| 1 |
734 |
jeremybenn |
/* Subroutines needed for unwinding stack frames for exception handling. */
|
| 2 |
|
|
/* Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2008,
|
| 3 |
|
|
2009, 2010, 2011 Free Software Foundation, Inc.
|
| 4 |
|
|
Contributed by Jason Merrill <jason@cygnus.com>.
|
| 5 |
|
|
|
| 6 |
|
|
This file is part of GCC.
|
| 7 |
|
|
|
| 8 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
| 9 |
|
|
the terms of the GNU General Public License as published by the Free
|
| 10 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
| 11 |
|
|
version.
|
| 12 |
|
|
|
| 13 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
| 14 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
| 15 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
| 16 |
|
|
for more details.
|
| 17 |
|
|
|
| 18 |
|
|
Under Section 7 of GPL version 3, you are granted additional
|
| 19 |
|
|
permissions described in the GCC Runtime Library Exception, version
|
| 20 |
|
|
3.1, as published by the Free Software Foundation.
|
| 21 |
|
|
|
| 22 |
|
|
You should have received a copy of the GNU General Public License and
|
| 23 |
|
|
a copy of the GCC Runtime Library Exception along with this program;
|
| 24 |
|
|
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
| 25 |
|
|
<http://www.gnu.org/licenses/>. */
|
| 26 |
|
|
|
| 27 |
|
|
#ifndef _Unwind_Find_FDE
|
| 28 |
|
|
#include "tconfig.h"
|
| 29 |
|
|
#include "tsystem.h"
|
| 30 |
|
|
#include "coretypes.h"
|
| 31 |
|
|
#include "tm.h"
|
| 32 |
|
|
#include "libgcc_tm.h"
|
| 33 |
|
|
#include "dwarf2.h"
|
| 34 |
|
|
#include "unwind.h"
|
| 35 |
|
|
#define NO_BASE_OF_ENCODED_VALUE
|
| 36 |
|
|
#include "unwind-pe.h"
|
| 37 |
|
|
#include "unwind-dw2-fde.h"
|
| 38 |
|
|
#include "gthr.h"
|
| 39 |
|
|
#endif
|
| 40 |
|
|
|
| 41 |
|
|
/* The unseen_objects list contains objects that have been registered
|
| 42 |
|
|
but not yet categorized in any way. The seen_objects list has had
|
| 43 |
|
|
its pc_begin and count fields initialized at minimum, and is sorted
|
| 44 |
|
|
by decreasing value of pc_begin. */
|
| 45 |
|
|
static struct object *unseen_objects;
|
| 46 |
|
|
static struct object *seen_objects;
|
| 47 |
|
|
|
| 48 |
|
|
#ifdef __GTHREAD_MUTEX_INIT
|
| 49 |
|
|
static __gthread_mutex_t object_mutex = __GTHREAD_MUTEX_INIT;
|
| 50 |
|
|
#else
|
| 51 |
|
|
static __gthread_mutex_t object_mutex;
|
| 52 |
|
|
#endif
|
| 53 |
|
|
|
| 54 |
|
|
#ifdef __GTHREAD_MUTEX_INIT_FUNCTION
|
| 55 |
|
|
static void
|
| 56 |
|
|
init_object_mutex (void)
|
| 57 |
|
|
{
|
| 58 |
|
|
__GTHREAD_MUTEX_INIT_FUNCTION (&object_mutex);
|
| 59 |
|
|
}
|
| 60 |
|
|
|
| 61 |
|
|
static void
|
| 62 |
|
|
init_object_mutex_once (void)
|
| 63 |
|
|
{
|
| 64 |
|
|
static __gthread_once_t once = __GTHREAD_ONCE_INIT;
|
| 65 |
|
|
__gthread_once (&once, init_object_mutex);
|
| 66 |
|
|
}
|
| 67 |
|
|
#else
|
| 68 |
|
|
#define init_object_mutex_once()
|
| 69 |
|
|
#endif
|
| 70 |
|
|
|
| 71 |
|
|
/* Called from crtbegin.o to register the unwind info for an object. */
|
| 72 |
|
|
|
| 73 |
|
|
void
|
| 74 |
|
|
__register_frame_info_bases (const void *begin, struct object *ob,
|
| 75 |
|
|
void *tbase, void *dbase)
|
| 76 |
|
|
{
|
| 77 |
|
|
/* If .eh_frame is empty, don't register at all. */
|
| 78 |
|
|
if ((const uword *) begin == 0 || *(const uword *) begin == 0)
|
| 79 |
|
|
return;
|
| 80 |
|
|
|
| 81 |
|
|
ob->pc_begin = (void *)-1;
|
| 82 |
|
|
ob->tbase = tbase;
|
| 83 |
|
|
ob->dbase = dbase;
|
| 84 |
|
|
ob->u.single = begin;
|
| 85 |
|
|
ob->s.i = 0;
|
| 86 |
|
|
ob->s.b.encoding = DW_EH_PE_omit;
|
| 87 |
|
|
#ifdef DWARF2_OBJECT_END_PTR_EXTENSION
|
| 88 |
|
|
ob->fde_end = NULL;
|
| 89 |
|
|
#endif
|
| 90 |
|
|
|
| 91 |
|
|
init_object_mutex_once ();
|
| 92 |
|
|
__gthread_mutex_lock (&object_mutex);
|
| 93 |
|
|
|
| 94 |
|
|
ob->next = unseen_objects;
|
| 95 |
|
|
unseen_objects = ob;
|
| 96 |
|
|
|
| 97 |
|
|
__gthread_mutex_unlock (&object_mutex);
|
| 98 |
|
|
}
