| 1 |
734 |
jeremybenn |
/* Copyright (C) 2007, 2009 Free Software Foundation, Inc.
|
| 2 |
|
|
|
| 3 |
|
|
This file is part of GCC.
|
| 4 |
|
|
|
| 5 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
| 6 |
|
|
the terms of the GNU General Public License as published by the Free
|
| 7 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
| 8 |
|
|
version.
|
| 9 |
|
|
|
| 10 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
| 11 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
| 12 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
| 13 |
|
|
for more details.
|
| 14 |
|
|
|
| 15 |
|
|
Under Section 7 of GPL version 3, you are granted additional
|
| 16 |
|
|
permissions described in the GCC Runtime Library Exception, version
|
| 17 |
|
|
3.1, as published by the Free Software Foundation.
|
| 18 |
|
|
|
| 19 |
|
|
You should have received a copy of the GNU General Public License and
|
| 20 |
|
|
a copy of the GCC Runtime Library Exception along with this program;
|
| 21 |
|
|
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
| 22 |
|
|
<http://www.gnu.org/licenses/>. */
|
| 23 |
|
|
|
| 24 |
|
|
/*****************************************************************************
|
| 25 |
|
|
* BID64 square root
|
| 26 |
|
|
*****************************************************************************
|
| 27 |
|
|
*
|
| 28 |
|
|
* Algorithm description:
|
| 29 |
|
|
*
|
| 30 |
|
|
* if(exponent_x is odd)
|
| 31 |
|
|
* scale coefficient_x by 10, adjust exponent
|
| 32 |
|
|
* - get lower estimate for number of digits in coefficient_x
|
| 33 |
|
|
* - scale coefficient x to between 31 and 33 decimal digits
|
| 34 |
|
|
* - in parallel, check for exact case and return if true
|
| 35 |
|
|
* - get high part of result coefficient using double precision sqrt
|
| 36 |
|
|
* - compute remainder and refine coefficient in one iteration (which
|
| 37 |
|
|
* modifies it by at most 1)
|
| 38 |
|
|
* - result exponent is easy to compute from the adjusted arg. exponent
|
| 39 |
|
|
*
|
| 40 |
|
|
****************************************************************************/
|
| 41 |
|
|
|
| 42 |
|
|
#include "bid_internal.h"
|
| 43 |
|
|
#include "bid_sqrt_macros.h"
|
| 44 |
|
|
#ifdef UNCHANGED_BINARY_STATUS_FLAGS
|
| 45 |
|
|
#include <fenv.h>
|
| 46 |
|
|
|
| 47 |
|
|
#define FE_ALL_FLAGS FE_INVALID|FE_DIVBYZERO|FE_OVERFLOW|FE_UNDERFLOW|FE_INEXACT
|
| 48 |
|
|
#endif
|
| 49 |
|
|
|
| 50 |
|
|
extern double sqrt (double);
|
| 51 |
|
|
|
| 52 |
|
|
#if DECIMAL_CALL_BY_REFERENCE
|
| 53 |
|
|
|
| 54 |
|
|
void
|
| 55 |
|
|
bid64_sqrt (UINT64 * pres,
|
| 56 |
|
|
UINT64 *
|
| 57 |
|
|
px _RND_MODE_PARAM _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
|
| 58 |
|
|
_EXC_INFO_PARAM) {
|
| 59 |
|
|
UINT64 x;
|
| 60 |
|
|
#else
|
| 61 |
|
|
|
| 62 |
|
|
UINT64
|
| 63 |
|
|
bid64_sqrt (UINT64 x _RND_MODE_PARAM _EXC_FLAGS_PARAM
|
| 64 |
|
|
_EXC_MASKS_PARAM _EXC_INFO_PARAM) {
|
| 65 |
|
|
#endif
|
| 66 |
|
|
UINT128 CA, CT;
|
| 67 |
|
|
UINT64 sign_x, coefficient_x;
