| 1 |
734 |
jeremybenn |
/* Copyright (C) 2007, 2009 Free Software Foundation, Inc.
|
| 2 |
|
|
|
| 3 |
|
|
This file is part of GCC.
|
| 4 |
|
|
|
| 5 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
| 6 |
|
|
the terms of the GNU General Public License as published by the Free
|
| 7 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
| 8 |
|
|
version.
|
| 9 |
|
|
|
| 10 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
| 11 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
| 12 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
| 13 |
|
|
for more details.
|
| 14 |
|
|
|
| 15 |
|
|
Under Section 7 of GPL version 3, you are granted additional
|
| 16 |
|
|
permissions described in the GCC Runtime Library Exception, version
|
| 17 |
|
|
3.1, as published by the Free Software Foundation.
|
| 18 |
|
|
|
| 19 |
|
|
You should have received a copy of the GNU General Public License and
|
| 20 |
|
|
a copy of the GCC Runtime Library Exception along with this program;
|
| 21 |
|
|
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
| 22 |
|
|
<http://www.gnu.org/licenses/>. */
|
| 23 |
|
|
|
| 24 |
|
|
/*****************************************************************************
|
| 25 |
|
|
*
|
| 26 |
|
|
* BID64 encoding:
|
| 27 |
|
|
* ****************************************
|
| 28 |
|
|
* 63 62 53 52 0
|
| 29 |
|
|
* |---|------------------|--------------|
|
| 30 |
|
|
* | S | Biased Exp (E) | Coeff (c) |
|
| 31 |
|
|
* |---|------------------|--------------|
|
| 32 |
|
|
*
|
| 33 |
|
|
* bias = 398
|
| 34 |
|
|
* number = (-1)^s * 10^(E-398) * c
|
| 35 |
|
|
* coefficient range - 0 to (2^53)-1
|
| 36 |
|
|
* COEFF_MAX = 2^53-1 = 9007199254740991
|
| 37 |
|
|
*
|
| 38 |
|
|
*****************************************************************************
|
| 39 |
|
|
*
|
| 40 |
|
|
* BID128 encoding:
|
| 41 |
|
|
* 1-bit sign
|
| 42 |
|
|
* 14-bit biased exponent in [0x21, 0x3020] = [33, 12320]
|
| 43 |
|
|
* unbiased exponent in [-6176, 6111]; exponent bias = 6176
|
| 44 |
|
|
* 113-bit unsigned binary integer coefficient (49-bit high + 64-bit low)
|
| 45 |
|
|
* Note: 10^34-1 ~ 2^112.945555... < 2^113 => coefficient fits in 113 bits
|
| 46 |
|
|
*
|
| 47 |
|
|
* Note: assume invalid encodings are not passed to this function
|
| 48 |
|
|
*
|
| 49 |
|
|
* Round a number C with q decimal digits, represented as a binary integer
|
| 50 |
|
|
* to q - x digits. Six different routines are provided for different values
|
| 51 |
|
|
* of q. The maximum value of q used in the library is q = 3 * P - 1 where
|
| 52 |
|
|
* P = 16 or P = 34 (so q <= 111 decimal digits).
|
| 53 |
|
|
* The partitioning is based on the following, where Kx is the scaled
|
| 54 |
|
|
* integer representing the value of 10^(-x) rounded up to a number of bits
|
| 55 |
|
|
* sufficient to ensure correct rounding:
|
| 56 |
|
|
*
|
| 57 |
|
|
* --------------------------------------------------------------------------
|
| 58 |
|
|
* q x max. value of a max number min. number
|
| 59 |
|
|
* of bits in C of bits in Kx
|
| 60 |
|
|
* --------------------------------------------------------------------------
|
| 61 |
|
|
*
|
| 62 |
|
|
* GROUP 1: 64 bits
|
| 63 |
|
|
* round64_2_18 ()
|
| 64 |
|
|
*
|
| 65 |
|
|
* 2 [1,1] 10^1 - 1 < 2^3.33 4 4
|
| 66 |
|
|
* ... ... ... ... ...
|
| 67 |
|
|
* 18 [1,17] 10^18 - 1 < 2^59.80 60 61
|
| 68 |
|
|
*
|
| 69 |
|
|
* GROUP 2: 128 bits
|
| 70 |
|
|
* round128_19_38 ()
|
| 71 |
|
|
*
|
| 72 |
|
|
* 19 [1,18] 10^19 - 1 < 2^63.11 64 65
|
| 73 |
|
|
* 20 [1,19] 10^20 - 1 < 2^66.44 67 68
|
| 74 |
|
|
* ... ... ... ... ...
|
| 75 |
|
|
* 38 [1,37] 10^38 - 1 < 2^126.24 127 128
|
| 76 |
|
|
*
|
| 77 |
|
|
* GROUP 3: 192 bits
|
| 78 |
|
|
* round192_39_57 ()
|
| 79 |
|
|
*
|
| 80 |
|
|
* 39 [1,38] 10^39 - 1 < 2^129.56 130 131
|
| 81 |
|
|
* ... ... ... ... ...
|
| 82 |
|
|
* 57 [1,56] 10^57 - 1 < 2^189.35 190 191
|
| 83 |
|
|
*
|
| 84 |
|
|
* GROUP 4: 256 bits
|
| 85 |
|
|
* round256_58_76 ()
|
| 86 |
|
|
*
|
| 87 |
|
|
* 58 [1,57] 10^58 - 1 < 2^192.68 193 194
|
| 88 |
|
|
* ... ... ... ... ...
|
| 89 |
|
|
* 76 [1,75] 10^76 - 1 < 2^252.47 253 254
|
| 90 |
|
|
*
|
| 91 |
|
|
* GROUP 5: 320 bits
|
| 92 |
|
|
* round320_77_96 ()
|
| 93 |
|
|
*
|
| 94 |
|
|
* 77 [1,76] 10^77 - 1 < 2^255.79 256 257
|
| 95 |
|
|
* 78 [1,77] 10^78 - 1 < 2^259.12 260 261
|
| 96 |
|
|
* ... ... ... ... ...
|
| 97 |
|
|
* 96 [1,95] 10^96 - 1 < 2^318.91 319 320
|
| 98 |
|
|
*
|
| 99 |
|
|
* GROUP 6: 384 bits
|
| 100 |
|
|
* round384_97_115 ()
|
| 101 |
|
|
*
|
| 102 |
|
|
* 97 [1,96] 10^97 - 1 < 2^322.23 323 324
|
| 103 |
|
|
* ... ... ... ... ...
|
| 104 |
|
|
* 115 [1,114] 10^115 - 1 < 2^382.03 383 384
|
| 105 |
|
|
*
|
| 106 |
|
|
****************************************************************************/
|
| 107 |
|
|
|
| 108 |
|
|
#include "bid_internal.h"
|
| 109 |
|
|
|
| 110 |
|
|
void
|
| 111 |
|
|
round64_2_18 (int q,
|
| 112 |
|
|
int x,
|
| 113 |
|
|
UINT64 C,
|
| 114 |
|
|
UINT64 * ptr_Cstar,
|
| 115 |
|
|
int *incr_exp,
|
| 116 |
|
|
int *ptr_is_midpoint_lt_even,
|
| 117 |
|
|
int *ptr_is_midpoint_gt_even,
|
| 118 |
|
|
int *ptr_is_inexact_lt_midpoint,
|
| 119 |
|
|
int *ptr_is_inexact_gt_midpoint) {
|
| 120 |
|
|
|
| 121 |
|
|
UINT128 P128;
|
| 122 |
|
|
UINT128 fstar;
|
| 123 |
|
|
UINT64 Cstar;
|
| 124 |
|
|
UINT64 tmp64;
|
| 125 |
|
|
int shift;
|
| 126 |
|
|
int ind;
|
| 127 |
|
|
|
| 128 |
|
|
// Note:
|
| 129 |
|
|
// In round128_2_18() positive numbers with 2 <= q <= 18 will be
|
| 130 |
|
|
// rounded to nearest only for 1 <= x <= 3:
|
| 131 |
|
|
// x = 1 or x = 2 when q = 17
|
| 132 |
|
|
// x = 2 or x = 3 when q = 18
|
| 133 |
|
|
// However, for generality and possible uses outside the frame of IEEE 754R
|
| 134 |
|
|
// this implementation works for 1 <= x <= q - 1
|
| 135 |
|
|
|
| 136 |
|
|
// assume *ptr_is_midpoint_lt_even, *ptr_is_midpoint_gt_even,
|
| 137 |
|
|
// *ptr_is_inexact_lt_midpoint, and *ptr_is_inexact_gt_midpoint are
|
| 138 |
|
|
// initialized to 0 by the caller
|
| 139 |
|
|
|
| 140 |
|
|
// round a number C with q decimal digits, 2 <= q <= 18
|
| 141 |
|
|
// to q - x digits, 1 <= x <= 17
|
| 142 |
|
|
// C = C + 1/2 * 10^x where the result C fits in 64 bits
|
| 143 |
|
|
// (because the largest value is 999999999999999999 + 50000000000000000 =
|
| 144 |
|
|
// 0x0e92596fd628ffff, which fits in 60 bits)
|
| 145 |
|
|
ind = x - 1; // 0 <= ind <= 16
|
| 146 |
|
|
C = C + midpoint64[ind];
|
| 147 |
|
|
// kx ~= 10^(-x), kx = Kx64[ind] * 2^(-Ex), 0 <= ind <= 16
|
| 148 |
|
|
// P128 = (C + 1/2 * 10^x) * kx * 2^Ex = (C + 1/2 * 10^x) * Kx
|
| 149 |
|
|
// the approximation kx of 10^(-x) was rounded up to 64 bits
|
| 150 |
|
|
__mul_64x64_to_128MACH (P128, C, Kx64[ind]);
|
| 151 |
|
|
// calculate C* = floor (P128) and f*
|
| 152 |
|
|
// Cstar = P128 >> Ex
|
| 153 |
|
|
// fstar = low Ex bits of P128
|
| 154 |
|
|
shift = Ex64m64[ind]; // in [3, 56]
|
| 155 |
|
|
Cstar = P128.w[1] >> shift;
|
| 156 |
|
|
fstar.w[1] = P128.w[1] & mask64[ind];
|
| 157 |
|
|
fstar.w[0] = P128.w[0];
|
| 158 |
|
|
// the top Ex bits of 10^(-x) are T* = ten2mxtrunc64[ind], e.g.