|
| 99 |
|
|
|
| 100 |
|
|
void
|
| 101 |
|
|
__register_frame_info (const void *begin, struct object *ob)
|
| 102 |
|
|
{
|
| 103 |
|
|
__register_frame_info_bases (begin, ob, 0, 0);
|
| 104 |
|
|
}
|
| 105 |
|
|
|
| 106 |
|
|
void
|
| 107 |
|
|
__register_frame (void *begin)
|
| 108 |
|
|
{
|
| 109 |
|
|
struct object *ob;
|
| 110 |
|
|
|
| 111 |
|
|
/* If .eh_frame is empty, don't register at all. */
|
| 112 |
|
|
if (*(uword *) begin == 0)
|
| 113 |
|
|
return;
|
| 114 |
|
|
|
| 115 |
|
|
ob = malloc (sizeof (struct object));
|
| 116 |
|
|
__register_frame_info (begin, ob);
|
| 117 |
|
|
}
|
| 118 |
|
|
|
| 119 |
|
|
/* Similar, but BEGIN is actually a pointer to a table of unwind entries
|
| 120 |
|
|
for different translation units. Called from the file generated by
|
| 121 |
|
|
collect2. */
|
| 122 |
|
|
|
| 123 |
|
|
void
|
| 124 |
|
|
__register_frame_info_table_bases (void *begin, struct object *ob,
|
| 125 |
|
|
void *tbase, void *dbase)
|
| 126 |
|
|
{
|
| 127 |
|
|
ob->pc_begin = (void *)-1;
|
| 128 |
|
|
ob->tbase = tbase;
|
| 129 |
|
|
ob->dbase = dbase;
|
| 130 |
|
|
ob->u.array = begin;
|
| 131 |
|
|
ob->s.i = 0;
|
| 132 |
|
|
ob->s.b.from_array = 1;
|
| 133 |
|
|
ob->s.b.encoding = DW_EH_PE_omit;
|
| 134 |
|
|
|
| 135 |
|
|
init_object_mutex_once ();
|
| 136 |
|
|
__gthread_mutex_lock (&object_mutex);
|
| 137 |
|
|
|
| 138 |
|
|
ob->next = unseen_objects;
|
| 139 |
|
|
unseen_objects = ob;
|
| 140 |
|
|
|
| 141 |
|
|
__gthread_mutex_unlock (&object_mutex);
|
| 142 |
|
|
}
|
| 143 |
|
|
|
| 144 |
|
|
void
|
| 145 |
|
|
__register_frame_info_table (void *begin, struct object *ob)
|
| 146 |
|
|
{
|
| 147 |
|
|
__register_frame_info_table_bases (begin, ob, 0, 0);
|
| 148 |
|
|
}
|
| 149 |
|
|
|
| 150 |
|
|
void
|
| 151 |
|
|
__register_frame_table (void *begin)
|
| 152 |
|
|
{
|
| 153 |
|
|
struct object *ob = malloc (sizeof (struct object));
|
| 154 |
|
|
__register_frame_info_table (begin, ob);
|
| 155 |
|
|
}
|
| 156 |
|
|
|
| 157 |
|
|
/* Called from crtbegin.o to deregister the unwind info for an object. */
|
| 158 |
|
|
/* ??? Glibc has for a while now exported __register_frame_info and
|
| 159 |
|
|
__deregister_frame_info. If we call __register_frame_info_bases
|
| 160 |
|
|
from crtbegin (wherein it is declared weak), and this object does
|
| 161 |
|
|
not get pulled from libgcc.a for other reasons, then the
|
| 162 |
|
|
invocation of __deregister_frame_info will be resolved from glibc.
|
| 163 |
|
|
Since the registration did not happen there, we'll die.
|
| 164 |
|
|
|
| 165 |
|
|
Therefore, declare a new deregistration entry point that does the
|
| 166 |
|
|
exact same thing, but will resolve to the same library as
|
| 167 |
|
|
implements __register_frame_info_bases. */
|
| 168 |
|
|
|
| 169 |
|
|
void *
|
| 170 |
|
|
__deregister_frame_info_bases (const void *begin)
|
| 171 |
|
|
{
|
| 172 |
|
|
struct object **p;
|
| 173 |
|
|
struct object *ob = 0;
|
| 174 |
|
|
|
| 175 |
|
|
/* If .eh_frame is empty, we haven't registered. */
|
| 176 |
|
|
if ((const uword *) begin == 0 || *(const uword *) begin == 0)
|
| 177 |
|
|
return ob;
|
| 178 |
|
|
|
| 179 |
|
|
init_object_mutex_once ();
|
| 180 |
|
|
__gthread_mutex_lock (&object_mutex);
|
| 181 |
|
|
|
| 182 |
|
|
for (p = &unseen_objects; *p ; p = &(*p)->next)
|
| 183 |
|
|
if ((*p)->u.single == begin)
|
| 184 |
|
|
{
|
| 185 |
|
|
ob = *p;
|
| 186 |
|
|
*p = ob->next;
|
| 187 |
|
|
goto out;
|
| 188 |
|
|
}
|
| 189 |
|
|
|
| 190 |
|
|
for (p = &seen_objects; *p ; p = &(*p)->next)
|
| 191 |
|
|
if ((*p)->s.b.sorted)
|
| 192 |
|
|
{
|
| 193 |
|
|
if ((*p)->u.sort->orig_data == begin)
|
| 194 |
|
|
{
|
| 195 |
|
|
ob = *p;
|
| 196 |
|
|
*p = ob->next;
|
| 197 |
|
|
free (ob->u.sort);
|
| 198 |
|
|
goto out;
|
| 199 |
|
|
}
|
| 200 |
|
|
}
|
| 201 |
|
|
else
|
| 202 |
|
|
{
|
| 203 |
|
|
if ((*p)->u.single == begin)
|
| 204 |
|
|
{
|
| 205 |
|
|
ob = *p;
|
| 206 |
|
|
*p = ob->next;
|
| 207 |
|
|
goto out;
|
| 208 |
|