|
| 68 |
|
|
UINT64 Q, Q2, A10, C4, R, R2, QE, res;
|
| 69 |
|
|
SINT64 D;
|
| 70 |
|
|
int_double t_scale;
|
| 71 |
|
|
int_float tempx;
|
| 72 |
|
|
double da, dq, da_h, da_l, dqe;
|
| 73 |
|
|
int exponent_x, exponent_q, bin_expon_cx;
|
| 74 |
|
|
int digits_x;
|
| 75 |
|
|
int scale;
|
| 76 |
|
|
#ifdef UNCHANGED_BINARY_STATUS_FLAGS
|
| 77 |
|
|
fexcept_t binaryflags = 0;
|
| 78 |
|
|
#endif
|
| 79 |
|
|
|
| 80 |
|
|
#if DECIMAL_CALL_BY_REFERENCE
|
| 81 |
|
|
#if !DECIMAL_GLOBAL_ROUNDING
|
| 82 |
|
|
_IDEC_round rnd_mode = *prnd_mode;
|
| 83 |
|
|
#endif
|
| 84 |
|
|
x = *px;
|
| 85 |
|
|
#endif
|
| 86 |
|
|
|
| 87 |
|
|
// unpack arguments, check for NaN or Infinity
|
| 88 |
|
|
if (!unpack_BID64 (&sign_x, &exponent_x, &coefficient_x, x)) {
|
| 89 |
|
|
// x is Inf. or NaN or 0
|
| 90 |
|
|
if ((x & INFINITY_MASK64) == INFINITY_MASK64) {
|
| 91 |
|
|
res = coefficient_x;
|
| 92 |
|
|
if ((coefficient_x & SSNAN_MASK64) == SINFINITY_MASK64) // -Infinity
|
| 93 |
|
|
{
|
| 94 |
|
|
res = NAN_MASK64;
|
| 95 |
|
|
#ifdef SET_STATUS_FLAGS
|
| 96 |
|
|
__set_status_flags (pfpsf, INVALID_EXCEPTION);
|
| 97 |
|
|
#endif
|
| 98 |
|
|
}
|
| 99 |
|
|
#ifdef SET_STATUS_FLAGS
|
| 100 |
|
|
if ((x & SNAN_MASK64) == SNAN_MASK64) // sNaN
|
| 101 |
|
|
__set_status_flags (pfpsf, INVALID_EXCEPTION);
|
| 102 |
|
|
#endif
|
| 103 |
|
|
BID_RETURN (res & QUIET_MASK64);
|
| 104 |
|
|
}
|
| 105 |
|
|
// x is 0
|
| 106 |
|
|
exponent_x = (exponent_x + DECIMAL_EXPONENT_BIAS) >> 1;
|
| 107 |
|
|
res = sign_x | (((UINT64) exponent_x) << 53);
|
| 108 |
|
|
BID_RETURN (res);
|
| 109 |
|
|
}
|
| 110 |
|
|
// x<0?
|
| 111 |
|
|
if (sign_x && coefficient_x) {
|
| 112 |
|
|
res = NAN_MASK64;
|
| 113 |
|
|
#ifdef SET_STATUS_FLAGS
|
| 114 |
|
|
__set_status_flags (pfpsf, INVALID_EXCEPTION);
|
| 115 |
|
|
#endif
|
| 116 |
|
|
BID_RETURN (res);
|
| 117 |
|
|
}
|
| 118 |
|
|
#ifdef UNCHANGED_BINARY_STATUS_FLAGS
|
| 119 |
|
|
(void) fegetexceptflag (&binaryflags, FE_ALL_FLAGS);
|
| 120 |
|
|
#endif
|
| 121 |
|
|
//--- get number of bits in the coefficient of x ---
|
| 122 |
|
|
tempx.d = (float) coefficient_x;
|
| 123 |
|
|
bin_expon_cx = ((tempx.i >> 23) & 0xff) - 0x7f;
|
| 124 |
|
|
digits_x = estimate_decimal_digits[bin_expon_cx];
|
| 125 |
|
|
// add test for range
|
| 126 |
|
|
if (coefficient_x >= power10_index_binexp[bin_expon_cx])
|
| 127 |
|
|
digits_x++;
|
| 128 |
|
|
|
| 129 |
|
|
A10 = coefficient_x;
|
| 130 |
|
|
if (exponent_x & 1) {
|
| 131 |
|
|
A10 = (A10 << 2) + A10;
|
| 132 |
|
|
A10 += A10;
|
| 133 |
|
|
}
|
| 134 |
|
|
|
| 135 |
|
|
dqe = sqrt ((double) A10);
|
| 136 |
|
|
QE = (UINT32) dqe;
|
| 137 |
|
|
if (QE * QE == A10) {
|
| 138 |
|
|
res =
|
| 139 |
|
|
very_fast_get_BID64 (0, (exponent_x + DECIMAL_EXPONENT_BIAS) >> 1,
|
| 140 |
|
|
QE);
|
| 141 |
|
|
#ifdef UNCHANGED_BINARY_STATUS_FLAGS
|
| 142 |
|
|
(void) fesetexceptflag (&binaryflags, FE_ALL_FLAGS);
|
| 143 |
|
|
#endif
|
| 144 |
|
|
BID_RETURN (res);
|
| 145 |
|
|
}
|
| 146 |
|
|