|
| 159 |
|
|
// if x=1, T*=ten2mxtrunc64[0]=0xcccccccccccccccc
|
| 160 |
|
|
// if (0 < f* < 10^(-x)) then the result is a midpoint
|
| 161 |
|
|
// if floor(C*) is even then C* = floor(C*) - logical right
|
| 162 |
|
|
// shift; C* has q - x decimal digits, correct by Prop. 1)
|
| 163 |
|
|
// else if floor(C*) is odd C* = floor(C*)-1 (logical right
|
| 164 |
|
|
// shift; C* has q - x decimal digits, correct by Pr. 1)
|
| 165 |
|
|
// else
|
| 166 |
|
|
// C* = floor(C*) (logical right shift; C has q - x decimal digits,
|
| 167 |
|
|
// correct by Property 1)
|
| 168 |
|
|
// in the caling function n = C* * 10^(e+x)
|
| 169 |
|
|
|
| 170 |
|
|
// determine inexactness of the rounding of C*
|
| 171 |
|
|
// if (0 < f* - 1/2 < 10^(-x)) then
|
| 172 |
|
|
// the result is exact
|
| 173 |
|
|
// else // if (f* - 1/2 > T*) then
|
| 174 |
|
|
// the result is inexact
|
| 175 |
|
|
if (fstar.w[1] > half64[ind] ||
|
| 176 |
|
|
(fstar.w[1] == half64[ind] && fstar.w[0])) {
|
| 177 |
|
|
// f* > 1/2 and the result may be exact
|
| 178 |
|
|
// Calculate f* - 1/2
|
| 179 |
|
|
tmp64 = fstar.w[1] - half64[ind];
|
| 180 |
|
|
if (tmp64 || fstar.w[0] > ten2mxtrunc64[ind]) { // f* - 1/2 > 10^(-x)
|
| 181 |
|
|
*ptr_is_inexact_lt_midpoint = 1;
|
| 182 |
|
|
} // else the result is exact
|
| 183 |
|
|
} else { // the result is inexact; f2* <= 1/2
|
| 184 |
|
|
*ptr_is_inexact_gt_midpoint = 1;
|
| 185 |
|
|
}
|
| 186 |
|
|
// check for midpoints (could do this before determining inexactness)
|
| 187 |
|
|
if (fstar.w[1] == 0 && fstar.w[0] <= ten2mxtrunc64[ind]) {
|
| 188 |
|
|
// the result is a midpoint
|
| 189 |
|
|
if (Cstar & 0x01) { // Cstar is odd; MP in [EVEN, ODD]
|
| 190 |
|
|
// if floor(C*) is odd C = floor(C*) - 1; the result may be 0
|
| 191 |
|
|
Cstar--; // Cstar is now even
|
| 192 |
|
|
*ptr_is_midpoint_gt_even = 1;
|
| 193 |
|
|
*ptr_is_inexact_lt_midpoint = 0;
|
| 194 |
|
|
*ptr_is_inexact_gt_midpoint = 0;
|
| 195 |
|
|
} else { // else MP in [ODD, EVEN]
|
| 196 |
|
|
*ptr_is_midpoint_lt_even = 1;
|
| 197 |
|
|
*ptr_is_inexact_lt_midpoint = 0;
|
| 198 |
|
|
*ptr_is_inexact_gt_midpoint = 0;
|
| 199 |
|
|
}
|
| 200 |
|
|
}
|
| 201 |
|
|
// check for rounding overflow, which occurs if Cstar = 10^(q-x)
|
| 202 |
|
|
ind = q - x; // 1 <= ind <= q - 1
|
| 203 |
|
|
if (Cstar == ten2k64[ind]) { // if Cstar = 10^(q-x)
|
| 204 |
|
|
Cstar = ten2k64[ind - 1]; // Cstar = 10^(q-x-1)
|
| 205 |
|
|
*incr_exp = 1;
|
| 206 |
|
|
} else { // 10^33 <= Cstar <= 10^34 - 1
|
| 207 |
|
|
*incr_exp = 0;
|
| 208 |
|
|
}
|
| 209 |
|
|
*ptr_Cstar = Cstar;
|
| 210 |
|
|
}
|
| 211 |
|
|
|
| 212 |
|
|
|
| 213 |
|
|
void
|
| 214 |
|
|
round128_19_38 (int q,
|
| 215 |
|
|
int x,
|
| 216 |
|
|
UINT128 C,
|
| 217 |
|
|
UINT128 * ptr_Cstar,
|
| 218 |
|
|
int *incr_exp,
|
| 219 |
|
|
int *ptr_is_midpoint_lt_even,
|
| 220 |
|
|
int *ptr_is_midpoint_gt_even,
|
| 221 |
|
|
int *ptr_is_inexact_lt_midpoint,
|
| 222 |
|
|
int *ptr_is_inexact_gt_midpoint) {
|
| 223 |
|
|
|
| 224 |
|
|
UINT256 P256;
|
| 225 |
|
|
UINT256 fstar;
|
| 226 |
|
|
UINT128 Cstar;
|
| 227 |
|
|
UINT64 tmp64;
|
| 228 |
|
|
int shift;
|
| 229 |
|
|
int ind;
|
| 230 |
|
|
|
| 231 |
|
|
// Note:
|
| 232 |
|
|
// In round128_19_38() positive numbers with 19 <= q <= 38 will be
|
| 233 |
|
|
// rounded to nearest only for 1 <= x <= 23:
|
| 234 |
|
|
// x = 3 or x = 4 when q = 19
|
| 235 |
|
|
// x = 4 or x = 5 when q = 20
|
| 236 |
|
|
// ...
|
| 237 |
|
|
// x = 18 or x = 19 when q = 34
|
| 238 |
|
|
// x = 1 or x = 2 or x = 19 or x = 20 when q = 35
|
| 239 |
|
|
// x = 2 or x = 3 or x = 20 or x = 21 when q = 36
|
| 240 |
|
|
// x = 3 or x = 4 or x = 21 or x = 22 when q = 37
|
| 241 |
|
|
// x = 4 or x = 5 or x = 22 or x = 23 when q = 38
|
| 242 |
|
|
// However, for generality and possible uses outside the frame of IEEE 754R
|
| 243 |
|
|
// this implementation works for 1 <= x <= q - 1
|
| 244 |
|
|
|
| 245 |
|
|
// assume *ptr_is_midpoint_lt_even, *ptr_is_midpoint_gt_even,
|
| 246 |
|
|
// *ptr_is_inexact_lt_midpoint, and *ptr_is_inexact_gt_midpoint are
|
| 247 |
|
|
// initialized to 0 by the caller
|
| 248 |
|
|
|
| 249 |
|
|
// round a number C with q decimal digits, 19 <= q <= 38
|
| 250 |
|
|
// to q - x digits, 1 <= x <= 37
|
| 251 |
|
|
// C = C + 1/2 * 10^x where the result C fits in 128 bits
|
| 252 |
|
|
// (because the largest value is 99999999999999999999999999999999999999 +
|
| 253 |
|
|
// 5000000000000000000000000000000000000 =
|
| 254 |
|
|
// 0x4efe43b0c573e7e68a043d8fffffffff, which fits is 127 bits)
|
| 255 |
|
|
|
| 256 |
|
|
ind = x - 1; // 0 <= ind <= 36
|
| 257 |
|
|
if (ind <= 18) { // if 0 <= ind <= 18
|
| 258 |
|
|
tmp64 = C.w[0];
|
| 259 |
|
|
C.w[0] = C.w[0] + midpoint64[ind];
|
| 260 |
|
|
if (C.w[0] < tmp64)
|
| 261 |
|
|
C.w[1]++;
|
| 262 |
|
|
} else { // if 19 <= ind <= 37
|
| 263 |
|
|
tmp64 = C.w[0];
|
| 264 |
|
|
C.w[0] = C.w[0] + midpoint128[ind - 19].w[0];
|
| 265 |
|
|
if (C.w[0] < tmp64) {
|
| 266 |
|
|
C.w[1]++;
|
| 267 |
|
|
}
|
| 268 |
|
|
C.w[1] = C.w[1] + midpoint128[ind - 19].w[1];
|
| 269 |
|
|
}
|
| 270 |
|
|
// kx ~= 10^(-x), kx = Kx128[ind] * 2^(-Ex), 0 <= ind <= 36
|
| 271 |
|
|
// P256 = (C + 1/2 * 10^x) * kx * 2^Ex = (C + 1/2 * 10^x) * Kx
|
| 272 |
|
|
// the approximation kx of 10^(-x) was rounded up to 128 bits
|
| 273 |
|
|
__mul_128x128_to_256 (P256, C, Kx128[ind]);
|
| 274 |
|
|
// calculate C* = floor (P256) and f*
|
| 275 |
|
|
// Cstar = P256 >> Ex
|
| 276 |
|
|
// fstar = low Ex bits of P256
|
| 277 |
|
|
shift = Ex128m128[ind]; // in [2, 63] but have to consider two cases
|
| 278 |
|
|
if (ind <= 18) { // if 0 <= ind <= 18
|
| 279 |
|
|
Cstar.w[0] = (P256.w[2] >> shift) | (P256.w[3] << (64 - shift));
|
| 280 |
|
|
Cstar.w[1] = (P256.w[3] >> shift);
|
| 281 |
|
|
fstar.w[0] = P256.w[0];
|
| 282 |
|
|
fstar.w[1] = P256.w[1];
|
| 283 |
|
|
fstar.w[2] = P256.w[2] & mask128[ind];
|
| 284 |
|
|
fstar.w[3] = 0x0ULL;
|
| 285 |
|
|
} else { // if 19 <= ind <= 37
|
| 286 |
|
|
Cstar.w[0] = P256.w[3] >> shift;
|
| 287 |
|
|
Cstar.w[1] = 0x0ULL;
|
| 288 |
|
|
fstar.w[0] = P256.w[0];
|
| 289 |
|
|
fstar.w[1] = P256.w[1];
|
| 290 |
|
|
fstar.w[2] = P256.w[2];
|
| 291 |
|
|
fstar.w[3] = P256.w[3] & mask128[ind];
|
| 292 |
|
|
}
|
| 293 |
|
|
// the top Ex bits of 10^(-x) are T* = ten2mxtrunc64[ind], e.g.