|
}
|
| 209 |
|
|
}
|
| 210 |
|
|
|
| 211 |
|
|
out:
|
| 212 |
|
|
__gthread_mutex_unlock (&object_mutex);
|
| 213 |
|
|
gcc_assert (ob);
|
| 214 |
|
|
return (void *) ob;
|
| 215 |
|
|
}
|
| 216 |
|
|
|
| 217 |
|
|
void *
|
| 218 |
|
|
__deregister_frame_info (const void *begin)
|
| 219 |
|
|
{
|
| 220 |
|
|
return __deregister_frame_info_bases (begin);
|
| 221 |
|
|
}
|
| 222 |
|
|
|
| 223 |
|
|
void
|
| 224 |
|
|
__deregister_frame (void *begin)
|
| 225 |
|
|
{
|
| 226 |
|
|
/* If .eh_frame is empty, we haven't registered. */
|
| 227 |
|
|
if (*(uword *) begin != 0)
|
| 228 |
|
|
free (__deregister_frame_info (begin));
|
| 229 |
|
|
}
|
| 230 |
|
|
|
| 231 |
|
|
|
| 232 |
|
|
/* Like base_of_encoded_value, but take the base from a struct object
|
| 233 |
|
|
instead of an _Unwind_Context. */
|
| 234 |
|
|
|
| 235 |
|
|
static _Unwind_Ptr
|
| 236 |
|
|
base_from_object (unsigned char encoding, struct object *ob)
|
| 237 |
|
|
{
|
| 238 |
|
|
if (encoding == DW_EH_PE_omit)
|
| 239 |
|
|
return 0;
|
| 240 |
|
|
|
| 241 |
|
|
switch (encoding & 0x70)
|
| 242 |
|
|
{
|
| 243 |
|
|
case DW_EH_PE_absptr:
|
| 244 |
|
|
case DW_EH_PE_pcrel:
|
| 245 |
|
|
case DW_EH_PE_aligned:
|
| 246 |
|
|
return 0;
|
| 247 |
|
|
|
| 248 |
|
|
case DW_EH_PE_textrel:
|
| 249 |
|
|
return (_Unwind_Ptr) ob->tbase;
|
| 250 |
|
|
case DW_EH_PE_datarel:
|
| 251 |
|
|
return (_Unwind_Ptr) ob->dbase;
|
| 252 |
|
|
default:
|
| 253 |
|
|
gcc_unreachable ();
|
| 254 |
|
|
}
|
| 255 |
|
|
}
|
| 256 |
|
|
|
| 257 |
|
|
/* Return the FDE pointer encoding from the CIE. */
|
| 258 |
|
|
/* ??? This is a subset of extract_cie_info from unwind-dw2.c. */
|
| 259 |
|
|
|
| 260 |
|
|
static int
|
| 261 |
|
|
get_cie_encoding (const struct dwarf_cie *cie)
|
| 262 |
|
|
{
|
| 263 |
|
|
const unsigned char *aug, *p;
|
| 264 |
|
|
_Unwind_Ptr dummy;
|
| 265 |
|
|
_uleb128_t utmp;
|
| 266 |
|
|
_sleb128_t stmp;
|
| 267 |
|
|
|
| 268 |
|
|
aug = cie->augmentation;
|
| 269 |
|
|
p = aug + strlen ((const char *)aug) + 1; /* Skip the augmentation string. */
|
| 270 |
|
|
if (__builtin_expect (cie->version >= 4, 0))
|
| 271 |
|
|
{
|
| 272 |
|
|
if (p[0] != sizeof (void *) || p[1] != 0)
|
| 273 |
|
|
return DW_EH_PE_omit; /* We are not prepared to handle unexpected
|
| 274 |
|
|
address sizes or segment selectors. */
|
| 275 |
|
|
p += 2; /* Skip address size and segment size. */
|
| 276 |
|
|
}
|
| 277 |
|
|
|
| 278 |
|
|
if (aug[0] != 'z')
|
| 279 |
|
|
return DW_EH_PE_absptr;
|
| 280 |
|
|
|
| 281 |
|
|
p = read_uleb128 (p, &utmp); /* Skip code alignment. */
|
| 282 |
|
|
p = read_sleb128 (p, &stmp); /* Skip data alignment. */
|
| 283 |
|
|
if (cie->version == 1) /* Skip return address column. */
|
| 284 |
|
|
p++;
|
| 285 |
|
|
else
|
| 286 |
|
|
p = read_uleb128 (p, &utmp);
|
| 287 |
|
|
|
| 288 |
|
|
aug++; /* Skip 'z' */
|
| 289 |
|
|
p = read_uleb128 (p, &utmp); /* Skip augmentation length. */
|
| 290 |
|
|
while (1)
|
| 291 |
|
|
{
|
| 292 |
|
|
/* This is what we're looking for. */
|
| 293 |
|
|
if (*aug == 'R')
|
| 294 |
|
|
return *p;
|
| 295 |
|
|
/* Personality encoding and pointer. */
|
| 296 |
|
|
else if (*aug == 'P')
|
| 297 |
|
|
{
|
| 298 |
|
|
/* ??? Avoid dereferencing indirect pointers, since we're
|
| 299 |
|
|
faking the base address. Gotta keep DW_EH_PE_aligned
|
| 300 |
|
|
intact, however. */
|
| 301 |
|
|
p = read_encoded_value_with_base (*p & 0x7F, 0, p + 1, &dummy);
|
| 302 |
|
|
}
|
| 303 |
|
|
/* LSDA encoding. */
|
| 304 |
|
|
else if (*aug == 'L')
|
| 305 |
|
|
p++;
|
| 306 |
|
|
/* Otherwise end of string, or unknown augmentation. */
|
| 307 |
|
|
else
|
| 308 |
|
|
return DW_EH_PE_absptr;
|
| 309 |
|
|
aug++;
|
| 310 |
|
|
}
|
| 311 |
|
|
}
|
| 312 |
|
|
|
| 313 |
|
|
static inline int
|
| 314 |
|
|
get_fde_encoding (const struct dwarf_fde *f)
|
| 315 |
|
|
{
|
| 316 |
|
|
return get_cie_encoding (get_cie (f));
|
| 317 |
|
|
}
|
| 318 |
|
|
|
| 319 |
|
|
|
| 320 |
|
|
/* Sorting an array of FDEs by address.
