) {
|
263 |
|
|
if (x & 0x03ffffffffffffffull) {
|
264 |
|
|
res = 0;
|
265 |
|
|
} else {
|
266 |
|
|
res = 1;
|
267 |
|
|
}
|
268 |
|
|
} else if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { // 54-bit coeff.
|
269 |
|
|
res =
|
270 |
|
|
(((x & MASK_BINARY_SIG2) | MASK_BINARY_OR2) <=
|
271 |
|
|
9999999999999999ull);
|
272 |
|
|
} else { // 53-bit coeff.
|
273 |
|
|
res = 1;
|
274 |
|
|
}
|
275 |
|
|
BID_RETURN (res);
|
276 |
|
|
}
|
277 |
|
|
|
278 |
|
|
#if DECIMAL_CALL_BY_REFERENCE
|
279 |
|
|
void
|
280 |
|
|
bid64_isNaN (int *pres, UINT64 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
281 |
|
|
UINT64 x = *px;
|
282 |
|
|
#else
|
283 |
|
|
int
|
284 |
|
|
bid64_isNaN (UINT64 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
285 |
|
|
#endif
|
286 |
|
|
int res;
|
287 |
|
|
|
288 |
|
|
res = ((x & MASK_NAN) == MASK_NAN);
|
289 |
|
|
BID_RETURN (res);
|
290 |
|
|
}
|
291 |
|
|
|
292 |
|
|
// copies a floating-point operand x to destination y, with no change
|
293 |
|
|
#if DECIMAL_CALL_BY_REFERENCE
|
294 |
|
|
void
|
295 |
|
|
bid64_copy (UINT64 * pres, UINT64 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
296 |
|
|
UINT64 x = *px;
|
297 |
|
|
#else
|
298 |
|
|
UINT64
|
299 |
|
|
bid64_copy (UINT64 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
300 |
|
|
#endif
|
301 |
|
|
UINT64 res;
|
302 |
|
|
|
303 |
|
|
res = x;
|
304 |
|
|
BID_RETURN (res);
|
305 |
|
|
}
|
306 |
|
|
|
307 |
|
|
// copies a floating-point operand x to destination y, reversing the sign
|
308 |
|
|
#if DECIMAL_CALL_BY_REFERENCE
|
309 |
|
|
void
|
310 |
|
|
bid64_negate (UINT64 * pres,
|
311 |
|
|
UINT64 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
312 |
|
|
UINT64 x = *px;
|
313 |
|
|
#else
|
314 |
|
|
UINT64
|
315 |
|
|
bid64_negate (UINT64 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
316 |
|
|
#endif
|
317 |
|
|
UINT64 res;
|
318 |
|
|
|
319 |
|
|
res = x ^ MASK_SIGN;
|
320 |
|
|
BID_RETURN (res);
|
321 |
|
|
}
|
322 |
|
|
|
323 |
|
|
// copies a floating-point operand x to destination y, changing the sign to positive
|
324 |
|
|
#if DECIMAL_CALL_BY_REFERENCE
|
325 |
|
|
void
|
326 |
|
|
bid64_abs (UINT64 * pres, UINT64 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
327 |
|
|
UINT64 x = *px;
|
328 |
|
|
#else
|
329 |
|
|
UINT64
|
330 |
|
|
bid64_abs (UINT64 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
331 |
|
|
#endif
|
332 |
|
|
UINT64 res;
|
333 |
|
|
|
334 |
|
|
res = x & ~MASK_SIGN;
|
335 |
|
|
BID_RETURN (res);
|
336 |
|
|
}
|
337 |
|
|
|
338 |
|
|
// copies operand x to destination in the same format as x, but
|
339 |
|
|
// with the sign of y
|
340 |
|
|
#if DECIMAL_CALL_BY_REFERENCE
|
341 |
|
|
void
|
342 |
|
|
bid64_copySign (UINT64 * pres, UINT64 * px,
|
343 |
|
|
UINT64 * py _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
344 |
|
|
UINT64 x = *px;
|
345 |
|
|
UINT64 y = *py;
|
346 |
|
|
#else
|
347 |
|
|
UINT64
|
348 |
|
|
bid64_copySign (UINT64 x, UINT64 y _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
349 |
|
|
#endif
|
350 |
|
|
UINT64 res;
|
351 |
|
|
|
352 |
|
|
res = (x & ~MASK_SIGN) | (y & MASK_SIGN);
|
353 |
|
|
BID_RETURN (res);
|
354 |
|
|
}
|
355 |
|
|
|
356 |
|
|
#if DECIMAL_CALL_BY_REFERENCE
|
357 |
|
|
void
|
358 |
|
|
bid64_class (int *pres, UINT64 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
359 |
|
|
UINT64 x = *px;
|
360 |
|
|
#else
|
361 |
|
|
int
|
362 |
|
|
bid64_class (UINT64 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
363 |
|
|
#endif
|
364 |
|
|
int res;
|
365 |
|
|
UINT128 sig_x_prime;
|
366 |
|
|
UINT64 sig_x;
|
367 |
|
|
int exp_x;
|
368 |
|
|
|
369 |
|
|
if ((x & MASK_NAN) == MASK_NAN) {
|
370 |
|
|
// is the NaN signaling?
