OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libgcc/] [config/] [spu/] [divv2df3.c] - Blame information for rev 749

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 734 jeremybenn
/* Copyright (C) 2009 Free Software Foundation, Inc.
2
 
3
   This file is free software; you can redistribute it and/or modify it under
4
   the terms of the GNU General Public License as published by the Free
5
   Software Foundation; either version 3 of the License, or (at your option)
6
   any later version.
7
 
8
   This file is distributed in the hope that it will be useful, but WITHOUT
9
   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10
   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
11
   for more details.
12
 
13
   Under Section 7 of GPL version 3, you are granted additional
14
   permissions described in the GCC Runtime Library Exception, version
15
   3.1, as published by the Free Software Foundation.
16
 
17
   You should have received a copy of the GNU General Public License and
18
   a copy of the GCC Runtime Library Exception along with this program;
19
   see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
20
   <http://www.gnu.org/licenses/>.  */
21
 
22
#include <spu_intrinsics.h>
23
 
24
vector double __divv2df3 (vector double a_in, vector double b_in);
25
 
26
/* __divv2df3 divides the vector dividend a by the vector divisor b and
27
   returns the resulting vector quotient.  Maximum error about 0.5 ulp
28
   over entire double range including denorms, compared to true result
29
   in round-to-nearest rounding mode.  Handles Inf or NaN operands and
30
   results correctly.  */
31
 
32
vector double
33
__divv2df3 (vector double a_in, vector double b_in)
34
{
35
  /* Variables */
36
  vec_int4    exp, exp_bias;
37
  vec_uint4   no_underflow, overflow;
38
  vec_float4  mant_bf, inv_bf;
39
  vec_ullong2 exp_a, exp_b;
40
  vec_ullong2 a_nan, a_zero, a_inf, a_denorm, a_denorm0;
41
  vec_ullong2 b_nan, b_zero, b_inf, b_denorm, b_denorm0;
42
  vec_ullong2 nan;
43
  vec_uint4   a_exp, b_exp;
44
  vec_ullong2 a_mant_0, b_mant_0;
45
  vec_ullong2 a_exp_1s, b_exp_1s;
46
  vec_ullong2 sign_exp_mask;
47
 
48
  vec_double2 a, b;
49
  vec_double2 mant_a, mant_b, inv_b, q0, q1, q2, mult;
50
 
51
  /* Constants */
52
  vec_uint4   exp_mask_u32 = spu_splats((unsigned int)0x7FF00000);
53
  vec_uchar16 splat_hi = (vec_uchar16){0,1,2,3, 0,1,2,3,  8, 9,10,11, 8,9,10,11};
54
  vec_uchar16 swap_32 = (vec_uchar16){4,5,6,7, 0,1,2,3, 12,13,14,15, 8,9,10,11};
55
  vec_ullong2 exp_mask = spu_splats(0x7FF0000000000000ULL);
56
  vec_ullong2 sign_mask = spu_splats(0x8000000000000000ULL);
57
  vec_float4  onef = spu_splats(1.0f);
58
  vec_double2 one = spu_splats(1.0);
59
  vec_double2 exp_53 = (vec_double2)spu_splats(0x0350000000000000ULL);
60
 
61
  sign_exp_mask = spu_or(sign_mask, exp_mask);
62
 
63
  /* Extract the floating point components from each of the operands including
64
   * exponent and mantissa.
65
   */
66
  a_exp = (vec_uint4)spu_and((vec_uint4)a_in, exp_mask_u32);
67
  a_exp = spu_shuffle(a_exp, a_exp, splat_hi);
68
  b_exp = (vec_uint4)spu_and((vec_uint4)b_in, exp_mask_u32);
69
  b_exp = spu_shuffle(b_exp, b_exp, splat_hi);
70
 
71
  a_mant_0 = (vec_ullong2)spu_cmpeq((vec_uint4)spu_andc((vec_ullong2)a_in, sign_exp_mask), 0);
72
  a_mant_0 = spu_and(a_mant_0, spu_shuffle(a_mant_0, a_mant_0, swap_32));
73
 
74
  b_mant_0 = (vec_ullong2)spu_cmpeq((vec_uint4)spu_andc((vec_ullong2)b_in, sign_exp_mask), 0);
75
  b_mant_0 = spu_and(b_mant_0, spu_shuffle(b_mant_0, b_mant_0, swap_32));
76
 
77
  a_exp_1s = (vec_ullong2)spu_cmpeq(a_exp, exp_mask_u32);
78
  b_exp_1s = (vec_ullong2)spu_cmpeq(b_exp, exp_mask_u32);
79
 
80
  /* Identify all possible special values that must be accomodated including:
81
   * +-denorm, +-0, +-infinity, and NaNs.
82
   */
83
  a_denorm0= (vec_ullong2)spu_cmpeq(a_exp, 0);
84
  a_nan    = spu_andc(a_exp_1s, a_mant_0);
85
  a_zero   = spu_and (a_denorm0, a_mant_0);
86
  a_inf    = spu_and (a_exp_1s, a_mant_0);
87
  a_denorm = spu_andc(a_denorm0, a_zero);
88
 
89
  b_denorm0= (vec_ullong2)spu_cmpeq(b_exp, 0);
90
  b_nan    = spu_andc(b_exp_1s, b_mant_0);
91
  b_zero   = spu_and (b_denorm0, b_mant_0);
92
  b_inf    = spu_and (b_exp_1s, b_mant_0);
93
  b_denorm = spu_andc(b_denorm0, b_zero);
94
 