// if exponent is odd, scale coefficient by 10
|
| 147 |
|
|
scale = 31 - digits_x;
|
| 148 |
|
|
exponent_q = exponent_x - scale;
|
| 149 |
|
|
scale += (exponent_q & 1); // exp. bias is even
|
| 150 |
|
|
|
| 151 |
|
|
CT = power10_table_128[scale];
|
| 152 |
|
|
__mul_64x128_short (CA, coefficient_x, CT);
|
| 153 |
|
|
|
| 154 |
|
|
// 2^64
|
| 155 |
|
|
t_scale.i = 0x43f0000000000000ull;
|
| 156 |
|
|
// convert CA to DP
|
| 157 |
|
|
da_h = CA.w[1];
|
| 158 |
|
|
da_l = CA.w[0];
|
| 159 |
|
|
da = da_h * t_scale.d + da_l;
|
| 160 |
|
|
|
| 161 |
|
|
dq = sqrt (da);
|
| 162 |
|
|
|
| 163 |
|
|
Q = (UINT64) dq;
|
| 164 |
|
|
|
| 165 |
|
|
// get sign(sqrt(CA)-Q)
|
| 166 |
|
|
R = CA.w[0] - Q * Q;
|
| 167 |
|
|
R = ((SINT64) R) >> 63;
|
| 168 |
|
|
D = R + R + 1;
|
| 169 |
|
|
|
| 170 |
|
|
exponent_q = (exponent_q + DECIMAL_EXPONENT_BIAS) >> 1;
|
| 171 |
|
|
|
| 172 |
|
|
#ifdef SET_STATUS_FLAGS
|
| 173 |
|
|
__set_status_flags (pfpsf, INEXACT_EXCEPTION);
|
| 174 |
|
|
#endif
|
| 175 |
|
|
|
| 176 |
|
|
#ifndef IEEE_ROUND_NEAREST
|
| 177 |
|
|
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
|
| 178 |
|
|
if (!((rnd_mode) & 3)) {
|
| 179 |
|
|
#endif
|
| 180 |
|
|
#endif
|
| 181 |
|
|
|
| 182 |
|
|
// midpoint to check
|
| 183 |
|
|
Q2 = Q + Q + D;
|
| 184 |
|
|
C4 = CA.w[0] << 2;
|
| 185 |
|
|
|
| 186 |
|
|
// get sign(-sqrt(CA)+Midpoint)
|
| 187 |
|
|
R2 = Q2 * Q2 - C4;
|
| 188 |
|
|
R2 = ((SINT64) R2) >> 63;
|
| 189 |
|
|
|
| 190 |
|
|
// adjust Q if R!=R2
|
| 191 |
|
|
Q += (D & (R ^ R2));
|
| 192 |
|
|
#ifndef IEEE_ROUND_NEAREST
|
| 193 |
|
|
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
|
| 194 |
|
|
} else {
|
| 195 |
|
|
C4 = CA.w[0];
|
| 196 |
|
|
Q += D;
|
| 197 |
|
|
if ((SINT64) (Q * Q - C4) > 0)
|
| 198 |
|
|
Q--;
|
| 199 |
|
|
if (rnd_mode == ROUNDING_UP)
|
| 200 |
|
|
Q++;
|
| 201 |
|
|
}
|
| 202 |
|
|
#endif
|
| 203 |
|
|
#endif
|
| 204 |
|
|
|
| 205 |
|
|
res = fast_get_BID64 (0, exponent_q, Q);
|
| 206 |
|
|
#ifdef UNCHANGED_BINARY_STATUS_FLAGS
|
| 207 |
|
|
(void) fesetexceptflag (&binaryflags, FE_ALL_FLAGS);
|
| 208 |
|
|
#endif
|
| 209 |
|
|
BID_RETURN (res);
|
| 210 |
|
|
}
|
| 211 |
|
|
|
| 212 |
|
|
|
| 213 |
|
|
TYPE0_FUNCTION_ARG1 (UINT64, bid64q_sqrt, x)
|
| 214 |
|
|
|
| 215 |
|
|
UINT256 M256, C4, C8;
|
| 216 |
|
|
UINT128 CX, CX2, A10, S2, T128, CS, CSM, CS2, C256, CS1,
|
| 217 |
|
|
mul_factor2_long = { {0x0ull, 0x0ull} }, QH, Tmp, TP128, Qh, Ql;
|
| 218 |
|
|
UINT64 sign_x, Carry, B10, res, mul_factor, mul_factor2 = 0x0ull, CS0;
|
| 219 |
|
|
SINT64 D;
|
| 220 |
|
|
int_float fx, f64;
|
| 221 |
|
|
int exponent_x, bin_expon_cx, done = 0;
|
| 222 |
|
|
int digits, scale, exponent_q = 0, exact = 1, amount, extra_digits;
|
| 223 |
|
|
#ifdef UNCHANGED_BINARY_STATUS_FLAGS
|
| 224 |
|
|
fexcept_t binaryflags = 0;
|
| 225 |
|
|
#endif
|
| 226 |
|
|
|
| 227 |
|
|
// unpack arguments, check for NaN or Infinity
|
| 228 |
|
|
if (!unpack_BID128_value (&sign_x, &exponent_x, &CX, x)) {
|
| 229 |
|
|
res = CX.w[1];
|
| 230 |
|
|
// NaN ?