|
| 294 |
|
|
// if x=1, T*=ten2mxtrunc128[0]=0xcccccccccccccccccccccccccccccccc
|
| 295 |
|
|
// if (0 < f* < 10^(-x)) then the result is a midpoint
|
| 296 |
|
|
// if floor(C*) is even then C* = floor(C*) - logical right
|
| 297 |
|
|
// shift; C* has q - x decimal digits, correct by Prop. 1)
|
| 298 |
|
|
// else if floor(C*) is odd C* = floor(C*)-1 (logical right
|
| 299 |
|
|
// shift; C* has q - x decimal digits, correct by Pr. 1)
|
| 300 |
|
|
// else
|
| 301 |
|
|
// C* = floor(C*) (logical right shift; C has q - x decimal digits,
|
| 302 |
|
|
// correct by Property 1)
|
| 303 |
|
|
// in the caling function n = C* * 10^(e+x)
|
| 304 |
|
|
|
| 305 |
|
|
// determine inexactness of the rounding of C*
|
| 306 |
|
|
// if (0 < f* - 1/2 < 10^(-x)) then
|
| 307 |
|
|
// the result is exact
|
| 308 |
|
|
// else // if (f* - 1/2 > T*) then
|
| 309 |
|
|
// the result is inexact
|
| 310 |
|
|
if (ind <= 18) { // if 0 <= ind <= 18
|
| 311 |
|
|
if (fstar.w[2] > half128[ind] ||
|
| 312 |
|
|
(fstar.w[2] == half128[ind] && (fstar.w[1] || fstar.w[0]))) {
|
| 313 |
|
|
// f* > 1/2 and the result may be exact
|
| 314 |
|
|
// Calculate f* - 1/2
|
| 315 |
|
|
tmp64 = fstar.w[2] - half128[ind];
|
| 316 |
|
|
if (tmp64 || fstar.w[1] > ten2mxtrunc128[ind].w[1] || (fstar.w[1] == ten2mxtrunc128[ind].w[1] && fstar.w[0] > ten2mxtrunc128[ind].w[0])) { // f* - 1/2 > 10^(-x)
|
| 317 |
|
|
*ptr_is_inexact_lt_midpoint = 1;
|
| 318 |
|
|
} // else the result is exact
|
| 319 |
|
|
} else { // the result is inexact; f2* <= 1/2
|
| 320 |
|
|
*ptr_is_inexact_gt_midpoint = 1;
|
| 321 |
|
|
}
|
| 322 |
|
|
} else { // if 19 <= ind <= 37
|
| 323 |
|
|
if (fstar.w[3] > half128[ind] || (fstar.w[3] == half128[ind] &&
|
| 324 |
|
|
(fstar.w[2] || fstar.w[1]
|
| 325 |
|
|
|| fstar.w[0]))) {
|
| 326 |
|
|
// f* > 1/2 and the result may be exact
|
| 327 |
|
|
// Calculate f* - 1/2
|
| 328 |
|
|
tmp64 = fstar.w[3] - half128[ind];
|
| 329 |
|
|
if (tmp64 || fstar.w[2] || fstar.w[1] > ten2mxtrunc128[ind].w[1] || (fstar.w[1] == ten2mxtrunc128[ind].w[1] && fstar.w[0] > ten2mxtrunc128[ind].w[0])) { // f* - 1/2 > 10^(-x)
|
| 330 |
|
|
*ptr_is_inexact_lt_midpoint = 1;
|
| 331 |
|
|
} // else the result is exact
|
| 332 |
|
|
} else { // the result is inexact; f2* <= 1/2
|
| 333 |
|
|
*ptr_is_inexact_gt_midpoint = 1;
|
| 334 |
|
|
}
|
| 335 |
|
|
}
|
| 336 |
|
|
// check for midpoints (could do this before determining inexactness)
|
| 337 |
|
|
if (fstar.w[3] == 0 && fstar.w[2] == 0 &&
|
| 338 |
|
|
(fstar.w[1] < ten2mxtrunc128[ind].w[1] ||
|
| 339 |
|
|
(fstar.w[1] == ten2mxtrunc128[ind].w[1] &&
|
| 340 |
|
|
fstar.w[0] <= ten2mxtrunc128[ind].w[0]))) {
|
| 341 |
|
|
// the result is a midpoint
|
| 342 |
|
|
if (Cstar.w[0] & 0x01) { // Cstar is odd; MP in [EVEN, ODD]
|
| 343 |
|
|
// if floor(C*) is odd C = floor(C*) - 1; the result may be 0
|
| 344 |
|
|
Cstar.w[0]--; // Cstar is now even
|
| 345 |
|
|
if (Cstar.w[0] == 0xffffffffffffffffULL) {
|
| 346 |
|
|
Cstar.w[1]--;
|
| 347 |
|
|
}
|
| 348 |
|
|
*ptr_is_midpoint_gt_even = 1;
|
| 349 |
|
|
*ptr_is_inexact_lt_midpoint = 0;
|
| 350 |
|
|
*ptr_is_inexact_gt_midpoint = 0;
|
| 351 |
|
|
} else { // else MP in [ODD, EVEN]
|
| 352 |
|
|
*ptr_is_midpoint_lt_even = 1;
|
| 353 |
|
|
*ptr_is_inexact_lt_midpoint = 0;
|
| 354 |
|
|
*ptr_is_inexact_gt_midpoint = 0;
|
| 355 |
|
|
}
|
| 356 |
|
|
}
|
| 357 |
|
|
// check for rounding overflow, which occurs if Cstar = 10^(q-x)
|
| 358 |
|
|
ind = q - x; // 1 <= ind <= q - 1
|
| 359 |
|
|
if (ind <= 19) {
|
| 360 |
|
|
if (Cstar.w[1] == 0x0ULL && Cstar.w[0] == ten2k64[ind]) {
|
| 361 |
|
|
// if Cstar = 10^(q-x)
|
| 362 |
|
|
Cstar.w[0] = ten2k64[ind - 1]; // Cstar = 10^(q-x-1)
|
| 363 |
|
|
*incr_exp = 1;
|
| 364 |
|
|
} else {
|
| 365 |
|
|
*incr_exp = 0;
|
| 366 |
|
|
}
|
| 367 |
|
|
} else if (ind == 20) {
|
| 368 |
|
|
// if ind = 20
|
| 369 |
|
|
if (Cstar.w[1] == ten2k128[0].w[1]
|
| 370 |
|
|
&& Cstar.w[0] == ten2k128[0].w[0]) {
|
| 371 |
|
|
// if Cstar = 10^(q-x)
|
| 372 |
|
|
Cstar.w[0] = ten2k64[19]; // Cstar = 10^(q-x-1)
|
| 373 |
|
|
Cstar.w[1] = 0x0ULL;
|
| 374 |
|
|
*incr_exp = 1;
|
| 375 |
|
|
} else {
|
| 376 |
|
|
*incr_exp = 0;
|
| 377 |
|
|
}
|
| 378 |
|
|
} else { // if 21 <= ind <= 37
|
| 379 |
|
|
if (Cstar.w[1] == ten2k128[ind - 20].w[1] &&
|
| 380 |
|
|
Cstar.w[0] == ten2k128[ind - 20].w[0]) {
|
| 381 |
|
|
// if Cstar = 10^(q-x)
|
| 382 |
|
|
Cstar.w[0] = ten2k128[ind - 21].w[0]; // Cstar = 10^(q-x-1)
|
| 383 |
|
|
Cstar.w[1] = ten2k128[ind - 21].w[1];
|
| 384 |
|
|
*incr_exp = 1;
|
| 385 |
|
|
} else {
|
| 386 |
|
|
*incr_exp = 0;
|
| 387 |
|
|
}
|
| 388 |
|
|
}
|
| 389 |
|
|
ptr_Cstar->w[1] = Cstar.w[1];
|
| 390 |
|
|
ptr_Cstar->w[0] = Cstar.w[0];
|
| 391 |
|
|
}
|
| 392 |
|
|
|
| 393 |
|
|
|
| 394 |
|
|
void
|
| 395 |
|
|
round192_39_57 (int q,
|
| 396 |
|
|
int x,
|
| 397 |
|
|
UINT192 C,
|
| 398 |
|
|
UINT192 * ptr_Cstar,
|
| 399 |
|
|
int *incr_exp,
|
| 400 |
|
|
int *ptr_is_midpoint_lt_even,
|
| 401 |
|
|
int *ptr_is_midpoint_gt_even,
|
| 402 |
|
|
int *ptr_is_inexact_lt_midpoint,
|
| 403 |
|
|
int *ptr_is_inexact_gt_midpoint) {
|
| 404 |
|
|
|
| 405 |
|
|
UINT384 P384;
|
| 406 |
|
|
UINT384 fstar;
|
| 407 |
|
|
UINT192 Cstar;
|
| 408 |
|
|
UINT64 tmp64;
|
| 409 |
|
|
int shift;
|
| 410 |
|
|
int ind;
|
| 411 |
|
|
|
| 412 |
|
|
// Note:
|
| 413 |
|
|
// In round192_39_57() positive numbers with 39 <= q <= 57 will be
|
| 414 |
|
|
// rounded to nearest only for 5 <= x <= 42:
|
| 415 |
|
|
// x = 23 or x = 24 or x = 5 or x = 6 when q = 39
|
| 416 |
|
|
// x = 24 or x = 25 or x = 6 or x = 7 when q = 40
|
| 417 |
|
|
// ...