|
| 321 |
|
|
(Ideally we would have the linker sort the FDEs so we don't have to do
|
| 322 |
|
|
it at run time. But the linkers are not yet prepared for this.) */
|
| 323 |
|
|
|
| 324 |
|
|
/* Comparison routines. Three variants of increasing complexity. */
|
| 325 |
|
|
|
| 326 |
|
|
static int
|
| 327 |
|
|
fde_unencoded_compare (struct object *ob __attribute__((unused)),
|
| 328 |
|
|
const fde *x, const fde *y)
|
| 329 |
|
|
{
|
| 330 |
|
|
_Unwind_Ptr x_ptr, y_ptr;
|
| 331 |
|
|
memcpy (&x_ptr, x->pc_begin, sizeof (_Unwind_Ptr));
|
| 332 |
|
|
memcpy (&y_ptr, y->pc_begin, sizeof (_Unwind_Ptr));
|
| 333 |
|
|
|
| 334 |
|
|
if (x_ptr > y_ptr)
|
| 335 |
|
|
return 1;
|
| 336 |
|
|
if (x_ptr < y_ptr)
|
| 337 |
|
|
return -1;
|
| 338 |
|
|
return 0;
|
| 339 |
|
|
}
|
| 340 |
|
|
|
| 341 |
|
|
static int
|
| 342 |
|
|
fde_single_encoding_compare (struct object *ob, const fde *x, const fde *y)
|
| 343 |
|
|
{
|
| 344 |
|
|
_Unwind_Ptr base, x_ptr, y_ptr;
|
| 345 |
|
|
|
| 346 |
|
|
base = base_from_object (ob->s.b.encoding, ob);
|
| 347 |
|
|
read_encoded_value_with_base (ob->s.b.encoding, base, x->pc_begin, &x_ptr);
|
| 348 |
|
|
read_encoded_value_with_base (ob->s.b.encoding, base, y->pc_begin, &y_ptr);
|
| 349 |
|
|
|
| 350 |
|
|
if (x_ptr > y_ptr)
|
| 351 |
|
|
return 1;
|
| 352 |
|
|
if (x_ptr < y_ptr)
|
| 353 |
|
|
return -1;
|
| 354 |
|
|
return 0;
|
| 355 |
|
|
}
|
| 356 |
|
|
|
| 357 |
|
|
static int
|
| 358 |
|
|
fde_mixed_encoding_compare (struct object *ob, const fde *x, const fde *y)
|
| 359 |
|
|
{
|
| 360 |
|
|
int x_encoding, y_encoding;
|
| 361 |
|
|
_Unwind_Ptr x_ptr, y_ptr;
|
| 362 |
|
|
|
| 363 |
|
|
x_encoding = get_fde_encoding (x);
|
| 364 |
|
|
read_encoded_value_with_base (x_encoding, base_from_object (x_encoding, ob),
|
| 365 |
|
|
x->pc_begin, &x_ptr);
|
| 366 |
|
|
|
| 367 |
|
|
y_encoding = get_fde_encoding (y);
|
| 368 |
|
|
read_encoded_value_with_base (y_encoding, base_from_object (y_encoding, ob),
|
| 369 |
|
|
y->pc_begin, &y_ptr);
|
| 370 |
|
|
|
| 371 |
|
|
if (x_ptr > y_ptr)
|
| 372 |
|
|
return 1;
|
| 373 |
|
|
if (x_ptr < y_ptr)
|
| 374 |
|
|
return -1;
|
| 375 |
|
|
return 0;
|
| 376 |
|
|
}
|
| 377 |
|
|
|
| 378 |
|
|
typedef int (*fde_compare_t) (struct object *, const fde *, const fde *);
|
| 379 |
|
|
|
| 380 |
|
|
|
| 381 |
|
|
/* This is a special mix of insertion sort and heap sort, optimized for
|
| 382 |
|
|
the data sets that actually occur. They look like
|
| 383 |
|
|
101 102 103 127 128 105 108 110 190 111 115 119 125 160 126 129 130.
|
| 384 |
|
|
I.e. a linearly increasing sequence (coming from functions in the text
|
| 385 |
|
|
section), with additionally a few unordered elements (coming from functions
|
| 386 |
|
|
in gnu_linkonce sections) whose values are higher than the values in the
|
| 387 |
|
|
surrounding linear sequence (but not necessarily higher than the values
|
| 388 |
|
|
at the end of the linear sequence!).
|
| 389 |
|
|
The worst-case total run time is O(N) + O(n log (n)), where N is the
|
| 390 |
|
|
total number of FDEs and n is the number of erratic ones. */
|
| 391 |
|
|
|
| 392 |
|
|
struct fde_accumulator
|
| 393 |
|
|
{
|
| 394 |
|
|
struct fde_vector *linear;
|
| 395 |
|
|
struct fde_vector *erratic;
|
| 396 |
|
|
};
|
| 397 |
|
|
|
| 398 |
|
|
static inline int
|
| 399 |
|
|
start_fde_sort (struct fde_accumulator *accu, size_t count)
|
| 400 |
|
|
{
|
| 401 |
|
|
size_t size;
|
| 402 |
|
|
if (! count)
|
| 403 |
|
|
return 0;
|
| 404 |
|
|
|
| 405 |
|
|
size = sizeof (struct fde_vector) + sizeof (const fde *) * count;
|
| 406 |
|
|
if ((accu->linear = malloc (size)))
|
| 407 |
|
|
{
|
| 408 |
|
|
accu->linear->count = 0;
|
| 409 |
|
|
if ((accu->erratic = malloc (size)))
|
| 410 |
|
|
accu->erratic->count = 0;
|
| 411 |
|
|
return 1;
|
| 412 |
|
|
}
|
| 413 |
|
|
else
|
| 414 |
|
|
return 0;
|
| 415 |
|
|
}
|
| 416 |
|
|
|
| 417 |
|
|
static inline void
|
| 418 |
|
|
fde_insert (struct fde_accumulator *accu, const fde *this_fde)
|
| 419 |
|
|
{
|
| 420 |
|
|
if (accu->linear)
|
| 421 |
|
|
accu->linear->array[accu->linear->count++] = this_fde;
|
| 422 |
|
|
}
|
| 423 |
|
|
|
| 424 |
|
|
/* Split LINEAR into a linear sequence with low values and an erratic
|
| 425 |
|
|
sequence with high values, put the linear one (of longest possible
|
| 426 |
|
|
length) into LINEAR and the erratic one into ERRATIC. This is O(N).
|
| 427 |
|
|
|
| 428 |
|
|
Because the longest linear sequence we are trying to locate within the
|
| 429 |
|
|
incoming LINEAR array can be interspersed with (high valued) erratic
|
| 430 |
|
|
entries. We construct a chain indicating the sequenced entries.