|
| 231 |
|
|
if ((x.w[1] & 0x7c00000000000000ull) == 0x7c00000000000000ull) {
|
| 232 |
|
|
#ifdef SET_STATUS_FLAGS
|
| 233 |
|
|
if ((x.w[1] & 0x7e00000000000000ull) == 0x7e00000000000000ull) // sNaN
|
| 234 |
|
|
__set_status_flags (pfpsf, INVALID_EXCEPTION);
|
| 235 |
|
|
#endif
|
| 236 |
|
|
Tmp.w[1] = (CX.w[1] & 0x00003fffffffffffull);
|
| 237 |
|
|
Tmp.w[0] = CX.w[0];
|
| 238 |
|
|
TP128 = reciprocals10_128[18];
|
| 239 |
|
|
__mul_128x128_full (Qh, Ql, Tmp, TP128);
|
| 240 |
|
|
amount = recip_scale[18];
|
| 241 |
|
|
__shr_128 (Tmp, Qh, amount);
|
| 242 |
|
|
res = (CX.w[1] & 0xfc00000000000000ull) | Tmp.w[0];
|
| 243 |
|
|
BID_RETURN (res);
|
| 244 |
|
|
}
|
| 245 |
|
|
// x is Infinity?
|
| 246 |
|
|
if ((x.w[1] & 0x7800000000000000ull) == 0x7800000000000000ull) {
|
| 247 |
|
|
if (sign_x) {
|
| 248 |
|
|
// -Inf, return NaN
|
| 249 |
|
|
res = 0x7c00000000000000ull;
|
| 250 |
|
|
#ifdef SET_STATUS_FLAGS
|
| 251 |
|
|
__set_status_flags (pfpsf, INVALID_EXCEPTION);
|
| 252 |
|
|
#endif
|
| 253 |
|
|
}
|
| 254 |
|
|
BID_RETURN (res);
|
| 255 |
|
|
}
|
| 256 |
|
|
// x is 0 otherwise
|
| 257 |
|
|
|
| 258 |
|
|
exponent_x =
|
| 259 |
|
|
((exponent_x - DECIMAL_EXPONENT_BIAS_128) >> 1) +
|
| 260 |
|
|
DECIMAL_EXPONENT_BIAS;
|
| 261 |
|
|
if (exponent_x < 0)
|
| 262 |
|
|
exponent_x = 0;
|
| 263 |
|
|
if (exponent_x > DECIMAL_MAX_EXPON_64)
|
| 264 |
|
|
exponent_x = DECIMAL_MAX_EXPON_64;
|
| 265 |
|
|
//res= sign_x | (((UINT64)exponent_x)<<53);
|
| 266 |
|
|
res = get_BID64 (sign_x, exponent_x, 0, rnd_mode, pfpsf);
|
| 267 |
|
|
BID_RETURN (res);
|
| 268 |
|
|
}
|
| 269 |
|
|
if (sign_x) {
|
| 270 |
|
|
res = 0x7c00000000000000ull;
|
| 271 |
|
|
#ifdef SET_STATUS_FLAGS
|
| 272 |
|
|
__set_status_flags (pfpsf, INVALID_EXCEPTION);
|
| 273 |
|
|
#endif
|
| 274 |
|
|
BID_RETURN (res);
|
| 275 |
|
|
}
|
| 276 |
|
|
#ifdef UNCHANGED_BINARY_STATUS_FLAGS
|
| 277 |
|
|
(void) fegetexceptflag (&binaryflags, FE_ALL_FLAGS);
|
| 278 |
|
|
#endif
|
| 279 |
|
|
|
| 280 |
|
|
// 2^64
|
| 281 |
|
|
f64.i = 0x5f800000;
|
| 282 |
|
|
|
| 283 |
|
|
// fx ~ CX
|
| 284 |
|
|
fx.d = (float) CX.w[1] * f64.d + (float) CX.w[0];
|
| 285 |
|
|
bin_expon_cx = ((fx.i >> 23) & 0xff) - 0x7f;
|
| 286 |
|
|
digits = estimate_decimal_digits[bin_expon_cx];
|
| 287 |
|
|
|
| 288 |
|
|
A10 = CX;
|
| 289 |
|
|
if (exponent_x & 1) {
|
| 290 |
|
|
A10.w[1] = (CX.w[1] << 3) | (CX.w[0] >> 61);
|
| 291 |
|
|