|
| 418 |
|
|
// x = 41 or x = 42 or x = 23 or x = 24 when q = 57
|
| 419 |
|
|
// However, for generality and possible uses outside the frame of IEEE 754R
|
| 420 |
|
|
// this implementation works for 1 <= x <= q - 1
|
| 421 |
|
|
|
| 422 |
|
|
// assume *ptr_is_midpoint_lt_even, *ptr_is_midpoint_gt_even,
|
| 423 |
|
|
// *ptr_is_inexact_lt_midpoint, and *ptr_is_inexact_gt_midpoint are
|
| 424 |
|
|
// initialized to 0 by the caller
|
| 425 |
|
|
|
| 426 |
|
|
// round a number C with q decimal digits, 39 <= q <= 57
|
| 427 |
|
|
// to q - x digits, 1 <= x <= 56
|
| 428 |
|
|
// C = C + 1/2 * 10^x where the result C fits in 192 bits
|
| 429 |
|
|
// (because the largest value is
|
| 430 |
|
|
// 999999999999999999999999999999999999999999999999999999999 +
|
| 431 |
|
|
// 50000000000000000000000000000000000000000000000000000000 =
|
| 432 |
|
|
// 0x2ad282f212a1da846afdaf18c034ff09da7fffffffffffff, which fits in 190 bits)
|
| 433 |
|
|
ind = x - 1; // 0 <= ind <= 55
|
| 434 |
|
|
if (ind <= 18) { // if 0 <= ind <= 18
|
| 435 |
|
|
tmp64 = C.w[0];
|
| 436 |
|
|
C.w[0] = C.w[0] + midpoint64[ind];
|
| 437 |
|
|
if (C.w[0] < tmp64) {
|
| 438 |
|
|
C.w[1]++;
|
| 439 |
|
|
if (C.w[1] == 0x0) {
|
| 440 |
|
|
C.w[2]++;
|
| 441 |
|
|
}
|
| 442 |
|
|
}
|
| 443 |
|
|
} else if (ind <= 37) { // if 19 <= ind <= 37
|
| 444 |
|
|
tmp64 = C.w[0];
|
| 445 |
|
|
C.w[0] = C.w[0] + midpoint128[ind - 19].w[0];
|
| 446 |
|
|
if (C.w[0] < tmp64) {
|
| 447 |
|
|
C.w[1]++;
|
| 448 |
|
|
if (C.w[1] == 0x0) {
|
| 449 |
|
|
C.w[2]++;
|
| 450 |
|
|
}
|
| 451 |
|
|
}
|
| 452 |
|
|
tmp64 = C.w[1];
|
| 453 |
|
|
C.w[1] = C.w[1] + midpoint128[ind - 19].w[1];
|
| 454 |
|
|
if (C.w[1] < tmp64) {
|
| 455 |
|
|
C.w[2]++;
|
| 456 |
|
|
}
|
| 457 |
|
|
} else { // if 38 <= ind <= 57 (actually ind <= 55)
|
| 458 |
|
|
tmp64 = C.w[0];
|
| 459 |
|
|
C.w[0] = C.w[0] + midpoint192[ind - 38].w[0];
|
| 460 |
|
|
if (C.w[0] < tmp64) {
|
| 461 |
|
|
C.w[1]++;
|
| 462 |
|
|
if (C.w[1] == 0x0ull) {
|
| 463 |
|
|
C.w[2]++;
|
| 464 |
|
|
}
|
| 465 |
|
|
}
|
| 466 |
|
|
tmp64 = C.w[1];
|
| 467 |
|
|
C.w[1] = C.w[1] + midpoint192[ind - 38].w[1];
|
| 468 |
|
|
if (C.w[1] < tmp64) {
|
| 469 |
|
|
C.w[2]++;
|
| 470 |
|
|
}
|
| 471 |
|
|
C.w[2] = C.w[2] + midpoint192[ind - 38].w[2];
|
| 472 |
|
|
}
|
| 473 |
|
|
// kx ~= 10^(-x), kx = Kx192[ind] * 2^(-Ex), 0 <= ind <= 55
|
| 474 |
|
|
// P384 = (C + 1/2 * 10^x) * kx * 2^Ex = (C + 1/2 * 10^x) * Kx
|
| 475 |
|
|
// the approximation kx of 10^(-x) was rounded up to 192 bits
|
| 476 |
|
|
__mul_192x192_to_384 (P384, C, Kx192[ind]);
|
| 477 |
|
|
// calculate C* = floor (P384) and f*
|
| 478 |
|
|
// Cstar = P384 >> Ex
|
| 479 |
|
|
// fstar = low Ex bits of P384
|
| 480 |
|
|
shift = Ex192m192[ind]; // in [1, 63] but have to consider three cases
|
| 481 |
|
|
if (ind <= 18) { // if 0 <= ind <= 18
|
| 482 |
|
|
Cstar.w[2] = (P384.w[5] >> shift);
|
| 483 |
|
|
Cstar.w[1] = (P384.w[5] << (64 - shift)) | (P384.w[4] >> shift);
|
| 484 |
|
|
Cstar.w[0] = (P384.w[4] << (64 - shift)) | (P384.w[3] >> shift);
|
| 485 |
|
|
fstar.w[5] = 0x0ULL;
|
| 486 |
|
|
fstar.w[4] = 0x0ULL;
|
| 487 |
|
|
fstar.w[3] = P384.w[3] & mask192[ind];
|
| 488 |
|
|
fstar.w[2] = P384.w[2];
|
| 489 |
|
|
fstar.w[1] = P384.w[1];
|
| 490 |
|
|
fstar.w[0] = P384.w[0];
|
| 491 |
|
|
} else if (ind <= 37) { // if 19 <= ind <= 37
|
| 492 |
|
|
Cstar.w[2] = 0x0ULL;
|
| 493 |
|
|
Cstar.w[1] = P384.w[5] >> shift;
|
| 494 |
|
|
Cstar.w[0] = (P384.w[5] << (64 - shift)) | (P384.w[4] >> shift);
|
| 495 |
|
|
fstar.w[5] = 0x0ULL;
|
| 496 |
|
|
fstar.w[4] = P384.w[4] & mask192[ind];
|
| 497 |
|
|
fstar.w[3] = P384.w[3];
|
| 498 |
|
|
fstar.w[2] = P384.w[2];
|
| 499 |
|
|
fstar.w[1] = P384.w[1];
|
| 500 |
|
|
fstar.w[0] = P384.w[0];
|
| 501 |
|
|
} else { // if 38 <= ind <= 57
|
| 502 |
|
|
Cstar.w[2] = 0x0ULL;
|
| 503 |
|
|
Cstar.w[1] = 0x0ULL;
|
| 504 |
|
|
Cstar.w[0] = P384.w[5] >> shift;
|
| 505 |
|
|
fstar.w[5] = P384.w[5] & mask192[ind];
|
| 506 |
|
|
fstar.w[4] = P384.w[4];
|
| 507 |
|
|
fstar.w[3] = P384.w[3];
|
| 508 |
|
|
fstar.w[2] = P384.w[2];
|
| 509 |
|
|
fstar.w[1] = P384.w[1];
|
| 510 |
|
|
fstar.w[0] = P384.w[0];
|
| 511 |
|
|
}
|
| 512 |
|
|
|
| 513 |
|
|
// the top Ex bits of 10^(-x) are T* = ten2mxtrunc192[ind], e.g. if x=1,
|
| 514 |
|
|
// T*=ten2mxtrunc192[0]=0xcccccccccccccccccccccccccccccccccccccccccccccccc
|
| 515 |
|
|
// if (0 < f* < 10^(-x)) then the result is a midpoint
|
| 516 |
|
|
// if floor(C*) is even then C* = floor(C*) - logical right
|
| 517 |
|
|
// shift; C* has q - x decimal digits, correct by Prop. 1)
|
| 518 |
|
|
// else if floor(C*) is odd C* = floor(C*)-1 (logical right
|
| 519 |
|
|
// shift; C* has q - x decimal digits, correct by Pr. 1)
|
| 520 |
|
|
// else
|
| 521 |
|
|
// C* = floor(C*) (logical right shift; C has q - x decimal digits,
|
| 522 |
|
|
// correct by Property 1)
|
| 523 |
|
|
// in the caling function n = C* * 10^(e+x)
|
| 524 |
|
|
|
| 525 |
|
|
// determine inexactness of the rounding of C*
|
| 526 |
|
|
// if (0 < f* - 1/2 < 10^(-x)) then
|
| 527 |
|
|
// the result is exact
|
| 528 |
|
|
// else // if (f* - 1/2 > T*) then
|
| 529 |
|
|
// the result is inexact
|
| 530 |
|
|
if (ind <= 18) { // if 0 <= ind <= 18
|
| 531 |
|
|
if (fstar.w[3] > half192[ind] || (fstar.w[3] == half192[ind] &&
|
| 532 |
|
|
(fstar.w[2] || fstar.w[1]
|
| 533 |
|
|
|| fstar.w[0]))) {
|
| 534 |
|
|
// f* > 1/2 and the result may be exact
|
| 535 |
|
|
// Calculate f* - 1/2
|
| 536 |
|
|
tmp64 = fstar.w[3] - half192[ind];
|
| 537 |
|
|
if (tmp64 || fstar.w[2] > ten2mxtrunc192[ind].w[2] || (fstar.w[2] == ten2mxtrunc192[ind].w[2] && fstar.w[1] > ten2mxtrunc192[ind].w[1]) || (fstar.w[2] == ten2mxtrunc192[ind].w[2] && fstar.w[1] == ten2mxtrunc192[ind].w[1] && fstar.w[0] > ten2mxtrunc192[ind].w[0])) { // f* - 1/2 > 10^(-x)
|
| 538 |
|
|
*ptr_is_inexact_lt_midpoint = 1;
|
| 539 |
|
|
} // else the result is exact
|
| 540 |
|
|
} else { // the result is inexact; f2* <= 1/2
|
| 541 |
|
|
*ptr_is_inexact_gt_midpoint = 1;
|
| 542 |
|
|
}
|
| 543 |
|
|
} else if (ind <= 37) { // if 19 <= ind <= 37
|
| 544 |
|
|
if (fstar.w[4] > half192[ind] || (fstar.w[4] == half192[ind] &&
|
| 545 |
|
|
(fstar.w[3] || fstar.w[2]
|
| 546 |
|
|
|| fstar.w[1] || fstar.w[0]))) {
|
| 547 |
|
|