|
| 431 |
|
|
To avoid having to allocate this chain, we overlay it onto the space of
|
| 432 |
|
|
the ERRATIC array during construction. A final pass iterates over the
|
| 433 |
|
|
chain to determine what should be placed in the ERRATIC array, and
|
| 434 |
|
|
what is the linear sequence. This overlay is safe from aliasing. */
|
| 435 |
|
|
|
| 436 |
|
|
static inline void
|
| 437 |
|
|
fde_split (struct object *ob, fde_compare_t fde_compare,
|
| 438 |
|
|
struct fde_vector *linear, struct fde_vector *erratic)
|
| 439 |
|
|
{
|
| 440 |
|
|
static const fde *marker;
|
| 441 |
|
|
size_t count = linear->count;
|
| 442 |
|
|
const fde *const *chain_end = ▮
|
| 443 |
|
|
size_t i, j, k;
|
| 444 |
|
|
|
| 445 |
|
|
/* This should optimize out, but it is wise to make sure this assumption
|
| 446 |
|
|
is correct. Should these have different sizes, we cannot cast between
|
| 447 |
|
|
them and the overlaying onto ERRATIC will not work. */
|
| 448 |
|
|
gcc_assert (sizeof (const fde *) == sizeof (const fde **));
|
| 449 |
|
|
|
| 450 |
|
|
for (i = 0; i < count; i++)
|
| 451 |
|
|
{
|
| 452 |
|
|
const fde *const *probe;
|
| 453 |
|
|
|
| 454 |
|
|
for (probe = chain_end;
|
| 455 |
|
|
probe != &marker && fde_compare (ob, linear->array[i], *probe) < 0;
|
| 456 |
|
|
probe = chain_end)
|
| 457 |
|
|
{
|
| 458 |
|
|
chain_end = (const fde *const*) erratic->array[probe - linear->array];
|
| 459 |
|
|
erratic->array[probe - linear->array] = NULL;
|
| 460 |
|
|
}
|
| 461 |
|
|
erratic->array[i] = (const fde *) chain_end;
|
| 462 |
|
|
chain_end = &linear->array[i];
|
| 463 |
|
|
}
|
| 464 |
|
|
|
| 465 |
|
|
/* Each entry in LINEAR which is part of the linear sequence we have
|
| 466 |
|
|
discovered will correspond to a non-NULL entry in the chain we built in
|
| 467 |
|
|
the ERRATIC array. */
|
| 468 |
|
|
for (i = j = k = 0; i < count; i++)
|
| 469 |
|
|
if (erratic->array[i])
|
| 470 |
|
|
linear->array[j++] = linear->array[i];
|
| 471 |
|
|
else
|
| 472 |
|
|
erratic->array[k++] = linear->array[i];
|
| 473 |
|
|
linear->count = j;
|
| 474 |
|
|
erratic->count = k;
|
| 475 |
|
|
}
|
| 476 |
|
|
|
| 477 |
|
|
#define SWAP(x,y) do { const fde * tmp = x; x = y; y = tmp; } while (0)
|
| 478 |
|
|
|
| 479 |
|
|
/* Convert a semi-heap to a heap. A semi-heap is a heap except possibly
|
| 480 |
|
|
for the first (root) node; push it down to its rightful place. */
|
| 481 |
|
|
|
| 482 |
|
|
static void
|
| 483 |
|
|
frame_downheap (struct object *ob, fde_compare_t fde_compare, const fde **a,
|
| 484 |
|
|
int lo, int hi)
|
| 485 |
|
|
{
|
| 486 |
|
|
int i, j;
|
| 487 |
|
|
|
| 488 |
|
|
for (i = lo, j = 2*i+1;
|
| 489 |
|
|
j < hi;
|
| 490 |
|
|
j = 2*i+1)
|
| 491 |
|
|
{
|
| 492 |
|
|
if (j+1 < hi && fde_compare (ob, a[j], a[j+1]) < 0)
|
| 493 |
|
|
++j;
|
| 494 |
|
|
|
| 495 |
|
|
if (fde_compare (ob, a[i], a[j]) < 0)
|
| 496 |
|
|
{
|
| 497 |
|
|
SWAP (a[i], a[j]);
|
| 498 |
|
|
i = j;
|
| 499 |
|
|
}
|
| 500 |
|
|
else
|
| 501 |
|
|
break;
|
| 502 |
|
|
}
|
| 503 |
|
|
}
|
| 504 |
|
|
|
| 505 |
|
|
/* This is O(n log(n)). BSD/OS defines heapsort in stdlib.h, so we must
|
| 506 |
|
|
use a name that does not conflict. */
|
| 507 |
|
|
|
| 508 |
|
|
static void
|
| 509 |
|
|
frame_heapsort (struct object *ob, fde_compare_t fde_compare,
|
| 510 |
|
|
struct fde_vector *erratic)
|
| 511 |
|
|
{
|
| 512 |
|
|
/* For a description of this algorithm, see:
|
| 513 |
|
|
Samuel P. Harbison, Guy L. Steele Jr.: C, a reference manual, 2nd ed.,
|
| 514 |
|
|
p. 60-61. */
|
| 515 |
|
|
const fde ** a = erratic->array;
|
| 516 |
|
|
/* A portion of the array is called a "heap" if for all i>=0:
|
| 517 |
|
|
If i and 2i+1 are valid indices, then a[i] >= a[2i+1].