|
371 |
|
|
if ((x & MASK_SNAN) == MASK_SNAN) {
|
372 |
|
|
res = signalingNaN;
|
373 |
|
|
BID_RETURN (res);
|
374 |
|
|
}
|
375 |
|
|
// if NaN and not signaling, must be quietNaN
|
376 |
|
|
res = quietNaN;
|
377 |
|
|
BID_RETURN (res);
|
378 |
|
|
} else if ((x & MASK_INF) == MASK_INF) {
|
379 |
|
|
// is the Infinity negative?
|
380 |
|
|
if ((x & MASK_SIGN) == MASK_SIGN) {
|
381 |
|
|
res = negativeInfinity;
|
382 |
|
|
} else {
|
383 |
|
|
// otherwise, must be positive infinity
|
384 |
|
|
res = positiveInfinity;
|
385 |
|
|
}
|
386 |
|
|
BID_RETURN (res);
|
387 |
|
|
} else if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
|
388 |
|
|
// decode number into exponent and significand
|
389 |
|
|
sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
|
390 |
|
|
// check for zero or non-canonical
|
391 |
|
|
if (sig_x > 9999999999999999ull || sig_x == 0) {
|
392 |
|
|
if ((x & MASK_SIGN) == MASK_SIGN) {
|
393 |
|
|
res = negativeZero;
|
394 |
|
|
} else {
|
395 |
|
|
res = positiveZero;
|
396 |
|
|
}
|
397 |
|
|
BID_RETURN (res);
|
398 |
|
|
}
|
399 |
|
|
exp_x = (x & MASK_BINARY_EXPONENT2) >> 51;
|
400 |
|
|
} else {
|
401 |
|
|
sig_x = (x & MASK_BINARY_SIG1);
|
402 |
|
|
if (sig_x == 0) {
|
403 |
|
|
res =
|
404 |
|
|
((x & MASK_SIGN) == MASK_SIGN) ? negativeZero : positiveZero;
|
405 |
|
|
BID_RETURN (res);
|
406 |
|
|
}
|
407 |
|
|
exp_x = (x & MASK_BINARY_EXPONENT1) >> 53;
|
408 |
|
|
}
|
409 |
|
|
// if exponent is less than -383, number may be subnormal
|
410 |
|
|
// if (exp_x - 398 < -383)
|
411 |
|
|
if (exp_x < 15) { // sig_x *10^exp_x
|
412 |
|
|
__mul_64x64_to_128MACH (sig_x_prime, sig_x, mult_factor[exp_x]);
|
413 |
|
|
if (sig_x_prime.w[1] == 0
|
414 |
|
|
&& (sig_x_prime.w[0] < 1000000000000000ull)) {
|
415 |
|
|
res =
|
416 |
|
|
((x & MASK_SIGN) ==
|
417 |
|
|
MASK_SIGN) ? negativeSubnormal : positiveSubnormal;
|
418 |
|
|
BID_RETURN (res);
|
419 |
|
|
}
|
420 |
|
|
}
|
421 |
|
|
// otherwise, normal number, determine the sign
|
422 |
|
|
res =
|
423 |
|
|
((x & MASK_SIGN) == MASK_SIGN) ? negativeNormal : positiveNormal;
|
424 |
|
|
BID_RETURN (res);
|
425 |
|
|
}
|
426 |
|
|
|
427 |
|
|
// true if the exponents of x and y are the same, false otherwise.
|
428 |
|
|
// The special cases of sameQuantum (NaN, NaN) and sameQuantum (Inf, Inf) are
|
429 |
|
|
// true.