// f* > 1/2 and the result may be exact
|
| 548 |
|
|
// Calculate f* - 1/2
|
| 549 |
|
|
tmp64 = fstar.w[4] - half192[ind];
|
| 550 |
|
|
if (tmp64 || fstar.w[3] || fstar.w[2] > ten2mxtrunc192[ind].w[2] || (fstar.w[2] == ten2mxtrunc192[ind].w[2] && fstar.w[1] > ten2mxtrunc192[ind].w[1]) || (fstar.w[2] == ten2mxtrunc192[ind].w[2] && fstar.w[1] == ten2mxtrunc192[ind].w[1] && fstar.w[0] > ten2mxtrunc192[ind].w[0])) { // f* - 1/2 > 10^(-x)
|
| 551 |
|
|
*ptr_is_inexact_lt_midpoint = 1;
|
| 552 |
|
|
} // else the result is exact
|
| 553 |
|
|
} else { // the result is inexact; f2* <= 1/2
|
| 554 |
|
|
*ptr_is_inexact_gt_midpoint = 1;
|
| 555 |
|
|
}
|
| 556 |
|
|
} else { // if 38 <= ind <= 55
|
| 557 |
|
|
if (fstar.w[5] > half192[ind] || (fstar.w[5] == half192[ind] &&
|
| 558 |
|
|
(fstar.w[4] || fstar.w[3]
|
| 559 |
|
|
|| fstar.w[2] || fstar.w[1]
|
| 560 |
|
|
|| fstar.w[0]))) {
|
| 561 |
|
|
// f* > 1/2 and the result may be exact
|
| 562 |
|
|
// Calculate f* - 1/2
|
| 563 |
|
|
tmp64 = fstar.w[5] - half192[ind];
|
| 564 |
|
|
if (tmp64 || fstar.w[4] || fstar.w[3] || fstar.w[2] > ten2mxtrunc192[ind].w[2] || (fstar.w[2] == ten2mxtrunc192[ind].w[2] && fstar.w[1] > ten2mxtrunc192[ind].w[1]) || (fstar.w[2] == ten2mxtrunc192[ind].w[2] && fstar.w[1] == ten2mxtrunc192[ind].w[1] && fstar.w[0] > ten2mxtrunc192[ind].w[0])) { // f* - 1/2 > 10^(-x)
|
| 565 |
|
|
*ptr_is_inexact_lt_midpoint = 1;
|
| 566 |
|
|
} // else the result is exact
|
| 567 |
|
|
} else { // the result is inexact; f2* <= 1/2
|
| 568 |
|
|
*ptr_is_inexact_gt_midpoint = 1;
|
| 569 |
|
|
}
|
| 570 |
|
|
}
|
| 571 |
|
|
// check for midpoints (could do this before determining inexactness)
|
| 572 |
|
|
if (fstar.w[5] == 0 && fstar.w[4] == 0 && fstar.w[3] == 0 &&
|
| 573 |
|
|
(fstar.w[2] < ten2mxtrunc192[ind].w[2] ||
|
| 574 |
|
|
(fstar.w[2] == ten2mxtrunc192[ind].w[2] &&
|
| 575 |
|
|
fstar.w[1] < ten2mxtrunc192[ind].w[1]) ||
|
| 576 |
|
|
(fstar.w[2] == ten2mxtrunc192[ind].w[2] &&
|
| 577 |
|
|
fstar.w[1] == ten2mxtrunc192[ind].w[1] &&
|
| 578 |
|
|
fstar.w[0] <= ten2mxtrunc192[ind].w[0]))) {
|
| 579 |
|
|
// the result is a midpoint
|
| 580 |
|
|
if (Cstar.w[0] & 0x01) { // Cstar is odd; MP in [EVEN, ODD]
|
| 581 |
|
|
// if floor(C*) is odd C = floor(C*) - 1; the result may be 0
|
| 582 |
|
|
Cstar.w[0]--; // Cstar is now even
|
| 583 |
|
|
if (Cstar.w[0] == 0xffffffffffffffffULL) {
|
| 584 |
|
|
Cstar.w[1]--;
|
| 585 |
|
|
if (Cstar.w[1] == 0xffffffffffffffffULL) {
|
| 586 |
|
|
Cstar.w[2]--;
|
| 587 |
|
|
}
|
| 588 |
|
|
}
|
| 589 |
|
|
*ptr_is_midpoint_gt_even = 1;
|
| 590 |
|
|
*ptr_is_inexact_lt_midpoint = 0;
|
| 591 |
|
|
*ptr_is_inexact_gt_midpoint = 0;
|
| 592 |
|
|
} else { // else MP in [ODD, EVEN]
|
| 593 |
|
|
*ptr_is_midpoint_lt_even = 1;
|
| 594 |
|
|
*ptr_is_inexact_lt_midpoint = 0;
|
| 595 |
|
|
*ptr_is_inexact_gt_midpoint = 0;
|
| 596 |
|
|
}
|
| 597 |
|
|
}
|
| 598 |
|
|
// check for rounding overflow, which occurs if Cstar = 10^(q-x)
|
| 599 |
|
|
ind = q - x; // 1 <= ind <= q - 1
|
| 600 |
|
|
if (ind <= 19) {
|
| 601 |
|
|
if (Cstar.w[2] == 0x0ULL && Cstar.w[1] == 0x0ULL &&
|
| 602 |
|
|
Cstar.w[0] == ten2k64[ind]) {
|
| 603 |
|
|
// if Cstar = 10^(q-x)
|
| 604 |
|
|
Cstar.w[0] = ten2k64[ind - 1]; // Cstar = 10^(q-x-1)
|
| 605 |
|
|
*incr_exp = 1;
|
| 606 |
|
|
} else {
|
| 607 |
|
|
*incr_exp = 0;
|
| 608 |
|
|
}
|
| 609 |
|
|
} else if (ind == 20) {
|
| 610 |
|
|
// if ind = 20
|
| 611 |
|
|
if (Cstar.w[2] == 0x0ULL && Cstar.w[1] == ten2k128[0].w[1] &&
|
| 612 |
|
|
Cstar.w[0] == ten2k128[0].w[0]) {
|
| 613 |
|
|
// if Cstar = 10^(q-x)
|
| 614 |
|
|
Cstar.w[0] = ten2k64[19]; // Cstar = 10^(q-x-1)
|
| 615 |
|
|
Cstar.w[1] = 0x0ULL;
|
| 616 |
|
|
*incr_exp = 1;
|
| 617 |
|
|
} else {
|
| 618 |
|
|
*incr_exp = 0;
|
| 619 |
|
|
}
|
| 620 |
|
|
} else if (ind <= 38) { // if 21 <= ind <= 38
|
| 621 |
|
|
if (Cstar.w[2] == 0x0ULL && Cstar.w[1] == ten2k128[ind - 20].w[1] &&
|
| 622 |
|
|
Cstar.w[0] == ten2k128[ind - 20].w[0]) {
|
| 623 |
|
|
// if Cstar = 10^(q-x)
|
| 624 |
|
|
Cstar.w[0] = ten2k128[ind - 21].w[0]; // Cstar = 10^(q-x-1)
|
| 625 |
|
|
Cstar.w[1] = ten2k128[ind - 21].w[1];
|
| 626 |
|
|
*incr_exp = 1;
|
| 627 |
|
|
} else {
|
| 628 |
|
|
*incr_exp = 0;
|
| 629 |
|
|
}
|
| 630 |
|
|
} else if (ind == 39) {
|
| 631 |
|
|
if (Cstar.w[2] == ten2k256[0].w[2] && Cstar.w[1] == ten2k256[0].w[1]
|
| 632 |
|
|
&& Cstar.w[0] == ten2k256[0].w[0]) {
|
| 633 |
|
|
// if Cstar = 10^(q-x)
|
| 634 |
|
|
Cstar.w[0] = ten2k128[18].w[0]; // Cstar = 10^(q-x-1)
|
| 635 |
|
|
Cstar.w[1] = ten2k128[18].w[1];
|
| 636 |
|
|
Cstar.w[2] = 0x0ULL;
|
| 637 |
|
|
*incr_exp = 1;
|
| 638 |
|
|
} else {
|
| 639 |
|
|
*incr_exp = 0;
|
| 640 |
|
|
}
|
| 641 |
|
|
} else { // if 40 <= ind <= 56
|
| 642 |
|
|
if (Cstar.w[2] == ten2k256[ind - 39].w[2] &&
|
| 643 |
|
|
Cstar.w[1] == ten2k256[ind - 39].w[1] &&
|
| 644 |
|
|
Cstar.w[0] == ten2k256[ind - 39].w[0]) {
|
| 645 |
|
|
// if Cstar = 10^(q-x)
|
| 646 |
|
|
Cstar.w[0] = ten2k256[ind - 40].w[0]; // Cstar = 10^(q-x-1)
|
| 647 |
|
|
Cstar.w[1] = ten2k256[ind - 40].w[1];
|
| 648 |
|
|
Cstar.w[2] = ten2k256[ind - 40].w[2];
|
| 649 |
|
|
*incr_exp = 1;
|
| 650 |
|
|
} else {
|
| 651 |
|
|
*incr_exp = 0;
|
| 652 |
|
|
}
|
| 653 |
|
|
}
|
| 654 |
|
|
ptr_Cstar->w[2] = Cstar.w[2];
|
| 655 |
|
|
ptr_Cstar->w[1] = Cstar.w[1];
|
| 656 |
|
|
ptr_Cstar->w[0] = Cstar.w[0];
|
| 657 |
|
|
}
|
| 658 |
|
|
|
| 659 |
|
|
|
| 660 |
|
|
void
|
| 661 |
|
|
round256_58_76 (int q,
|
| 662 |
|
|
int x,
|
| 663 |
|
|
UINT256 C,
|
| 664 |
|
|
UINT256 * ptr_Cstar,
|
| 665 |
|
|
int *incr_exp,
|
| 666 |
|
|
int *ptr_is_midpoint_lt_even,
|
| 667 |
|
|
int *ptr_is_midpoint_gt_even,
|
| 668 |
|
|
int *ptr_is_inexact_lt_midpoint,
|
| 669 |
|
|
int *ptr_is_inexact_gt_midpoint) {
|
| 670 |
|
|
|
| 671 |
|
|
UINT512 P512;
|
| 672 |
|
|
UINT512 fstar;
|
| 673 |
|
|
UINT256 Cstar;
|
| 674 |
|
|
UINT64 tmp64;
|
| 675 |
|
|
int shift;
|
| 676 |
|
|
int ind;
|
| 677 |
|
|
|
| 678 |
|
|
// Note:
|
| 679 |
|
|
// In round256_58_76() positive numbers with 58 <= q <= 76 will be
|
| 680 |
|
|
// rounded to nearest only for 24 <= x <= 61:
|
| 681 |
|
|
// x = 42 or x = 43 or x = 24 or x = 25 when q = 58
|
| 682 |
|
|
// x = 43 or x = 44 or x = 25 or x = 26 when q = 59
|
| 683 |
|
|
// ...