A10.w[0] = CX.w[0] << 3;
|
| 292 |
|
|
CX2.w[1] = (CX.w[1] << 1) | (CX.w[0] >> 63);
|
| 293 |
|
|
CX2.w[0] = CX.w[0] << 1;
|
| 294 |
|
|
__add_128_128 (A10, A10, CX2);
|
| 295 |
|
|
}
|
| 296 |
|
|
|
| 297 |
|
|
C256.w[1] = A10.w[1];
|
| 298 |
|
|
C256.w[0] = A10.w[0];
|
| 299 |
|
|
CS.w[0] = short_sqrt128 (A10);
|
| 300 |
|
|
CS.w[1] = 0;
|
| 301 |
|
|
mul_factor = 0;
|
| 302 |
|
|
// check for exact result
|
| 303 |
|
|
if (CS.w[0] < 10000000000000000ull) {
|
| 304 |
|
|
if (CS.w[0] * CS.w[0] == A10.w[0]) {
|
| 305 |
|
|
__sqr64_fast (S2, CS.w[0]);
|
| 306 |
|
|
if (S2.w[1] == A10.w[1]) // && S2.w[0]==A10.w[0])
|
| 307 |
|
|
{
|
| 308 |
|
|
res =
|
| 309 |
|
|
get_BID64 (0,
|
| 310 |
|
|
((exponent_x - DECIMAL_EXPONENT_BIAS_128) >> 1) +
|
| 311 |
|
|
DECIMAL_EXPONENT_BIAS, CS.w[0], rnd_mode, pfpsf);
|
| 312 |
|
|
#ifdef UNCHANGED_BINARY_STATUS_FLAGS
|
| 313 |
|
|
(void) fesetexceptflag (&binaryflags, FE_ALL_FLAGS);
|
| 314 |
|
|
#endif
|
| 315 |
|
|
BID_RETURN (res);
|
| 316 |
|
|
}
|
| 317 |
|
|
}
|
| 318 |
|
|
if (CS.w[0] >= 1000000000000000ull) {
|
| 319 |
|
|
done = 1;
|
| 320 |
|
|
exponent_q = exponent_x;
|
| 321 |
|
|
C256.w[1] = A10.w[1];
|
| 322 |
|
|
C256.w[0] = A10.w[0];
|
| 323 |
|
|
}
|
| 324 |
|
|
#ifdef SET_STATUS_FLAGS
|
| 325 |
|
|
__set_status_flags (pfpsf, INEXACT_EXCEPTION);
|
| 326 |
|
|
#endif
|
| 327 |
|
|
exact = 0;
|
| 328 |
|
|
} else {
|
| 329 |
|
|
B10 = 0x3333333333333334ull;
|
| 330 |
|
|
__mul_64x64_to_128_full (CS2, CS.w[0], B10);
|
| 331 |
|
|
CS0 = CS2.w[1] >> 1;
|
| 332 |
|
|
if (CS.w[0] != ((CS0 << 3) + (CS0 << 1))) {
|
| 333 |
|
|
#ifdef SET_STATUS_FLAGS
|
| 334 |
|
|
__set_status_flags (pfpsf, INEXACT_EXCEPTION);
|
| 335 |
|
|
#endif
|
| 336 |
|
|
exact = 0;
|
| 337 |
|
|
}
|
| 338 |
|
|
done = 1;
|
| 339 |
|
|
CS.w[0] = CS0;
|
| 340 |
|
|
exponent_q = exponent_x + 2;
|
| 341 |
|
|
mul_factor = 10;
|
| 342 |
|
|
mul_factor2 = 100;
|
| 343 |
|
|
if (CS.w[0] >= 10000000000000000ull) {
|
| 344 |
|
|
__mul_64x64_to_128_full (CS2, CS.w[0], B10);
|
| 345 |
|
|
CS0 = CS2.w[1] >> 1;
|
| 346 |
|
|
if (CS.w[0] != ((CS0 << 3) + (CS0 << 1))) {
|
| 347 |
|
|
#ifdef SET_STATUS_FLAGS
|
| 348 |
|
|
__set_status_flags (pfpsf, INEXACT_EXCEPTION);
|
| 349 |
|
|
#endif
|
| 350 |
|
|
exact = 0;
|
| 351 |
|
|
}
|
| 352 |
|
|
exponent_q += 2;
|
| 353 |
|
|
CS.w[0] = CS0;
|
| 354 |
|
|
mul_factor = 100;
|
| 355 |
|
|
mul_factor2 = 10000;
|
| 356 |
|
|
}
|
| 357 |
|
|
if (exact) {