|
430 |
|
|
// If exactly one operand is infinite or exactly one operand is NaN, then false
|
431 |
|
|
#if DECIMAL_CALL_BY_REFERENCE
|
432 |
|
|
void
|
433 |
|
|
bid64_sameQuantum (int *pres, UINT64 * px,
|
434 |
|
|
UINT64 * py _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
435 |
|
|
UINT64 x = *px;
|
436 |
|
|
UINT64 y = *py;
|
437 |
|
|
#else
|
438 |
|
|
int
|
439 |
|
|
bid64_sameQuantum (UINT64 x, UINT64 y _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
440 |
|
|
#endif
|
441 |
|
|
int res;
|
442 |
|
|
unsigned int exp_x, exp_y;
|
443 |
|
|
|
444 |
|
|
// if both operands are NaN, return true; if just one is NaN, return false
|
445 |
|
|
if ((x & MASK_NAN) == MASK_NAN || ((y & MASK_NAN) == MASK_NAN)) {
|
446 |
|
|
res = ((x & MASK_NAN) == MASK_NAN && (y & MASK_NAN) == MASK_NAN);
|
447 |
|
|
BID_RETURN (res);
|
448 |
|
|
}
|
449 |
|
|
// if both operands are INF, return true; if just one is INF, return false
|
450 |
|
|
if ((x & MASK_INF) == MASK_INF || (y & MASK_INF) == MASK_INF) {
|
451 |
|
|
res = ((x & MASK_INF) == MASK_INF && (y & MASK_INF) == MASK_INF);
|
452 |
|
|
BID_RETURN (res);
|
453 |
|
|
}
|
454 |
|
|
// decode exponents for both numbers, and return true if they match
|
455 |
|
|
if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
|
456 |
|
|
exp_x = (x & MASK_BINARY_EXPONENT2) >> 51;
|
457 |
|
|
} else {
|
458 |
|
|
exp_x = (x & MASK_BINARY_EXPONENT1) >> 53;
|
459 |
|
|
}
|
460 |
|
|
if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
|
461 |
|
|
exp_y = (y & MASK_BINARY_EXPONENT2) >> 51;
|
462 |
|
|
} else {
|
463 |
|
|
exp_y = (y & MASK_BINARY_EXPONENT1) >> 53;
|
464 |
|
|
}
|
465 |
|
|
res = (exp_x == exp_y);
|
466 |
|
|
BID_RETURN (res);
|
467 |
|
|
}
|
468 |
|
|
|
469 |
|
|
#if DECIMAL_CALL_BY_REFERENCE
|
470 |
|
|
void
|
471 |
|
|
bid64_totalOrder (int *pres, UINT64 * px,
|
472 |
|
|
UINT64 * py _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
473 |
|
|
UINT64 x = *px;
|
474 |
|
|
UINT64 y = *py;
|
475 |
|
|
#else
|
476 |
|
|
int
|
477 |
|
|
bid64_totalOrder (UINT64 x, UINT64 y _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
478 |
|
|
#endif
|
479 |
|
|
int res;
|
480 |
|
|
int exp_x, exp_y;
|
481 |
|
|
UINT64 sig_x, sig_y, pyld_y, pyld_x;
|
482 |
|
|
UINT128 sig_n_prime;
|
483 |
|
|
char x_is_zero = 0, y_is_zero = 0;
|
484 |
|
|
|
485 |
|
|
// NaN (CASE1)
|
486 |
|
|
// if x and y are unordered numerically because either operand is NaN
|
487 |
|
|
// (1) totalOrder(-NaN, number) is true
|
488 |
|
|
// (2) totalOrder(number, +NaN) is true
|
489 |
|
|
// (3) if x and y are both NaN:
|
490 |
|
|
// i) negative sign bit < positive sign bit
|
491 |
|
|
// ii) signaling < quiet for +NaN, reverse for -NaN
|
492 |
|
|
// iii) lesser payload < greater payload for +NaN (reverse for -NaN)
|
493 |
|
|
// iv) else if bitwise identical (in canonical form), return 1
|
494 |
|
|
if ((x & MASK_NAN) == MASK_NAN) {
|
495 |
|
|
// if x is -NaN
|
496 |
|
|
if ((x & MASK_SIGN) == MASK_SIGN) {
|
497 |
|
|
// return true, unless y is -NaN also
|
498 |
|
|
if ((y & MASK_NAN) != MASK_NAN || (y & MASK_SIGN) != MASK_SIGN) {
|
499 |
|
|
res = 1; // y is a number, return 1
|
500 |
|
|
BID_RETURN (res);
|
501 |
|
|
} else { // if y and x are both -NaN
|
502 |
|
|
// if x and y are both -sNaN or both -qNaN, we have to compare payloads
|
503 |
|
|
// this xnor statement evaluates to true if both are sNaN or qNaN
|
504 |
|
|
if (!
|
505 |
|
|
(((y & MASK_SNAN) == MASK_SNAN) ^ ((x & MASK_SNAN) ==
|
506 |
|
|
MASK_SNAN))) {
|
507 |
|
|
// it comes down to the payload. we want to return true if x has a
|
508 |
|
|
// larger payload, or if the payloads are equal (canonical forms
|
509 |
|
|
// are bitwise identical)
|
510 |
|
|
pyld_y = y & 0x0003ffffffffffffull;
|
511 |
|
|
pyld_x = x & 0x0003ffffffffffffull;
|
512 |
|
|
if (pyld_y > 999999999999999ull || pyld_y == 0) {
|
513 |
|
|
// if y is zero, x must be less than or numerically equal
|
514 |
|
|
// y's payload is 0
|
515 |
|
|
res = 1;
|
516 |
|
|
BID_RETURN (res);
|
517 |
|
|
}
|
518 |
|
|
// if x is zero and y isn't, x has the smaller payload
|
519 |
|
|
// definitely (since we know y isn't 0 at this point)
|
520 |
|
|
if (pyld_x > 999999999999999ull || pyld_x == 0) {
|
521 |
|
|
// x's payload is 0
|
522 |
|
|
res = 0;
|
523 |
|
|
BID_RETURN (res);
|
524 |
|
|
}
|
525 |
|
|
res = (pyld_x >= pyld_y);
|
526 |
|
|
BID_RETURN (res);
|
527 |
|
|
} else {
|
528 |
|
|
// either x = -sNaN and y = -qNaN or x = -qNaN and y = -sNaN
|
529 |
|
|
res = (y & MASK_SNAN) == MASK_SNAN; // totalOrder(-qNaN, -sNaN) == 1
|
530 |
|
|
BID_RETURN (res);
|
531 |
|
|
}
|
532 |
|
|
}
|
533 |
|
|
} else { // x is +NaN
|
534 |
|
|
// return false, unless y is +NaN also
|
535 |
|
|
if ((y & MASK_NAN) != MASK_NAN || (y & MASK_SIGN) == MASK_SIGN) {
|
536 |
|
|
res = 0; // y is a number, return 1
|
537 |
|
|
BID_RETURN (res);
|
538 |
|
|
} else {
|
539 |
|
|
// x and y are both +NaN;
|
540 |
|
|
// must investigate payload if both quiet or both signaling
|
541 |
|
|
// this xnor statement will be true if both x and y are +qNaN or +sNaN
|
542 |
|
|
if (!