|
| 684 |
|
|
// x = 60 or x = 61 or x = 42 or x = 43 when q = 76
|
| 685 |
|
|
// However, for generality and possible uses outside the frame of IEEE 754R
|
| 686 |
|
|
// this implementation works for 1 <= x <= q - 1
|
| 687 |
|
|
|
| 688 |
|
|
// assume *ptr_is_midpoint_lt_even, *ptr_is_midpoint_gt_even,
|
| 689 |
|
|
// *ptr_is_inexact_lt_midpoint, and *ptr_is_inexact_gt_midpoint are
|
| 690 |
|
|
// initialized to 0 by the caller
|
| 691 |
|
|
|
| 692 |
|
|
// round a number C with q decimal digits, 58 <= q <= 76
|
| 693 |
|
|
// to q - x digits, 1 <= x <= 75
|
| 694 |
|
|
// C = C + 1/2 * 10^x where the result C fits in 256 bits
|
| 695 |
|
|
// (because the largest value is 9999999999999999999999999999999999999999
|
| 696 |
|
|
// 999999999999999999999999999999999999 + 500000000000000000000000000
|
| 697 |
|
|
// 000000000000000000000000000000000000000000000000 =
|
| 698 |
|
|
// 0x1736ca15d27a56cae15cf0e7b403d1f2bd6ebb0a50dc83ffffffffffffffffff,
|
| 699 |
|
|
// which fits in 253 bits)
|
| 700 |
|
|
ind = x - 1; // 0 <= ind <= 74
|
| 701 |
|
|
if (ind <= 18) { // if 0 <= ind <= 18
|
| 702 |
|
|
tmp64 = C.w[0];
|
| 703 |
|
|
C.w[0] = C.w[0] + midpoint64[ind];
|
| 704 |
|
|
if (C.w[0] < tmp64) {
|
| 705 |
|
|
C.w[1]++;
|
| 706 |
|
|
if (C.w[1] == 0x0) {
|
| 707 |
|
|
C.w[2]++;
|
| 708 |
|
|
if (C.w[2] == 0x0) {
|
| 709 |
|
|
C.w[3]++;
|
| 710 |
|
|
}
|
| 711 |
|
|
}
|
| 712 |
|
|
}
|
| 713 |
|
|
} else if (ind <= 37) { // if 19 <= ind <= 37
|
| 714 |
|
|
tmp64 = C.w[0];
|
| 715 |
|
|
C.w[0] = C.w[0] + midpoint128[ind - 19].w[0];
|
| 716 |
|
|
if (C.w[0] < tmp64) {
|
| 717 |
|
|
C.w[1]++;
|
| 718 |
|
|
if (C.w[1] == 0x0) {
|
| 719 |
|
|
C.w[2]++;
|
| 720 |
|
|
if (C.w[2] == 0x0) {
|
| 721 |
|
|
C.w[3]++;
|
| 722 |
|
|
}
|
| 723 |
|
|
}
|
| 724 |
|
|
}
|
| 725 |
|
|
tmp64 = C.w[1];
|
| 726 |
|
|
C.w[1] = C.w[1] + midpoint128[ind - 19].w[1];
|
| 727 |
|
|
if (C.w[1] < tmp64) {
|
| 728 |
|
|
C.w[2]++;
|
| 729 |
|
|
if (C.w[2] == 0x0) {
|
| 730 |
|
|
C.w[3]++;
|
| 731 |
|
|
}
|
| 732 |
|
|
}
|
| 733 |
|
|
} else if (ind <= 57) { // if 38 <= ind <= 57
|
| 734 |
|
|
tmp64 = C.w[0];
|
| 735 |
|
|
C.w[0] = C.w[0] + midpoint192[ind - 38].w[0];
|
| 736 |
|
|
if (C.w[0] < tmp64) {
|
| 737 |
|
|
C.w[1]++;
|
| 738 |
|
|
if (C.w[1] == 0x0ull) {
|
| 739 |
|
|
C.w[2]++;
|
| 740 |
|
|
if (C.w[2] == 0x0) {
|
| 741 |
|
|
C.w[3]++;
|
| 742 |
|
|
}
|
| 743 |
|
|
}
|
| 744 |
|
|
}
|
| 745 |
|
|
tmp64 = C.w[1];
|
| 746 |
|
|
C.w[1] = C.w[1] + midpoint192[ind - 38].w[1];
|
| 747 |
|
|
if (C.w[1] < tmp64) {
|
| 748 |
|
|
C.w[2]++;
|
| 749 |
|
|
if (C.w[2] == 0x0) {
|
| 750 |
|
|
C.w[3]++;
|
| 751 |
|
|
}
|
| 752 |
|
|
}
|
| 753 |
|
|
tmp64 = C.w[2];
|
| 754 |
|
|
C.w[2] = C.w[2] + midpoint192[ind - 38].w[2];
|
| 755 |
|
|
if (C.w[2] < tmp64) {
|
| 756 |
|
|
C.w[3]++;
|
| 757 |
|
|
}
|
| 758 |
|
|
} else { // if 58 <= ind <= 76 (actually 58 <= ind <= 74)
|
| 759 |
|
|
tmp64 = C.w[0];
|
| 760 |
|
|
C.w[0] = C.w[0] + midpoint256[ind - 58].w[0];
|
| 761 |
|
|
if (C.w[0] < tmp64) {
|
| 762 |
|
|
C.w[1]++;
|
| 763 |
|
|
if (C.w[1] == 0x0ull) {
|
| 764 |
|
|
C.w[2]++;
|
| 765 |
|
|
if (C.w[2] == 0x0) {
|
| 766 |
|
|
C.w[3]++;
|
| 767 |
|
|
}
|
| 768 |
|
|
}
|
| 769 |
|
|
}
|
| 770 |
|
|
tmp64 = C.w[1];
|
| 771 |
|
|
C.w[1] = C.w[1] + midpoint256[ind - 58].w[1];
|
| 772 |
|
|
if (C.w[1] < tmp64) {
|
| 773 |
|
|
C.w[2]++;
|
| 774 |
|
|
if (C.w[2] == 0x0) {
|
| 775 |
|
|
C.w[3]++;
|
| 776 |
|
|
}
|
| 777 |
|
|
}
|
| 778 |
|
|
tmp64 = C.w[2];
|
| 779 |
|
|
C.w[2] = C.w[2] + midpoint256[ind - 58].w[2];
|
| 780 |
|
|
if (C.w[2] < tmp64) {
|
| 781 |
|
|
C.w[3]++;
|
| 782 |
|
|
}
|
| 783 |
|
|
C.w[3] = C.w[3] + midpoint256[ind - 58].w[3];
|
| 784 |
|
|
}
|
| 785 |
|
|
// kx ~= 10^(-x), kx = Kx256[ind] * 2^(-Ex), 0 <= ind <= 74
|
| 786 |
|
|
// P512 = (C + 1/2 * 10^x) * kx * 2^Ex = (C + 1/2 * 10^x) * Kx
|
| 787 |
|
|
// the approximation kx of 10^(-x) was rounded up to 192 bits
|
| 788 |
|
|
__mul_256x256_to_512 (P512, C, Kx256[ind]);
|
| 789 |
|
|
// calculate C* = floor (P512) and f*
|
| 790 |
|
|
// Cstar = P512 >> Ex
|
| 791 |
|
|
// fstar = low Ex bits of P512
|
| 792 |
|
|
shift = Ex256m256[ind]; // in [0, 63] but have to consider four cases
|
| 793 |
|
|
if (ind <= 18) { // if 0 <= ind <= 18
|
| 794 |
|
|
Cstar.w[3] = (P512.w[7] >> shift);
|
| 795 |
|
|
Cstar.w[2] = (P512.w[7] << (64 - shift)) | (P512.w[6] >> shift);
|
| 796 |
|
|
Cstar.w[1] = (P512.w[6] << (64 - shift)) | (P512.w[5] >> shift);
|
| 797 |
|
|
Cstar.w[0] = (P512.w[5] << (64 - shift)) | (P512.w[4] >> shift);
|
| 798 |
|
|
fstar.w[7] = 0x0ULL;
|
| 799 |
|
|
fstar.w[6] = 0x0ULL;
|
| 800 |
|
|
fstar.w[5] = 0x0ULL;
|
| 801 |
|
|
fstar.w[4] = P512.w[4] & mask256[ind];
|
| 802 |
|
|
fstar.w[3] = P512.w[3];
|
| 803 |
|
|
fstar.w[2] = P512.w[2];
|
| 804 |
|
|
fstar.w[1] = P512.w[1];
|
| 805 |
|
|
fstar.w[0] = P512.w[0];
|
| 806 |
|
|
} else if (ind <= 37) { // if 19 <= ind <= 37
|
| 807 |
|
|
Cstar.w[3] = 0x0ULL;
|
| 808 |
|
|
Cstar.w[2] = P512.w[7] >> shift;
|
| 809 |
|
|
Cstar.w[1] = (P512.w[7] << (64 - shift)) | (P512.w[6] >> shift);
|
| 810 |
|
|
Cstar.w[0] = (P512.w[6] << (64 - shift)) | (P512.w[5] >> shift);
|
| 811 |
|
|
fstar.w[7] = 0x0ULL;
|
| 812 |
|
|
fstar.w[6] = 0x0ULL;
|
| 813 |
|
|
fstar.w[5] = P512.w[5] & mask256[ind];
|
| 814 |
|
|
fstar.w[4] = P512.w[4];
|
| 815 |
|
|
fstar.w[3] = P512.w[3];
|
| 816 |
|
|
fstar.w[2] = P512.w[2];
|
| 817 |
|
|
fstar.w[1] = P512.w[1];
|
| 818 |
|
|
fstar.w[0] = P512.w[0];
|
| 819 |
|
|
} else if (ind <= 56) { // if 38 <= ind <= 56
|
| 820 |
|
|
Cstar.w[3] = 0x0ULL;
|
| 821 |
|
|
Cstar.w[2] = 0x0ULL;
|
| 822 |
|
|
Cstar.w[1] = P512.w[7] >> shift;
|
| 823 |
|
|
Cstar.w[0] = (P512.w[7] << (64 - shift)) | (P512.w[6] >> shift);
|
| 824 |
|
|
fstar.w[7] = 0x0ULL;
|
| 825 |
|
|
fstar.w[6] = P512.w[6] & mask256[ind];
|
| 826 |
|
|
fstar.w[5] = P512.w[5];
|
| 827 |
|
|
fstar.w[4] = P512.w[4];
|
| 828 |
|
|