|
| 358 |
|
|
CS0 = CS.w[0] * mul_factor;
|
| 359 |
|
|
__sqr64_fast (CS1, CS0)
|
| 360 |
|
|
if ((CS1.w[0] != A10.w[0]) || (CS1.w[1] != A10.w[1])) {
|
| 361 |
|
|
#ifdef SET_STATUS_FLAGS
|
| 362 |
|
|
__set_status_flags (pfpsf, INEXACT_EXCEPTION);
|
| 363 |
|
|
#endif
|
| 364 |
|
|
exact = 0;
|
| 365 |
|
|
}
|
| 366 |
|
|
}
|
| 367 |
|
|
}
|
| 368 |
|
|
|
| 369 |
|
|
if (!done) {
|
| 370 |
|
|
// get number of digits in CX
|
| 371 |
|
|
D = CX.w[1] - power10_index_binexp_128[bin_expon_cx].w[1];
|
| 372 |
|
|
if (D > 0
|
| 373 |
|
|
|| (!D && CX.w[0] >= power10_index_binexp_128[bin_expon_cx].w[0]))
|
| 374 |
|
|
digits++;
|
| 375 |
|
|
|
| 376 |
|
|
// if exponent is odd, scale coefficient by 10
|
| 377 |
|
|
scale = 31 - digits;
|
| 378 |
|
|
exponent_q = exponent_x - scale;
|
| 379 |
|
|
scale += (exponent_q & 1); // exp. bias is even
|
| 380 |
|
|
|
| 381 |
|
|
T128 = power10_table_128[scale];
|
| 382 |
|
|
__mul_128x128_low (C256, CX, T128);
|
| 383 |
|
|
|
| 384 |
|
|
|
| 385 |
|
|
CS.w[0] = short_sqrt128 (C256);
|
| 386 |
|
|
}
|
| 387 |
|
|
//printf("CS=%016I64x\n",CS.w[0]);
|
| 388 |
|
|
|
| 389 |
|
|
exponent_q =
|
| 390 |
|
|
((exponent_q - DECIMAL_EXPONENT_BIAS_128) >> 1) +
|
| 391 |
|
|
DECIMAL_EXPONENT_BIAS;
|
| 392 |
|
|
if ((exponent_q < 0) && (exponent_q + MAX_FORMAT_DIGITS >= 0)) {
|
| 393 |
|
|
extra_digits = -exponent_q;
|
| 394 |
|
|
exponent_q = 0;
|
| 395 |
|
|
|
| 396 |
|
|
// get coeff*(2^M[extra_digits])/10^extra_digits
|
| 397 |
|
|
__mul_64x64_to_128 (QH, CS.w[0], reciprocals10_64[extra_digits]);
|
| 398 |
|
|
|
| 399 |
|
|
// now get P/10^extra_digits: shift Q_high right by M[extra_digits]-128
|
| 400 |
|
|
amount = short_recip_scale[extra_digits];
|
| 401 |
|
|
|
| 402 |
|
|
CS0 = QH.w[1] >> amount;
|
| 403 |
|
|
|
| 404 |
|
|
#ifdef SET_STATUS_FLAGS
|
| 405 |
|
|
if (exact) {
|
| 406 |
|
|
if (CS.w[0] != CS0 * power10_table_128[extra_digits].w[0])
|
| 407 |
|
|
exact = 0;
|
| 408 |
|
|
}
|
| 409 |
|
|
if (!exact)
|
| 410 |
|
|
__set_status_flags (pfpsf, UNDERFLOW_EXCEPTION | INEXACT_EXCEPTION);
|
| 411 |
|
|
#endif
|
| 412 |
|
|
|
| 413 |
|
|
CS.w[0] = CS0;
|
| 414 |
|
|
if (!mul_factor)
|
| 415 |
|
|
mul_factor = 1;
|
| 416 |
|
|
mul_factor *= power10_table_128[extra_digits].w[0];
|
| 417 |
|
|
__mul_64x64_to_128 (mul_factor2_long, mul_factor, mul_factor);
|
| 418 |
|
|
if (mul_factor2_long.w[1])
|
| 419 |
|
|
mul_factor2 = 0;
|
| 420 |
|
|
else