|
543 |
|
|
(((y & MASK_SNAN) == MASK_SNAN) ^ ((x & MASK_SNAN) ==
|
544 |
|
|
MASK_SNAN))) {
|
545 |
|
|
// it comes down to the payload. we want to return true if x has a
|
546 |
|
|
// smaller payload, or if the payloads are equal (canonical forms
|
547 |
|
|
// are bitwise identical)
|
548 |
|
|
pyld_y = y & 0x0003ffffffffffffull;
|
549 |
|
|
pyld_x = x & 0x0003ffffffffffffull;
|
550 |
|
|
// if x is zero and y isn't, x has the smaller
|
551 |
|
|
// payload definitely (since we know y isn't 0 at this point)
|
552 |
|
|
if (pyld_x > 999999999999999ull || pyld_x == 0) {
|
553 |
|
|
res = 1;
|
554 |
|
|
BID_RETURN (res);
|
555 |
|
|
}
|
556 |
|
|
if (pyld_y > 999999999999999ull || pyld_y == 0) {
|
557 |
|
|
// if y is zero, x must be less than or numerically equal
|
558 |
|
|
res = 0;
|
559 |
|
|
BID_RETURN (res);
|
560 |
|
|
}
|
561 |
|
|
res = (pyld_x <= pyld_y);
|
562 |
|
|
BID_RETURN (res);
|
563 |
|
|
} else {
|
564 |
|
|
// return true if y is +qNaN and x is +sNaN
|
565 |
|
|
// (we know they're different bc of xor if_stmt above)
|
566 |
|
|
res = ((x & MASK_SNAN) == MASK_SNAN);
|
567 |
|
|
BID_RETURN (res);
|
568 |
|
|
}
|
569 |
|
|
}
|
570 |
|
|
}
|
571 |
|
|
} else if ((y & MASK_NAN) == MASK_NAN) {
|
572 |
|
|
// x is certainly not NAN in this case.
|
573 |
|
|
// return true if y is positive
|
574 |
|
|
res = ((y & MASK_SIGN) != MASK_SIGN);
|
575 |
|
|
BID_RETURN (res);
|
576 |
|
|
}
|
577 |
|
|
// SIMPLE (CASE2)
|
578 |
|
|
// if all the bits are the same, these numbers are equal.
|
579 |
|
|
if (x == y) {
|
580 |
|
|
res = 1;
|
581 |
|
|
BID_RETURN (res);
|
582 |
|
|
}
|
583 |
|
|
// OPPOSITE SIGNS (CASE 3)
|
584 |
|
|
// if signs are opposite, return 1 if x is negative
|
585 |
|
|
// (if x<y, totalOrder is true)
|
586 |
|
|
if (((x & MASK_SIGN) == MASK_SIGN) ^ ((y & MASK_SIGN) == MASK_SIGN)) {
|
587 |
|
|
res = (x & MASK_SIGN) == MASK_SIGN;
|
588 |
|
|
BID_RETURN (res);
|
589 |
|
|
}
|
590 |
|
|
// INFINITY (CASE4)
|
591 |
|
|
if ((x & MASK_INF) == MASK_INF) {
|
592 |
|
|
// if x==neg_inf, return (y == neg_inf)?1:0;
|
593 |
|
|
if ((x & MASK_SIGN) == MASK_SIGN) {
|
594 |
|
|
res = 1;
|
595 |
|
|
BID_RETURN (res);
|
596 |
|
|
} else {
|
597 |
|
|
// x is positive infinity, only return1 if y
|
598 |
|
|
// is positive infinity as well
|
599 |
|
|
// (we know y has same sign as x)
|
600 |
|
|
res = ((y & MASK_INF) == MASK_INF);
|
601 |
|
|
BID_RETURN (res);
|
602 |
|
|
}
|
603 |
|
|
} else if ((y & MASK_INF) == MASK_INF) {
|
604 |
|
|
// x is finite, so:
|
605 |
|
|
// if y is +inf, x<y
|
606 |
|
|
// if y is -inf, x>y
|
607 |
|
|
res = ((y & MASK_SIGN) != MASK_SIGN);
|
608 |
|
|
BID_RETURN (res);
|
609 |
|
|
}
|
610 |
|
|
// if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
|
611 |
|
|
if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
|
612 |
|
|
exp_x = (x & MASK_BINARY_EXPONENT2) >> 51;
|
613 |
|
|
sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
|
614 |
|
|
if (sig_x > 9999999999999999ull || sig_x == 0) {
|
615 |
|
|
x_is_zero = 1;
|
616 |
|
|
}
|
617 |
|
|
} else {
|
618 |
|
|
exp_x = (x & MASK_BINARY_EXPONENT1) >> 53;
|
619 |
|
|
sig_x = (x & MASK_BINARY_SIG1);
|
620 |
|
|
if (sig_x == 0) {
|
621 |