fstar.w[3] = P512.w[3];
|
| 829 |
|
|
fstar.w[2] = P512.w[2];
|
| 830 |
|
|
fstar.w[1] = P512.w[1];
|
| 831 |
|
|
fstar.w[0] = P512.w[0];
|
| 832 |
|
|
} else if (ind == 57) {
|
| 833 |
|
|
Cstar.w[3] = 0x0ULL;
|
| 834 |
|
|
Cstar.w[2] = 0x0ULL;
|
| 835 |
|
|
Cstar.w[1] = 0x0ULL;
|
| 836 |
|
|
Cstar.w[0] = P512.w[7];
|
| 837 |
|
|
fstar.w[7] = 0x0ULL;
|
| 838 |
|
|
fstar.w[6] = P512.w[6];
|
| 839 |
|
|
fstar.w[5] = P512.w[5];
|
| 840 |
|
|
fstar.w[4] = P512.w[4];
|
| 841 |
|
|
fstar.w[3] = P512.w[3];
|
| 842 |
|
|
fstar.w[2] = P512.w[2];
|
| 843 |
|
|
fstar.w[1] = P512.w[1];
|
| 844 |
|
|
fstar.w[0] = P512.w[0];
|
| 845 |
|
|
} else { // if 58 <= ind <= 74
|
| 846 |
|
|
Cstar.w[3] = 0x0ULL;
|
| 847 |
|
|
Cstar.w[2] = 0x0ULL;
|
| 848 |
|
|
Cstar.w[1] = 0x0ULL;
|
| 849 |
|
|
Cstar.w[0] = P512.w[7] >> shift;
|
| 850 |
|
|
fstar.w[7] = P512.w[7] & mask256[ind];
|
| 851 |
|
|
fstar.w[6] = P512.w[6];
|
| 852 |
|
|
fstar.w[5] = P512.w[5];
|
| 853 |
|
|
fstar.w[4] = P512.w[4];
|
| 854 |
|
|
fstar.w[3] = P512.w[3];
|
| 855 |
|
|
fstar.w[2] = P512.w[2];
|
| 856 |
|
|
fstar.w[1] = P512.w[1];
|
| 857 |
|
|
fstar.w[0] = P512.w[0];
|
| 858 |
|
|
}
|
| 859 |
|
|
|
| 860 |
|
|
// the top Ex bits of 10^(-x) are T* = ten2mxtrunc256[ind], e.g. if x=1,
|
| 861 |
|
|
// T*=ten2mxtrunc256[0]=
|
| 862 |
|
|
// 0xcccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
|
| 863 |
|
|
// if (0 < f* < 10^(-x)) then the result is a midpoint
|
| 864 |
|
|
// if floor(C*) is even then C* = floor(C*) - logical right
|
| 865 |
|
|
// shift; C* has q - x decimal digits, correct by Prop. 1)
|
| 866 |
|
|
// else if floor(C*) is odd C* = floor(C*)-1 (logical right
|
| 867 |
|
|
// shift; C* has q - x decimal digits, correct by Pr. 1)
|
| 868 |
|
|
// else
|
| 869 |
|
|
// C* = floor(C*) (logical right shift; C has q - x decimal digits,
|
| 870 |
|
|
// correct by Property 1)
|
| 871 |
|
|
// in the caling function n = C* * 10^(e+x)
|
| 872 |
|
|
|
| 873 |
|
|
// determine inexactness of the rounding of C*
|
| 874 |
|
|
// if (0 < f* - 1/2 < 10^(-x)) then
|
| 875 |
|
|
// the result is exact
|
| 876 |
|
|
// else // if (f* - 1/2 > T*) then
|
| 877 |
|
|
// the result is inexact
|
| 878 |
|
|
if (ind <= 18) { // if 0 <= ind <= 18
|
| 879 |
|
|
if (fstar.w[4] > half256[ind] || (fstar.w[4] == half256[ind] &&
|
| 880 |
|
|
(fstar.w[3] || fstar.w[2]
|
| 881 |
|
|
|| fstar.w[1] || fstar.w[0]))) {
|
| 882 |
|
|
// f* > 1/2 and the result may be exact
|
| 883 |
|
|
// Calculate f* - 1/2
|
| 884 |
|
|
tmp64 = fstar.w[4] - half256[ind];
|
| 885 |
|
|
if (tmp64 || fstar.w[3] > ten2mxtrunc256[ind].w[2] || (fstar.w[3] == ten2mxtrunc256[ind].w[3] && fstar.w[2] > ten2mxtrunc256[ind].w[2]) || (fstar.w[3] == ten2mxtrunc256[ind].w[3] && fstar.w[2] == ten2mxtrunc256[ind].w[2] && fstar.w[1] > ten2mxtrunc256[ind].w[1]) || (fstar.w[3] == ten2mxtrunc256[ind].w[3] && fstar.w[2] == ten2mxtrunc256[ind].w[2] && fstar.w[1] == ten2mxtrunc256[ind].w[1] && fstar.w[0] > ten2mxtrunc256[ind].w[0])) { // f* - 1/2 > 10^(-x)
|
| 886 |
|
|
*ptr_is_inexact_lt_midpoint = 1;
|
| 887 |
|
|
} // else the result is exact
|
| 888 |
|
|
} else { // the result is inexact; f2* <= 1/2
|
| 889 |
|
|
*ptr_is_inexact_gt_midpoint = 1;
|
| 890 |
|
|
}
|
| 891 |
|
|
} else if (ind <= 37) { // if 19 <= ind <= 37
|
| 892 |
|
|
if (fstar.w[5] > half256[ind] || (fstar.w[5] == half256[ind] &&
|
| 893 |
|
|
(fstar.w[4] || fstar.w[3]
|
| 894 |
|
|
|| fstar.w[2] || fstar.w[1]
|
| 895 |
|
|
|| fstar.w[0]))) {
|
| 896 |
|
|
// f* > 1/2 and the result may be exact
|
| 897 |
|
|
// Calculate f* - 1/2
|
| 898 |
|
|
tmp64 = fstar.w[5] - half256[ind];
|
| 899 |
|
|
if (tmp64 || fstar.w[4] || fstar.w[3] > ten2mxtrunc256[ind].w[3] || (fstar.w[3] == ten2mxtrunc256[ind].w[3] && fstar.w[2] > ten2mxtrunc256[ind].w[2]) || (fstar.w[3] == ten2mxtrunc256[ind].w[3] && fstar.w[2] == ten2mxtrunc256[ind].w[2] && fstar.w[1] > ten2mxtrunc256[ind].w[1]) || (fstar.w[3] == ten2mxtrunc256[ind].w[3] && fstar.w[2] == ten2mxtrunc256[ind].w[2] && fstar.w[1] == ten2mxtrunc256[ind].w[1] && fstar.w[0] > ten2mxtrunc256[ind].w[0])) { // f* - 1/2 > 10^(-x)
|
| 900 |
|
|
*ptr_is_inexact_lt_midpoint = 1;
|
| 901 |
|
|
} // else the result is exact
|
| 902 |
|
|
} else { // the result is inexact; f2* <= 1/2
|
| 903 |
|
|
*ptr_is_inexact_gt_midpoint = 1;
|
| 904 |
|
|
}
|
| 905 |
|
|
} else if (ind <= 57) { // if 38 <= ind <= 57
|
| 906 |
|
|
if (fstar.w[6] > half256[ind] || (fstar.w[6] == half256[ind] &&
|
| 907 |
|
|
(fstar.w[5] || fstar.w[4]
|
| 908 |
|
|
|| fstar.w[3] || fstar.w[2]
|
| 909 |
|
|
|| fstar.w[1] || fstar.w[0]))) {
|
| 910 |
|
|
// f* > 1/2 and the result may be exact
|
| 911 |
|
|
// Calculate f* - 1/2
|
| 912 |
|
|
tmp64 = fstar.w[6] - half256[ind];
|
| 913 |
|
|
if (tmp64 || fstar.w[5] || fstar.w[4] || fstar.w[3] > ten2mxtrunc256[ind].w[3] || (fstar.w[3] == ten2mxtrunc256[ind].w[3] && fstar.w[2] > ten2mxtrunc256[ind].w[2]) || (fstar.w[3] == ten2mxtrunc256[ind].w[3] && fstar.w[2] == ten2mxtrunc256[ind].w[2] && fstar.w[1] > ten2mxtrunc256[ind].w[1]) || (fstar.w[3] == ten2mxtrunc256[ind].w[3] && fstar.w[2] == ten2mxtrunc256[ind].w[2] && fstar.w[1] == ten2mxtrunc256[ind].w[1] && fstar.w[0] > ten2mxtrunc256[ind].w[0])) { // f* - 1/2 > 10^(-x)
|
| 914 |
|
|
*ptr_is_inexact_lt_midpoint = 1;
|
| 915 |
|
|
} // else the result is exact
|
| 916 |
|
|
} else { // the result is inexact; f2* <= 1/2
|
| 917 |
|
|
*ptr_is_inexact_gt_midpoint = 1;
|
| 918 |
|
|
}
|
| 919 |
|
|
} else { // if 58 <= ind <= 74
|
| 920 |
|
|
if (fstar.w[7] > half256[ind] || (fstar.w[7] == half256[ind] &&
|
| 921 |
|
|
(fstar.w[6] || fstar.w[5]
|
| 922 |
|
|
|| fstar.w[4] || fstar.w[3]
|
| 923 |
|
|
|| fstar.w[2] || fstar.w[1]
|
| 924 |
|
|
|| fstar.w[0]))) {
|
| 925 |
|
|
// f* > 1/2 and the result may be exact
|
| 926 |
|
|
// Calculate f* - 1/2
|
| 927 |
|
|
tmp64 = fstar.w[7] - half256[ind];
|
| 928 |
|
|