|
| 421 |
|
|
mul_factor2 = mul_factor2_long.w[1];
|
| 422 |
|
|
}
|
| 423 |
|
|
// 4*C256
|
| 424 |
|
|
C4.w[1] = (C256.w[1] << 2) | (C256.w[0] >> 62);
|
| 425 |
|
|
C4.w[0] = C256.w[0] << 2;
|
| 426 |
|
|
|
| 427 |
|
|
#ifndef IEEE_ROUND_NEAREST
|
| 428 |
|
|
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
|
| 429 |
|
|
if (!((rnd_mode) & 3)) {
|
| 430 |
|
|
#endif
|
| 431 |
|
|
#endif
|
| 432 |
|
|
// compare to midpoints
|
| 433 |
|
|
CSM.w[0] = (CS.w[0] + CS.w[0]) | 1;
|
| 434 |
|
|
//printf("C256=%016I64x %016I64x, CSM=%016I64x %016I64x %016I64x\n",C4.w[1],C4.w[0],CSM.w[1],CSM.w[0], CS.w[0]);
|
| 435 |
|
|
if (mul_factor)
|
| 436 |
|
|
CSM.w[0] *= mul_factor;
|
| 437 |
|
|
// CSM^2
|
| 438 |
|
|
__mul_64x64_to_128 (M256, CSM.w[0], CSM.w[0]);
|
| 439 |
|
|
//__mul_128x128_to_256(M256, CSM, CSM);
|
| 440 |
|
|
|
| 441 |
|
|
if (C4.w[1] > M256.w[1] ||
|
| 442 |
|
|
(C4.w[1] == M256.w[1] && C4.w[0] > M256.w[0])) {
|
| 443 |
|
|
// round up
|
| 444 |
|
|
CS.w[0]++;
|
| 445 |
|
|
} else {
|
| 446 |
|
|
C8.w[0] = CS.w[0] << 3;
|
| 447 |
|
|
C8.w[1] = 0;
|
| 448 |
|
|
if (mul_factor) {
|
| 449 |
|
|
if (mul_factor2) {
|
| 450 |
|
|
__mul_64x64_to_128 (C8, C8.w[0], mul_factor2);
|
| 451 |
|
|
} else {
|
| 452 |
|
|
__mul_64x128_low (C8, C8.w[0], mul_factor2_long);
|
| 453 |
|
|
}
|
| 454 |
|
|
}
|
| 455 |
|
|
// M256 - 8*CSM
|
| 456 |
|
|
__sub_borrow_out (M256.w[0], Carry, M256.w[0], C8.w[0]);
|
| 457 |
|
|
M256.w[1] = M256.w[1] - C8.w[1] - Carry;
|
| 458 |
|
|
|
| 459 |
|
|
// if CSM' > C256, round up
|
| 460 |
|
|
if (M256.w[1] > C4.w[1] ||
|
| 461 |
|
|
(M256.w[1] == C4.w[1] && M256.w[0] > C4.w[0])) {
|
| 462 |
|
|
// round down
|
| 463 |
|
|
if (CS.w[0])
|
| 464 |
|
|
CS.w[0]--;
|
| 465 |
|
|
}
|
| 466 |
|
|
}
|
| 467 |
|
|
#ifndef IEEE_ROUND_NEAREST
|
| 468 |
|
|
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
|
| 469 |
|
|
} else {
|
| 470 |
|
|
CS.w[0]++;
|
| 471 |
|
|
CSM.w[0] = CS.w[0];
|
| 472 |
|
|
C8.w[0] = CSM.w[0] << 1;
|
| 473 |
|
|
if (mul_factor)
|
| 474 |
|
|
CSM.w[0] *= mul_factor;
|
| 475 |
|
|
__mul_64x64_to_128 (M256, CSM.w[0], CSM.w[0]);
|
| 476 |
|
|
C8.w[1] = 0;
|
| 477 |
|
|
if (mul_factor) {
|
| 478 |
|
|
if (mul_factor2) {
|
| 479 |
|
|
__mul_64x64_to_128 (C8, C8.w[0], mul_factor2);
|
| 480 |
|
|
} else {
|
| 481 |
|
|
__mul_64x128_low (C8, C8.w[0], mul_factor2_long);
|
| 482 |
|
|
}
|
| 483 |
|
|
}
|
| 484 |
|
|