|
|
x_is_zero = 1;
|
622 |
|
|
}
|
623 |
|
|
}
|
624 |
|
|
|
625 |
|
|
// if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
|
626 |
|
|
if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
|
627 |
|
|
exp_y = (y & MASK_BINARY_EXPONENT2) >> 51;
|
628 |
|
|
sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
|
629 |
|
|
if (sig_y > 9999999999999999ull || sig_y == 0) {
|
630 |
|
|
y_is_zero = 1;
|
631 |
|
|
}
|
632 |
|
|
} else {
|
633 |
|
|
exp_y = (y & MASK_BINARY_EXPONENT1) >> 53;
|
634 |
|
|
sig_y = (y & MASK_BINARY_SIG1);
|
635 |
|
|
if (sig_y == 0) {
|
636 |
|
|
y_is_zero = 1;
|
637 |
|
|
}
|
638 |
|
|
}
|
639 |
|
|
|
640 |
|
|
// ZERO (CASE 5)
|
641 |
|
|
// if x and y represent the same entities, and
|
642 |
|
|
// both are negative , return true iff exp_x <= exp_y
|
643 |
|
|
if (x_is_zero && y_is_zero) {
|
644 |
|
|
if (!((x & MASK_SIGN) == MASK_SIGN) ^
|
645 |
|
|
((y & MASK_SIGN) == MASK_SIGN)) {
|
646 |
|
|
// if signs are the same:
|
647 |
|
|
// totalOrder(x,y) iff exp_x >= exp_y for negative numbers
|
648 |
|
|
// totalOrder(x,y) iff exp_x <= exp_y for positive numbers
|
649 |
|
|
if (exp_x == exp_y) {
|
650 |
|
|
res = 1;
|
651 |
|
|
BID_RETURN (res);
|
652 |
|
|
}
|
653 |
|
|
res = (exp_x <= exp_y) ^ ((x & MASK_SIGN) == MASK_SIGN);
|
654 |
|
|
BID_RETURN (res);
|
655 |
|
|
} else {
|
656 |
|
|
// signs are different.
|
657 |
|
|
// totalOrder(-0, +0) is true
|
658 |
|
|
// totalOrder(+0, -0) is false
|
659 |
|
|
res = ((x & MASK_SIGN) == MASK_SIGN);
|
660 |
|
|
BID_RETURN (res);
|
661 |
|
|
}
|
662 |
|
|
}
|
663 |
|
|
// if x is zero and y isn't, clearly x has the smaller payload.
|
664 |
|
|
if (x_is_zero) {
|
665 |
|
|
res = ((y & MASK_SIGN) != MASK_SIGN);
|
666 |
|
|
BID_RETURN (res);
|
667 |
|
|
}
|
668 |
|
|
// if y is zero, and x isn't, clearly y has the smaller payload.
|
669 |
|
|
if (y_is_zero) {
|
670 |
|
|
res = ((x & MASK_SIGN) == MASK_SIGN);
|
671 |
|
|
BID_RETURN (res);
|
672 |
|
|
}
|
673 |
|
|
// REDUNDANT REPRESENTATIONS (CASE6)
|
674 |
|
|
// if both components are either bigger or smaller,
|
675 |
|
|
// it is clear what needs to be done
|
676 |
|
|
if (sig_x > sig_y && exp_x >= exp_y) {
|
677 |
|
|
res = ((x & MASK_SIGN) == MASK_SIGN);
|
678 |
|
|
BID_RETURN (res);
|
679 |
|
|
}
|
680 |
|
|
if (sig_x < sig_y && exp_x <= exp_y) {
|
681 |
|
|
res = ((x & MASK_SIGN) != MASK_SIGN);
|
682 |
|
|
BID_RETURN (res);
|
683 |
|
|
}
|
684 |
|
|
// if exp_x is 15 greater than exp_y, it is
|
685 |
|
|
// definitely larger, so no need for compensation
|
686 |
|
|
if (exp_x - exp_y > 15) {
|
687 |
|
|
// difference cannot be greater than 10^15
|
688 |
|
|
res = ((x & MASK_SIGN) == MASK_SIGN);
|
689 |
|
|
BID_RETURN (res);
|
690 |
|
|
}
|
691 |
|
|
// if exp_x is 15 less than exp_y, it is
|
692 |
|
|
// definitely smaller, no need for compensation
|
693 |
|
|
if (exp_y - exp_x > 15) {
|
694 |
|
|
res = ((x & MASK_SIGN) != MASK_SIGN);
|
695 |
|
|
BID_RETURN (res);
|
696 |
|
|
}
|
697 |
|
|
// if |exp_x - exp_y| < 15, it comes down
|
698 |
|
|
// to the compensated significand
|
699 |
|
|
if (exp_x > exp_y) {
|
700 |
|
|
// otherwise adjust the x significand upwards
|
701 |
|
|