95
  /* Scale denorm inputs to into normalized numbers by conditionally scaling the
96
   * input parameters.
97
   */
98
  a = spu_sub(spu_or(a_in, exp_53), spu_sel(exp_53, a_in, sign_mask));
99
  a = spu_sel(a_in, a, a_denorm);
100
 
101
  b = spu_sub(spu_or(b_in, exp_53), spu_sel(exp_53, b_in, sign_mask));
102
  b = spu_sel(b_in, b, b_denorm);
103
 
104
  /* Extract the divisor and dividend exponent and force parameters into the signed
105
   * range [1.0,2.0) or [-1.0,2.0).
106
   */
107
  exp_a = spu_and((vec_ullong2)a, exp_mask);
108
  exp_b = spu_and((vec_ullong2)b, exp_mask);
109
 
110
  mant_a = spu_sel(a, one, (vec_ullong2)exp_mask);
111
  mant_b = spu_sel(b, one, (vec_ullong2)exp_mask);
112
 
113
  /* Approximate the single reciprocal of b by using
114
   * the single precision reciprocal estimate followed by one
115
   * single precision iteration of Newton-Raphson.
116
   */
117
  mant_bf = spu_roundtf(mant_b);
118
  inv_bf = spu_re(mant_bf);
119
  inv_bf = spu_madd(spu_nmsub(mant_bf, inv_bf, onef), inv_bf, inv_bf);
120
 
121
  /* Perform 2 more Newton-Raphson iterations in double precision. The
122
   * result (q1) is in the range (0.5, 2.0).
123
   */
124
  inv_b = spu_extend(inv_bf);
125
  inv_b = spu_madd(spu_nmsub(mant_b, inv_b, one), inv_b, inv_b);
126
  q0 = spu_mul(mant_a, inv_b);
127
  q1 = spu_madd(spu_nmsub(mant_b, q0, mant_a), inv_b, q0);
128
 
129
  /* Determine the exponent correction factor that must be applied
130
   * to q1 by taking into account the exponent of the normalized inputs
131
   * and the scale factors that were applied to normalize them.
132
   */
133
  exp = spu_rlmaska(spu_sub((vec_int4)exp_a, (vec_int4)exp_b), -20);
134
  exp = spu_add(exp, (vec_int4)spu_add(spu_and((vec_int4)a_denorm, -0x34), spu_and((vec_int4)b_denorm, 0x34)));
135
 
136
  /* Bias the quotient exponent depending on the sign of the exponent correction
137
   * factor so that a single multiplier will ensure the entire double precision
138
   * domain (including denorms) can be achieved.
139
   *
140
   *    exp            bias q1     adjust exp
141
   *   =====           ========    ==========
142
   *   positive         2^+65         -65
143
   *   negative         2^-64         +64
144
   */
145
  exp_bias = spu_xor(spu_rlmaska(exp, -31), 64);
146
  exp = spu_sub(exp, exp_bias);
147
 
148
  q1 = spu_sel(q1, (vec_double2)spu_add((vec_int4)q1, spu_sl(exp_bias, 20)), exp_mask);
149
 
150
  /* Compute a multiplier (mult) to applied to the quotient (q1) to produce the
151
   * expected result. On overflow, clamp the multiplier to the maximum non-infinite
152
   * number in case the rounding mode is not round-to-nearest.
153
   */
154
  exp = spu_add(exp, 0x3FF);
155
  no_underflow = spu_cmpgt(exp, 0);
156
  overflow = spu_cmpgt(exp, 0x7FE);
157
  exp = spu_and(spu_sl(exp, 20), (vec_int4)no_underflow);
158
  exp = spu_and(exp, (vec_int4)exp_mask);
159
 
160
  mult = spu_sel((vec_double2)exp, (vec_double2)(spu_add((vec_uint4)exp_mask, -1)), (vec_ullong2)overflow);
161
 
162
  /* Handle special value conditions. These include:
163
   *
164
   * 1) IF either operand is a NaN OR both operands are 0 or INFINITY THEN a NaN
165
   *    results.
166
   * 2) ELSE IF the dividend is an INFINITY OR the divisor is 0 THEN a INFINITY results.
167
   * 3) ELSE IF the dividend is 0 OR the divisor is INFINITY THEN a 0 results.
168
   */
169
  mult = spu_andc(mult, (vec_double2)spu_or(a_zero, b_inf));
170
  mult = spu_sel(mult, (vec_double2)exp_mask, spu_or(a_inf, b_zero));
171
 
172
  nan = spu_or(a_nan, b_nan);
173
  nan = spu_or(nan, spu_and(a_zero, b_zero));
174
  nan = spu_or(nan, spu_and(a_inf, b_inf));
175
 
176
  mult = spu_or(mult, (vec_double2)nan);
177
 
178
  /* Scale the final quotient */
179
 
180
  q2 = spu_mul(q1, mult);
181
 
182
  return (q2);
183
}
184
 
185
 
186
/* We use the same function for vector and scalar division.  Provide the
187
   scalar entry point as an alias.  */
188
double __divdf3 (double a, double b)
189
  __attribute__ ((__alias__ ("__divv2df3")));
190
 
191
/* Some toolchain builds used the __fast_divdf3 name for this helper function.
192
   Provide this as another alternate entry point for compatibility.  */
193
double __fast_divdf3 (double a, double b)
194
  __attribute__ ((__alias__ ("__divv2df3")));
195
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.