|
| 518 |
|
|
If i and 2i+2 are valid indices, then a[i] >= a[2i+2]. */
|
| 519 |
|
|
size_t n = erratic->count;
|
| 520 |
|
|
int m;
|
| 521 |
|
|
|
| 522 |
|
|
/* Expand our heap incrementally from the end of the array, heapifying
|
| 523 |
|
|
each resulting semi-heap as we go. After each step, a[m] is the top
|
| 524 |
|
|
of a heap. */
|
| 525 |
|
|
for (m = n/2-1; m >= 0; --m)
|
| 526 |
|
|
frame_downheap (ob, fde_compare, a, m, n);
|
| 527 |
|
|
|
| 528 |
|
|
/* Shrink our heap incrementally from the end of the array, first
|
| 529 |
|
|
swapping out the largest element a[0] and then re-heapifying the
|
| 530 |
|
|
resulting semi-heap. After each step, a[0..m) is a heap. */
|
| 531 |
|
|
for (m = n-1; m >= 1; --m)
|
| 532 |
|
|
{
|
| 533 |
|
|
SWAP (a[0], a[m]);
|
| 534 |
|
|
frame_downheap (ob, fde_compare, a, 0, m);
|
| 535 |
|
|
}
|
| 536 |
|
|
#undef SWAP
|
| 537 |
|
|
}
|
| 538 |
|
|
|
| 539 |
|
|
/* Merge V1 and V2, both sorted, and put the result into V1. */
|
| 540 |
|
|
static inline void
|
| 541 |
|
|
fde_merge (struct object *ob, fde_compare_t fde_compare,
|
| 542 |
|
|
struct fde_vector *v1, struct fde_vector *v2)
|
| 543 |
|
|
{
|
| 544 |
|
|
size_t i1, i2;
|
| 545 |
|
|
const fde * fde2;
|
| 546 |
|
|
|
| 547 |
|
|
i2 = v2->count;
|
| 548 |
|
|
if (i2 > 0)
|
| 549 |
|
|
{
|
| 550 |
|
|
i1 = v1->count;
|
| 551 |
|
|
do
|
| 552 |
|
|
{
|
| 553 |
|
|
i2--;
|
| 554 |
|
|
fde2 = v2->array[i2];
|
| 555 |
|
|
while (i1 > 0 && fde_compare (ob, v1->array[i1-1], fde2) > 0)
|
| 556 |
|
|
{
|
| 557 |
|
|
v1->array[i1+i2] = v1->array[i1-1];
|
| 558 |
|
|
i1--;
|
| 559 |
|
|
}
|
| 560 |
|
|
v1->array[i1+i2] = fde2;
|
| 561 |
|
|
}
|
| 562 |
|
|
while (i2 > 0);
|
| 563 |
|
|
v1->count += v2->count;
|
| 564 |
|
|
}
|
| 565 |
|
|
}
|
| 566 |
|
|
|
| 567 |
|
|
static inline void
|
| 568 |
|
|
end_fde_sort (struct object *ob, struct fde_accumulator *accu, size_t count)
|
| 569 |
|
|
{
|
| 570 |
|
|
fde_compare_t fde_compare;
|
| 571 |
|
|
|
| 572 |
|
|
gcc_assert (!accu->linear || accu->linear->count == count);
|
| 573 |
|
|
|
| 574 |
|
|
if (ob->s.b.mixed_encoding)
|
| 575 |
|
|
fde_compare = fde_mixed_encoding_compare;
|
| 576 |
|
|
else if (ob->s.b.encoding == DW_EH_PE_absptr)
|
| 577 |
|
|
fde_compare = fde_unencoded_compare;
|
| 578 |
|
|
else
|
| 579 |
|
|
fde_compare = fde_single_encoding_compare;
|
| 580 |
|
|
|
| 581 |
|
|
if (accu->erratic)
|
| 582 |
|
|
{
|
| 583 |
|
|
fde_split (ob, fde_compare, accu->linear, accu->erratic);
|
| 584 |
|
|
gcc_assert (accu->linear->count + accu->erratic->count == count);
|
| 585 |
|
|
frame_heapsort (ob, fde_compare, accu->erratic);
|
| 586 |
|
|
fde_merge (ob, fde_compare, accu->linear, accu->erratic);
|
| 587 |
|
|
free (accu->erratic);
|
| 588 |
|
|
}
|
| 589 |
|
|
else
|
| 590 |
|
|
{
|
| 591 |
|
|
/* We've not managed to malloc an erratic array,
|
| 592 |
|
|
so heap sort in the linear one. */
|
| 593 |
|
|
frame_heapsort (ob, fde_compare, accu->linear);
|
| 594 |
|
|
}
|
| 595 |
|
|
}
|
| 596 |
|
|
|
| 597 |
|
|
|
| 598 |
|
|
/* Update encoding, mixed_encoding, and pc_begin for OB for the
|
| 599 |
|
|
fde array beginning at THIS_FDE. Return the number of fdes
|
| 600 |
|
|
encountered along the way. */
|
| 601 |
|
|
|
| 602 |
|
|
static size_t
|
| 603 |
|
|
classify_object_over_fdes (struct object *ob, const fde *this_fde)
|
| 604 |
|
|
{
|
| 605 |
|
|
const struct dwarf_cie *last_cie = 0;
|
| 606 |
|
|
size_t count = 0;
|
| 607 |
|
|
int encoding = DW_EH_PE_absptr;
|
| 608 |
|
|
_Unwind_Ptr base = 0;
|
| 609 |
|
|
|
| 610 |
|
|
for (; ! last_fde (ob, this_fde); this_fde = next_fde (this_fde))
|
| 611 |
|
|
{
|
| 612 |
|
|
const struct dwarf_cie *this_cie;
|
| 613 |
|
|
_Unwind_Ptr mask, pc_begin;
|
| 614 |
|
|
|
| 615 |
|
|
/* Skip CIEs. */
|
| 616 |
|
|
if (this_fde->CIE_delta == 0)
|
| 617 |
|
|
continue;
|
| 618 |
|
|
|
| 619 |
|
|
/* Determine the encoding for this FDE. Note mixed encoded
|
| 620 |
|
|
objects for later. */
|
| 621 |
|
|
this_cie = get_cie (this_fde);
|
| 622 |
|
|
if (this_cie != last_cie)
|
| 623 |
|
|
{
|
| 624 |
|
|
last_cie = this_cie;
|
| 625 |
|
|
encoding = get_cie_encoding (this_cie);
|
| 626 |
|
|
if (encoding == DW_EH_PE_omit)
|
| 627 |
|
|
return -1;
|
| 628 |
|
|
base = base_from_object (encoding, ob);
|
| 629 |
|
|
if (ob->s.b.encoding == DW_EH_PE_omit)
|
| 630 |
|
|
ob->s.b.encoding = encoding;
|
| 631 |
|
|
else if (ob->s.b.encoding != encoding)
|
| 632 |
|
|
ob->s.b.mixed_encoding = 1;
|
| 633 |
|
|
}
|
| 634 |
|
|
|
| 635 |
|
|
read_encoded_value_with_base (encoding, base, this_fde->pc_begin,
|
| 636 |
|
|
&pc_begin);
|
| 637 |
|
|
|
| 638 |
|
|
/* Take care to ignore link-once functions that were removed.