__mul_64x64_to_128MACH (sig_n_prime, sig_x,
|
702 |
|
|
mult_factor[exp_x - exp_y]);
|
703 |
|
|
// if x and y represent the same entities,
|
704 |
|
|
// and both are negative, return true iff exp_x <= exp_y
|
705 |
|
|
if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) {
|
706 |
|
|
// case cannot occure, because all bits must
|
707 |
|
|
// be the same - would have been caught if (x==y)
|
708 |
|
|
res = (exp_x <= exp_y) ^ ((x & MASK_SIGN) == MASK_SIGN);
|
709 |
|
|
BID_RETURN (res);
|
710 |
|
|
}
|
711 |
|
|
// if positive, return 1 if adjusted x is smaller than y
|
712 |
|
|
res = ((sig_n_prime.w[1] == 0)
|
713 |
|
|
&& sig_n_prime.w[0] < sig_y) ^ ((x & MASK_SIGN) ==
|
714 |
|
|
MASK_SIGN);
|
715 |
|
|
BID_RETURN (res);
|
716 |
|
|
}
|
717 |
|
|
// adjust the y significand upwards
|
718 |
|
|
__mul_64x64_to_128MACH (sig_n_prime, sig_y,
|
719 |
|
|
mult_factor[exp_y - exp_x]);
|
720 |
|
|
|
721 |
|
|
// if x and y represent the same entities,
|
722 |
|
|
// and both are negative, return true iff exp_x <= exp_y
|
723 |
|
|
if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) {
|
724 |
|
|
// Cannot occur, because all bits must be the same.
|
725 |
|
|
// Case would have been caught if (x==y)
|
726 |
|
|
res = (exp_x <= exp_y) ^ ((x & MASK_SIGN) == MASK_SIGN);
|
727 |
|
|
BID_RETURN (res);
|
728 |
|
|
}
|
729 |
|
|
// values are not equal, for positive numbers return 1
|
730 |
|
|
// if x is less than y. 0 otherwise
|
731 |
|
|
res = ((sig_n_prime.w[1] > 0)
|
732 |
|
|
|| (sig_x < sig_n_prime.w[0])) ^ ((x & MASK_SIGN) ==
|
733 |
|
|
MASK_SIGN);
|
734 |
|
|
BID_RETURN (res);
|
735 |
|
|
}
|
736 |
|
|
|
737 |
|
|
// totalOrderMag is TotalOrder(abs(x), abs(y))
|
738 |
|
|
#if DECIMAL_CALL_BY_REFERENCE
|
739 |
|
|
void
|
740 |
|
|
bid64_totalOrderMag (int *pres, UINT64 * px,
|
741 |
|
|
UINT64 * py _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
742 |
|
|
UINT64 x = *px;
|
743 |
|
|
UINT64 y = *py;
|
744 |
|
|
#else
|
745 |
|
|
int
|
746 |
|
|
bid64_totalOrderMag (UINT64 x,
|
747 |
|
|
UINT64 y _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
748 |
|
|
#endif
|
749 |
|
|
int res;
|
750 |
|
|
int exp_x, exp_y;
|
751 |
|
|
UINT64 sig_x, sig_y, pyld_y, pyld_x;
|
752 |
|
|
UINT128 sig_n_prime;
|
753 |
|
|
char x_is_zero = 0, y_is_zero = 0;
|
754 |
|
|
|
755 |
|
|
// NaN (CASE 1)
|
756 |
|
|
// if x and y are unordered numerically because either operand is NaN
|
757 |
|
|
// (1) totalOrder(number, +NaN) is true
|
758 |
|
|
// (2) if x and y are both NaN:
|
759 |
|
|
// i) signaling < quiet for +NaN
|
760 |
|
|
// ii) lesser payload < greater payload for +NaN
|
761 |
|
|
// iii) else if bitwise identical (in canonical form), return 1
|
762 |
|
|
if ((x & MASK_NAN) == MASK_NAN) {
|
763 |
|
|
// x is +NaN
|
764 |
|
|
|
765 |
|
|
// return false, unless y is +NaN also
|
766 |
|
|
if ((y & MASK_NAN) != MASK_NAN) {
|
767 |
|
|
res = 0; // y is a number, return 1
|
768 |
|
|
BID_RETURN (res);
|
769 |
|
|
|
770 |
|
|
} else {
|
771 |
|
|
|
772 |
|
|
// x and y are both +NaN;
|
773 |
|
|
// must investigate payload if both quiet or both signaling
|
774 |
|
|
// this xnor statement will be true if both x and y are +qNaN or +sNaN
|
775 |
|
|
if (!