if (tmp64 || fstar.w[6] || fstar.w[5] || fstar.w[4] || fstar.w[3] > ten2mxtrunc256[ind].w[3] || (fstar.w[3] == ten2mxtrunc256[ind].w[3] && fstar.w[2] > ten2mxtrunc256[ind].w[2]) || (fstar.w[3] == ten2mxtrunc256[ind].w[3] && fstar.w[2] == ten2mxtrunc256[ind].w[2] && fstar.w[1] > ten2mxtrunc256[ind].w[1]) || (fstar.w[3] == ten2mxtrunc256[ind].w[3] && fstar.w[2] == ten2mxtrunc256[ind].w[2] && fstar.w[1] == ten2mxtrunc256[ind].w[1] && fstar.w[0] > ten2mxtrunc256[ind].w[0])) { // f* - 1/2 > 10^(-x)
|
| 929 |
|
|
*ptr_is_inexact_lt_midpoint = 1;
|
| 930 |
|
|
} // else the result is exact
|
| 931 |
|
|
} else { // the result is inexact; f2* <= 1/2
|
| 932 |
|
|
*ptr_is_inexact_gt_midpoint = 1;
|
| 933 |
|
|
}
|
| 934 |
|
|
}
|
| 935 |
|
|
// check for midpoints (could do this before determining inexactness)
|
| 936 |
|
|
if (fstar.w[7] == 0 && fstar.w[6] == 0 &&
|
| 937 |
|
|
fstar.w[5] == 0 && fstar.w[4] == 0 &&
|
| 938 |
|
|
(fstar.w[3] < ten2mxtrunc256[ind].w[3] ||
|
| 939 |
|
|
(fstar.w[3] == ten2mxtrunc256[ind].w[3] &&
|
| 940 |
|
|
fstar.w[2] < ten2mxtrunc256[ind].w[2]) ||
|
| 941 |
|
|
(fstar.w[3] == ten2mxtrunc256[ind].w[3] &&
|
| 942 |
|
|
fstar.w[2] == ten2mxtrunc256[ind].w[2] &&
|
| 943 |
|
|
fstar.w[1] < ten2mxtrunc256[ind].w[1]) ||
|
| 944 |
|
|
(fstar.w[3] == ten2mxtrunc256[ind].w[3] &&
|
| 945 |
|
|
fstar.w[2] == ten2mxtrunc256[ind].w[2] &&
|
| 946 |
|
|
fstar.w[1] == ten2mxtrunc256[ind].w[1] &&
|
| 947 |
|
|
fstar.w[0] <= ten2mxtrunc256[ind].w[0]))) {
|
| 948 |
|
|
// the result is a midpoint
|
| 949 |
|
|
if (Cstar.w[0] & 0x01) { // Cstar is odd; MP in [EVEN, ODD]
|
| 950 |
|
|
// if floor(C*) is odd C = floor(C*) - 1; the result may be 0
|
| 951 |
|
|
Cstar.w[0]--; // Cstar is now even
|
| 952 |
|
|
if (Cstar.w[0] == 0xffffffffffffffffULL) {
|
| 953 |
|
|
Cstar.w[1]--;
|
| 954 |
|
|
if (Cstar.w[1] == 0xffffffffffffffffULL) {
|
| 955 |
|
|
Cstar.w[2]--;
|
| 956 |
|
|
if (Cstar.w[2] == 0xffffffffffffffffULL) {
|
| 957 |
|
|
Cstar.w[3]--;
|
| 958 |
|
|
}
|
| 959 |
|
|
}
|
| 960 |
|
|
}
|
| 961 |
|
|
*ptr_is_midpoint_gt_even = 1;
|
| 962 |
|
|
*ptr_is_inexact_lt_midpoint = 0;
|
| 963 |
|
|
*ptr_is_inexact_gt_midpoint = 0;
|
| 964 |
|
|
} else { // else MP in [ODD, EVEN]
|
| 965 |
|
|
*ptr_is_midpoint_lt_even = 1;
|
| 966 |
|
|
*ptr_is_inexact_lt_midpoint = 0;
|
| 967 |
|
|
*ptr_is_inexact_gt_midpoint = 0;
|
| 968 |
|
|
}
|
| 969 |
|
|
}
|
| 970 |
|
|
// check for rounding overflow, which occurs if Cstar = 10^(q-x)
|
| 971 |
|
|
ind = q - x; // 1 <= ind <= q - 1
|
| 972 |
|
|
if (ind <= 19) {
|
| 973 |
|
|
if (Cstar.w[3] == 0x0ULL && Cstar.w[2] == 0x0ULL &&
|
| 974 |
|
|
Cstar.w[1] == 0x0ULL && Cstar.w[0] == ten2k64[ind]) {
|
| 975 |
|
|
// if Cstar = 10^(q-x)
|
| 976 |
|
|
Cstar.w[0] = ten2k64[ind - 1]; // Cstar = 10^(q-x-1)
|
| 977 |
|
|
*incr_exp = 1;
|
| 978 |
|
|
} else {
|
| 979 |
|
|
*incr_exp = 0;
|
| 980 |
|
|
}
|
| 981 |
|
|
} else if (ind == 20) {
|
| 982 |
|
|
// if ind = 20
|
| 983 |
|
|
if (Cstar.w[3] == 0x0ULL && Cstar.w[2] == 0x0ULL &&
|
| 984 |
|
|
Cstar.w[1] == ten2k128[0].w[1]
|
| 985 |
|
|
&& Cstar.w[0] == ten2k128[0].w[0]) {
|
| 986 |
|
|
// if Cstar = 10^(q-x)
|
| 987 |
|
|
Cstar.w[0] = ten2k64[19]; // Cstar = 10^(q-x-1)
|
| 988 |
|
|
Cstar.w[1] = 0x0ULL;
|
| 989 |
|
|
*incr_exp = 1;
|
| 990 |
|
|
} else {
|
| 991 |
|
|
*incr_exp = 0;
|
| 992 |
|
|
}
|
| 993 |
|
|
} else if (ind <= 38) { // if 21 <= ind <= 38
|
| 994 |
|
|
if (Cstar.w[3] == 0x0ULL && Cstar.w[2] == 0x0ULL &&
|
| 995 |
|
|
Cstar.w[1] == ten2k128[ind - 20].w[1] &&
|
| 996 |
|
|
Cstar.w[0] == ten2k128[ind - 20].w[0]) {
|
| 997 |
|
|
// if Cstar = 10^(q-x)
|
| 998 |
|
|
Cstar.w[0] = ten2k128[ind - 21].w[0]; // Cstar = 10^(q-x-1)
|
| 999 |
|
|
Cstar.w[1] = ten2k128[ind - 21].w[1];
|
| 1000 |
|
|
*incr_exp = 1;
|
| 1001 |
|
|
} else {
|
| 1002 |
|
|
*incr_exp = 0;
|
| 1003 |
|
|
}
|
| 1004 |
|
|
} else if (ind == 39) {
|
| 1005 |
|
|
if (Cstar.w[3] == 0x0ULL && Cstar.w[2] == ten2k256[0].w[2] &&
|
| 1006 |
|
|
Cstar.w[1] == ten2k256[0].w[1]
|
| 1007 |
|
|
&& Cstar.w[0] == ten2k256[0].w[0]) {
|
| 1008 |
|
|
// if Cstar = 10^(q-x)
|
| 1009 |
|
|
Cstar.w[0] = ten2k128[18].w[0]; // Cstar = 10^(q-x-1)
|
| 1010 |
|
|
Cstar.w[1] = ten2k128[18].w[1];
|
| 1011 |
|
|
Cstar.w[2] = 0x0ULL;
|
| 1012 |
|
|
*incr_exp = 1;
|
| 1013 |
|
|
} else {
|
| 1014 |
|
|
*incr_exp = 0;
|
| 1015 |
|
|
}
|
| 1016 |
|
|
} else if (ind <= 57) { // if 40 <= ind <= 57
|
| 1017 |
|
|
if (Cstar.w[3] == 0x0ULL && Cstar.w[2] == ten2k256[ind - 39].w[2] &&
|
| 1018 |
|
|
Cstar.w[1] == ten2k256[ind - 39].w[1] &&
|
| 1019 |
|
|
Cstar.w[0] == ten2k256[ind - 39].w[0]) {
|
| 1020 |
|
|
// if Cstar = 10^(q-x)
|
| 1021 |
|
|
Cstar.w[0] = ten2k256[ind - 40].w[0]; // Cstar = 10^(q-x-1)
|
| 1022 |
|
|
Cstar.w[1] = ten2k256[ind - 40].w[1];
|
| 1023 |
|
|
Cstar.w[2] = ten2k256[ind - 40].w[2];
|
| 1024 |
|
|
*incr_exp = 1;
|
| 1025 |
|
|
} else {
|
| 1026 |
|
|
*incr_exp = 0;
|
| 1027 |
|
|
}
|
| 1028 |
|
|
// else if (ind == 58) is not needed becauae we do not have ten2k192[] yet
|
| 1029 |
|
|
} else { // if 58 <= ind <= 77 (actually 58 <= ind <= 74)
|
| 1030 |
|
|
if (Cstar.w[3] == ten2k256[ind - 39].w[3] &&
|
| 1031 |
|
|
Cstar.w[2] == ten2k256[ind - 39].w[2] &&
|
| 1032 |
|
|
Cstar.w[1] == ten2k256[ind - 39].w[1] &&
|
| 1033 |
|
|
Cstar.w[0] == ten2k256[ind - 39].w[0]) {
|
| 1034 |
|
|
// if Cstar = 10^(q-x)
|
| 1035 |
|
|
Cstar.w[0] = ten2k256[ind - 40].w[0]; // Cstar = 10^(q-x-1)
|
| 1036 |
|
|
Cstar.w[1] = ten2k256[ind - 40].w[1];
|
| 1037 |
|
|
Cstar.w[2] = ten2k256[ind - 40].w[2];
|
| 1038 |
|
|
Cstar.w[3] = ten2k256[ind - 40].w[3];
|
| 1039 |
|
|
*incr_exp = 1;
|
| 1040 |
|
|
} else {
|
| 1041 |
|
|
*incr_exp = 0;
|
| 1042 |
|
|
}
|
| 1043 |
|
|
}
|
| 1044 |
|
|
ptr_Cstar->w[3] = Cstar.w[3];
|
| 1045 |
|
|
ptr_Cstar->w[2] = Cstar.w[2];
|
| 1046 |
|
|
ptr_Cstar->w[1] = Cstar.w[1];
|
| 1047 |
|
|
ptr_Cstar->w[0] = Cstar.w[0];
|
| 1048 |
|
|
|
| 1049 |
|
|
}
|