|
| 639 |
|
|
In these cases, the function address will be NULL, but if
|
| 640 |
|
|
the encoding is smaller than a pointer a true NULL may not
|
| 641 |
|
|
be representable. Assume 0 in the representable bits is NULL. */
|
| 642 |
|
|
mask = size_of_encoded_value (encoding);
|
| 643 |
|
|
if (mask < sizeof (void *))
|
| 644 |
|
|
mask = (((_Unwind_Ptr) 1) << (mask << 3)) - 1;
|
| 645 |
|
|
else
|
| 646 |
|
|
mask = -1;
|
| 647 |
|
|
|
| 648 |
|
|
if ((pc_begin & mask) == 0)
|
| 649 |
|
|
continue;
|
| 650 |
|
|
|
| 651 |
|
|
count += 1;
|
| 652 |
|
|
if ((void *) pc_begin < ob->pc_begin)
|
| 653 |
|
|
ob->pc_begin = (void *) pc_begin;
|
| 654 |
|
|
}
|
| 655 |
|
|
|
| 656 |
|
|
return count;
|
| 657 |
|
|
}
|
| 658 |
|
|
|
| 659 |
|
|
static void
|
| 660 |
|
|
add_fdes (struct object *ob, struct fde_accumulator *accu, const fde *this_fde)
|
| 661 |
|
|
{
|
| 662 |
|
|
const struct dwarf_cie *last_cie = 0;
|
| 663 |
|
|
int encoding = ob->s.b.encoding;
|
| 664 |
|
|
_Unwind_Ptr base = base_from_object (ob->s.b.encoding, ob);
|
| 665 |
|
|
|
| 666 |
|
|
for (; ! last_fde (ob, this_fde); this_fde = next_fde (this_fde))
|
| 667 |
|
|
{
|
| 668 |
|
|
const struct dwarf_cie *this_cie;
|
| 669 |
|
|
|
| 670 |
|
|
/* Skip CIEs. */
|
| 671 |
|
|
if (this_fde->CIE_delta == 0)
|
| 672 |
|
|
continue;
|
| 673 |
|
|
|
| 674 |
|
|
if (ob->s.b.mixed_encoding)
|
| 675 |
|
|
{
|
| 676 |
|
|
/* Determine the encoding for this FDE. Note mixed encoded
|
| 677 |
|
|
objects for later. */
|
| 678 |
|
|
this_cie = get_cie (this_fde);
|
| 679 |
|
|
if (this_cie != last_cie)
|
| 680 |
|
|
{
|
| 681 |
|
|
last_cie = this_cie;
|
| 682 |
|
|
encoding = get_cie_encoding (this_cie);
|
| 683 |
|
|
base = base_from_object (encoding, ob);
|
| 684 |
|
|
}
|
| 685 |
|
|
}
|
| 686 |
|
|
|
| 687 |
|
|
if (encoding == DW_EH_PE_absptr)
|
| 688 |
|
|
{
|
| 689 |
|
|
_Unwind_Ptr ptr;
|
| 690 |
|
|
memcpy (&ptr, this_fde->pc_begin, sizeof (_Unwind_Ptr));
|
| 691 |
|
|
if (ptr == 0)
|
| 692 |
|
|
continue;
|
| 693 |
|
|
}
|
| 694 |
|
|
else
|
| 695 |
|
|
{
|
| 696 |
|
|
_Unwind_Ptr pc_begin, mask;
|
| 697 |
|
|
|
| 698 |
|
|
read_encoded_value_with_base (encoding, base, this_fde->pc_begin,
|
| 699 |
|
|
&pc_begin);
|
| 700 |
|
|
|
| 701 |
|
|
/* Take care to ignore link-once functions that were removed.
|
| 702 |
|
|
In these cases, the function address will be NULL, but if
|
| 703 |
|
|
the encoding is smaller than a pointer a true NULL may not
|
| 704 |
|
|
be representable. Assume 0 in the representable bits is NULL. */
|
| 705 |
|
|
mask = size_of_encoded_value (encoding);
|
| 706 |
|
|
if (mask < sizeof (void *))
|
| 707 |
|
|
mask = (((_Unwind_Ptr) 1) << (mask << 3)) - 1;
|
| 708 |
|
|
else
|
| 709 |
|
|
mask = -1;
|
| 710 |
|
|
|
| 711 |
|
|
if ((pc_begin & mask) == 0)
|
| 712 |
|
|
continue;
|
| 713 |
|
|
}
|
| 714 |
|
|
|
| 715 |
|
|
fde_insert (accu, this_fde);
|
| 716 |
|
|
}
|
| 717 |
|
|
}
|
| 718 |
|
|
|
| 719 |
|
|
/* Set up a sorted array of pointers to FDEs for a loaded object. We
|
| 720 |
|
|
count up the entries before allocating the array because it's likely to
|
| 721 |
|
|
be faster. We can be called multiple times, should we have failed to
|
| 722 |
|
|
allocate a sorted fde array on a previous occasion. */
|
| 723 |
|
|
|
| 724 |
|
|
static inline void
|
| 725 |
|
|
init_object (struct object* ob)
|
| 726 |
|
|
{
|
| 727 |
|
|
struct fde_accumulator accu;
|
| 728 |
|
|
size_t count;
|
| 729 |
|
|
|
| 730 |
|
|
count = ob->s.b.count;
|
| 731 |
|
|
if (count == 0)
|
| 732 |
|
|
{
|
| 733 |
|
|
if (ob->s.b.from_array)
|
| 734 |
|
|
{
|
| 735 |
|
|
fde **p = ob->u.array;
|
| 736 |
|
|
for (count = 0; *p; ++p)
|
| 737 |
|
|
{
|
| 738 |
|
|
size_t cur_count = classify_object_over_fdes (ob, *p);
|
| 739 |
|
|
if (cur_count == (size_t) -1)
|
| 740 |
|
|
goto unhandled_fdes;
|
| 741 |
|
|
count += cur_count;
|