|
776 |
|
|
(((y & MASK_SNAN) == MASK_SNAN) ^ ((x & MASK_SNAN) ==
|
777 |
|
|
MASK_SNAN))) {
|
778 |
|
|
// it comes down to the payload. we want to return true if x has a
|
779 |
|
|
// smaller payload, or if the payloads are equal (canonical forms
|
780 |
|
|
// are bitwise identical)
|
781 |
|
|
pyld_y = y & 0x0003ffffffffffffull;
|
782 |
|
|
pyld_x = x & 0x0003ffffffffffffull;
|
783 |
|
|
// if x is zero and y isn't, x has the smaller
|
784 |
|
|
// payload definitely (since we know y isn't 0 at this point)
|
785 |
|
|
if (pyld_x > 999999999999999ull || pyld_x == 0) {
|
786 |
|
|
res = 1;
|
787 |
|
|
BID_RETURN (res);
|
788 |
|
|
}
|
789 |
|
|
|
790 |
|
|
if (pyld_y > 999999999999999ull || pyld_y == 0) {
|
791 |
|
|
// if y is zero, x must be less than or numerically equal
|
792 |
|
|
res = 0;
|
793 |
|
|
BID_RETURN (res);
|
794 |
|
|
}
|
795 |
|
|
res = (pyld_x <= pyld_y);
|
796 |
|
|
BID_RETURN (res);
|
797 |
|
|
|
798 |
|
|
} else {
|
799 |
|
|
// return true if y is +qNaN and x is +sNaN
|
800 |
|
|
// (we know they're different bc of xor if_stmt above)
|
801 |
|
|
res = ((x & MASK_SNAN) == MASK_SNAN);
|
802 |
|
|
BID_RETURN (res);
|
803 |
|
|
}
|
804 |
|
|
}
|
805 |
|
|
|
806 |
|
|
} else if ((y & MASK_NAN) == MASK_NAN) {
|
807 |
|
|
// x is certainly not NAN in this case.
|
808 |
|
|
// return true if y is positive
|
809 |
|
|
res = 1;
|
810 |
|
|
BID_RETURN (res);
|
811 |
|
|
}
|
812 |
|
|
// SIMPLE (CASE2)
|
813 |
|
|
// if all the bits (except sign bit) are the same,
|
814 |
|
|
// these numbers are equal.
|
815 |
|
|
if ((x & ~MASK_SIGN) == (y & ~MASK_SIGN)) {
|
816 |
|
|
res = 1;
|
817 |
|
|
BID_RETURN (res);
|
818 |
|
|
}
|
819 |
|
|
// INFINITY (CASE3)
|
820 |
|
|
if ((x & MASK_INF) == MASK_INF) {
|
821 |
|
|
// x is positive infinity, only return1
|
822 |
|
|
// if y is positive infinity as well
|
823 |
|
|
res = ((y & MASK_INF) == MASK_INF);
|
824 |
|
|
BID_RETURN (res);
|
825 |
|
|
} else if ((y & MASK_INF) == MASK_INF) {
|
826 |
|
|
// x is finite, so:
|
827 |
|
|
// if y is +inf, x<y
|
828 |
|
|
res = 1;
|
829 |
|
|
BID_RETURN (res);
|
830 |
|
|
}
|
831 |
|
|
// if steering bits are 11 (condition will be 0),
|
832 |
|
|
// then exponent is G[0:w+1] =>
|
833 |
|
|
if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
|
834 |
|
|
exp_x = (x & MASK_BINARY_EXPONENT2) >> 51;
|
835 |
|
|
sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
|
836 |
|
|
if (sig_x > 9999999999999999ull || sig_x == 0) {
|
837 |
|
|
x_is_zero = 1;
|
838 |
|
|
}
|
839 |
|
|
} else {
|
840 |
|
|
exp_x = (x & MASK_BINARY_EXPONENT1) >> 53;
|
841 |
|
|
sig_x = (x & MASK_BINARY_SIG1);
|
842 |
|
|
if (sig_x == 0) {
|
843 |
|
|
x_is_zero = 1;
|
844 |
|
|
}
|
845 |
|
|
}
|
846 |
|
|
|
847 |
|
|
// if steering bits are 11 (condition will be 0),
|
848 |
|
|
// then exponent is G[0:w+1] =>
|
849 |
|
|
if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
|
850 |
|
|
exp_y = (y & MASK_BINARY_EXPONENT2) >> 51;
|
851 |
|
|
sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
|
852 |
|
|
if (sig_y > 9999999999999999ull || sig_y == 0) {
|
853 |
|
|
y_is_zero = 1;
|
854 |
|
|
}
|
855 |
|
|
} else {
|
856 |
|
|
exp_y = (y & MASK_BINARY_EXPONENT1) >> 53;
|
857 |
|
|
sig_y = (y & MASK_BINARY_SIG1);
|
858 |
|
|
if (sig_y == 0) {
|
859 |
|
|
y_is_zero = 1;
|
860 |
|
|
}
|
861 |
|
|
}
|
862 |
|
|
|
863 |
|
|
// ZERO (CASE 5)
|
864 |
|
|
// if x and y represent the same entities,
|
865 |
|
|
// and both are negative , return true iff exp_x <= exp_y
|
866 |
|
|
if (x_is_zero && y_is_zero) {
|
867 |
|
|
// totalOrder(x,y) iff exp_x <= exp_y for positive numbers
|
868 |
|
|
res = (exp_x <= exp_y);
|
869 |
|
|
BID_RETURN (res);
|
870 |
|
|
}
|
871 |
|
|
// if x is zero and y isn't, clearly x has the smaller payload.