//printf("C256=%016I64x %016I64x, CSM=%016I64x %016I64x %016I64x\n",C256.w[1],C256.w[0],M256.w[1],M256.w[0], CS.w[0]);
|
| 485 |
|
|
|
| 486 |
|
|
if (M256.w[1] > C256.w[1] ||
|
| 487 |
|
|
(M256.w[1] == C256.w[1] && M256.w[0] > C256.w[0])) {
|
| 488 |
|
|
__sub_borrow_out (M256.w[0], Carry, M256.w[0], C8.w[0]);
|
| 489 |
|
|
M256.w[1] = M256.w[1] - Carry - C8.w[1];
|
| 490 |
|
|
M256.w[0]++;
|
| 491 |
|
|
if (!M256.w[0]) {
|
| 492 |
|
|
M256.w[1]++;
|
| 493 |
|
|
|
| 494 |
|
|
}
|
| 495 |
|
|
|
| 496 |
|
|
if ((M256.w[1] > C256.w[1] ||
|
| 497 |
|
|
(M256.w[1] == C256.w[1] && M256.w[0] > C256.w[0]))
|
| 498 |
|
|
&& (CS.w[0] > 1)) {
|
| 499 |
|
|
|
| 500 |
|
|
CS.w[0]--;
|
| 501 |
|
|
|
| 502 |
|
|
if (CS.w[0] > 1) {
|
| 503 |
|
|
__sub_borrow_out (M256.w[0], Carry, M256.w[0], C8.w[0]);
|
| 504 |
|
|
M256.w[1] = M256.w[1] - Carry - C8.w[1];
|
| 505 |
|
|
M256.w[0]++;
|
| 506 |
|
|
if (!M256.w[0]) {
|
| 507 |
|
|
M256.w[1]++;
|
| 508 |
|
|
}
|
| 509 |
|
|
|
| 510 |
|
|
if (M256.w[1] > C256.w[1] ||
|
| 511 |
|
|
(M256.w[1] == C256.w[1] && M256.w[0] > C256.w[0]))
|
| 512 |
|
|
CS.w[0]--;
|
| 513 |
|
|
}
|
| 514 |
|
|
}
|
| 515 |
|
|
}
|
| 516 |
|
|
|
| 517 |
|
|
else {
|
| 518 |
|
|
/*__add_carry_out(M256.w[0], Carry, M256.w[0], C8.w[0]);
|
| 519 |
|
|
M256.w[1] = M256.w[1] + Carry + C8.w[1];
|
| 520 |
|
|
M256.w[0]++;
|
| 521 |
|
|
if(!M256.w[0])
|
| 522 |
|
|
{
|
| 523 |
|
|
M256.w[1]++;
|
| 524 |
|
|
}
|
| 525 |
|
|
CS.w[0]++;
|
| 526 |
|
|
if(M256.w[1]<C256.w[1] ||
|
| 527 |
|
|
(M256.w[1]==C256.w[1] && M256.w[0]<=C256.w[0]))
|
| 528 |
|
|
{
|
| 529 |
|
|
CS.w[0]++;
|
| 530 |
|
|
}*/
|
| 531 |
|
|
CS.w[0]++;
|
| 532 |
|
|
}
|
| 533 |
|
|
//printf("C256=%016I64x %016I64x, CSM=%016I64x %016I64x %016I64x %d\n",C4.w[1],C4.w[0],M256.w[1],M256.w[0], CS.w[0], exact);
|
| 534 |
|
|
// RU?
|
| 535 |
|
|
if (((rnd_mode) != ROUNDING_UP) || exact) {
|
| 536 |
|
|
if (CS.w[0])
|
| 537 |
|
|
CS.w[0]--;
|
| 538 |
|
|
}
|
| 539 |
|
|
|
| 540 |
|
|
}
|
| 541 |
|
|
#endif
|
| 542 |
|
|
#endif
|
| 543 |
|
|
//printf("C256=%016I64x %016I64x, CSM=%016I64x %016I64x %016I64x %d\n",C4.w[1],C4.w[0],M256.w[1],M256.w[0], CS.w[0], exact);
|
| 544 |
|
|
|
| 545 |
|
|
res = get_BID64 (0, exponent_q, CS.w[0], rnd_mode, pfpsf);
|
| 546 |
|
|
#ifdef UNCHANGED_BINARY_STATUS_FLAGS
|
| 547 |
|
|
(void) fesetexceptflag (&binaryflags, FE_ALL_FLAGS);
|
| 548 |
|
|
#endif
|
| 549 |
|
|
BID_RETURN (res);
|
| 550 |
|
|
|
| 551 |
|
|
|
| 552 |
|
|
}
|