|
872 |
|
|
if (x_is_zero) {
|
873 |
|
|
res = 1;
|
874 |
|
|
BID_RETURN (res);
|
875 |
|
|
}
|
876 |
|
|
// if y is zero, and x isn't, clearly y has the smaller payload.
|
877 |
|
|
if (y_is_zero) {
|
878 |
|
|
res = 0;
|
879 |
|
|
BID_RETURN (res);
|
880 |
|
|
}
|
881 |
|
|
// REDUNDANT REPRESENTATIONS (CASE6)
|
882 |
|
|
// if both components are either bigger or smaller
|
883 |
|
|
if (sig_x > sig_y && exp_x >= exp_y) {
|
884 |
|
|
res = 0;
|
885 |
|
|
BID_RETURN (res);
|
886 |
|
|
}
|
887 |
|
|
if (sig_x < sig_y && exp_x <= exp_y) {
|
888 |
|
|
res = 1;
|
889 |
|
|
BID_RETURN (res);
|
890 |
|
|
}
|
891 |
|
|
// if exp_x is 15 greater than exp_y, it is definitely
|
892 |
|
|
// larger, so no need for compensation
|
893 |
|
|
if (exp_x - exp_y > 15) {
|
894 |
|
|
res = 0; // difference cannot be greater than 10^15
|
895 |
|
|
BID_RETURN (res);
|
896 |
|
|
}
|
897 |
|
|
// if exp_x is 15 less than exp_y, it is definitely
|
898 |
|
|
// smaller, no need for compensation
|
899 |
|
|
if (exp_y - exp_x > 15) {
|
900 |
|
|
res = 1;
|
901 |
|
|
BID_RETURN (res);
|
902 |
|
|
}
|
903 |
|
|
// if |exp_x - exp_y| < 15, it comes down
|
904 |
|
|
// to the compensated significand
|
905 |
|
|
if (exp_x > exp_y) {
|
906 |
|
|
|
907 |
|
|
// otherwise adjust the x significand upwards
|
908 |
|
|
__mul_64x64_to_128MACH (sig_n_prime, sig_x,
|
909 |
|
|
mult_factor[exp_x - exp_y]);
|
910 |
|
|
|
911 |
|
|
// if x and y represent the same entities,
|
912 |
|
|
// and both are negative, return true iff exp_x <= exp_y
|
913 |
|
|
if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) {
|
914 |
|
|
// case cannot occur, because all bits
|
915 |
|
|
// must be the same - would have been caught if (x==y)
|
916 |
|
|
res = (exp_x <= exp_y);
|
917 |
|
|
BID_RETURN (res);
|
918 |
|
|
}
|
919 |
|
|
// if positive, return 1 if adjusted x is smaller than y
|
920 |
|
|
res = ((sig_n_prime.w[1] == 0) && sig_n_prime.w[0] < sig_y);
|
921 |
|
|
BID_RETURN (res);
|
922 |
|
|
}
|
923 |
|
|
// adjust the y significand upwards
|
924 |
|
|
__mul_64x64_to_128MACH (sig_n_prime, sig_y,
|
925 |
|
|
mult_factor[exp_y - exp_x]);
|
926 |
|
|
|
927 |
|
|
// if x and y represent the same entities,
|
928 |
|
|
// and both are negative, return true iff exp_x <= exp_y
|
929 |
|
|
if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) {
|
930 |
|
|
res = (exp_x <= exp_y);
|
931 |
|
|
BID_RETURN (res);
|
932 |
|
|
}
|
933 |
|
|
// values are not equal, for positive numbers
|
934 |
|
|
// return 1 if x is less than y. 0 otherwise
|
935 |
|
|
res = ((sig_n_prime.w[1] > 0) || (sig_x < sig_n_prime.w[0]));
|
936 |
|
|
BID_RETURN (res);
|
937 |
|
|
|
938 |
|
|
}
|
939 |
|
|
|
940 |
|
|
#if DECIMAL_CALL_BY_REFERENCE
|
941 |
|
|
void
|
942 |
|
|
bid64_radix (int *pres, UINT64 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
943 |
|
|
UINT64 x = *px;
|
944 |
|
|
#else
|
945 |
|
|
int
|
946 |
|
|
bid64_radix (UINT64 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
947 |
|
|
#endif
|
948 |
|
|
int res;
|
949 |
|
|
if (x) // dummy test
|
950 |
|
|
res = 10;
|
951 |
|
|
else
|
952 |
|
|
res = 10;
|
953 |
|
|
BID_RETURN (res);
|
954 |
|
|
}
|