| 742 |
|
|
}
|
| 743 |
|
|
}
|
| 744 |
|
|
else
|
| 745 |
|
|
{
|
| 746 |
|
|
count = classify_object_over_fdes (ob, ob->u.single);
|
| 747 |
|
|
if (count == (size_t) -1)
|
| 748 |
|
|
{
|
| 749 |
|
|
static const fde terminator;
|
| 750 |
|
|
unhandled_fdes:
|
| 751 |
|
|
ob->s.i = 0;
|
| 752 |
|
|
ob->s.b.encoding = DW_EH_PE_omit;
|
| 753 |
|
|
ob->u.single = &terminator;
|
| 754 |
|
|
return;
|
| 755 |
|
|
}
|
| 756 |
|
|
}
|
| 757 |
|
|
|
| 758 |
|
|
/* The count field we have in the main struct object is somewhat
|
| 759 |
|
|
limited, but should suffice for virtually all cases. If the
|
| 760 |
|
|
counted value doesn't fit, re-write a zero. The worst that
|
| 761 |
|
|
happens is that we re-count next time -- admittedly non-trivial
|
| 762 |
|
|
in that this implies some 2M fdes, but at least we function. */
|
| 763 |
|
|
ob->s.b.count = count;
|
| 764 |
|
|
if (ob->s.b.count != count)
|
| 765 |
|
|
ob->s.b.count = 0;
|
| 766 |
|
|
}
|
| 767 |
|
|
|
| 768 |
|
|
if (!start_fde_sort (&accu, count))
|
| 769 |
|
|
return;
|
| 770 |
|
|
|
| 771 |
|
|
if (ob->s.b.from_array)
|
| 772 |
|
|
{
|
| 773 |
|
|
fde **p;
|
| 774 |
|
|
for (p = ob->u.array; *p; ++p)
|
| 775 |
|
|
add_fdes (ob, &accu, *p);
|
| 776 |
|
|
}
|
| 777 |
|
|
else
|
| 778 |
|
|
add_fdes (ob, &accu, ob->u.single);
|
| 779 |
|
|
|
| 780 |
|
|
end_fde_sort (ob, &accu, count);
|
| 781 |
|
|
|
| 782 |
|
|
/* Save the original fde pointer, since this is the key by which the
|
| 783 |
|
|
DSO will deregister the object. */
|
| 784 |
|
|
accu.linear->orig_data = ob->u.single;
|
| 785 |
|
|
ob->u.sort = accu.linear;
|
| 786 |
|
|
|
| 787 |
|
|
ob->s.b.sorted = 1;
|
| 788 |
|
|
}
|
| 789 |
|
|
|
| 790 |
|
|
/* A linear search through a set of FDEs for the given PC. This is
|
| 791 |
|
|
used when there was insufficient memory to allocate and sort an
|
| 792 |
|
|
array. */
|
| 793 |
|
|
|
| 794 |
|
|
static const fde *
|
| 795 |
|
|
linear_search_fdes (struct object *ob, const fde *this_fde, void *pc)
|
| 796 |
|
|
{
|
| 797 |
|
|
const struct dwarf_cie *last_cie = 0;
|
| 798 |
|
|
int encoding = ob->s.b.encoding;
|
| 799 |
|
|
_Unwind_Ptr base = base_from_object (ob->s.b.encoding, ob);
|
| 800 |
|
|
|
| 801 |
|
|
for (; ! last_fde (ob, this_fde); this_fde = next_fde (this_fde))
|
| 802 |
|
|
{
|
| 803 |
|
|
const struct dwarf_cie *this_cie;
|
| 804 |
|
|
_Unwind_Ptr pc_begin, pc_range;
|
| 805 |
|
|
|
| 806 |
|
|
/* Skip CIEs. */
|
| 807 |
|
|
if (this_fde->CIE_delta == 0)
|
| 808 |
|
|
continue;
|
| 809 |
|
|
|
| 810 |
|
|
if (ob->s.b.mixed_encoding)
|
| 811 |
|
|
{
|
| 812 |
|
|
/* Determine the encoding for this FDE. Note mixed encoded
|
| 813 |
|
|
objects for later. */
|
| 814 |
|
|
this_cie = get_cie (this_fde);
|
| 815 |
|
|
if (this_cie != last_cie)
|
| 816 |
|
|
{
|
| 817 |
|
|
last_cie = this_cie;
|
| 818 |
|
|
encoding = get_cie_encoding (this_cie);
|
| 819 |
|
|
base = base_from_object (encoding, ob);
|
| 820 |
|
|
}
|
| 821 |
|
|
}
|
| 822 |
|
|
|
| 823 |
|
|
if (encoding == DW_EH_PE_absptr)
|
| 824 |
|
|
{
|
| 825 |
|
|
const _Unwind_Ptr *pc_array = (const _Unwind_Ptr *) this_fde->pc_begin;
|
| 826 |
|
|
pc_begin = pc_array[0];
|
| 827 |
|
|
pc_range = pc_array[1];
|
| 828 |
|
|
if (pc_begin == 0)
|
| 829 |
|
|
continue;
|
| 830 |
|
|
}
|
| 831 |
|
|
else
|
| 832 |
|
|
{
|
| 833 |
|
|
_Unwind_Ptr mask;
|
| 834 |
|
|
const unsigned char *p;
|
| 835 |
|
|
|
| 836 |
|
|
p = read_encoded_value_with_base (encoding, base,
|
| 837 |
|
|
this_fde->pc_begin, &pc_begin);
|
| 838 |
|
|
read_encoded_value_with_base (encoding & 0x0F, 0, p, &pc_range);
|
| 839 |
|
|
|
| 840 |
|
|
/* Take care to ignore link-once functions that were removed.
|
| 841 |
|
|
In these cases, the function address will be NULL, but if
|
| 842 |
|
|
the encoding is smaller than a pointer a true NULL may not
|
| 843 |
|
|
be representable. Assume 0 in the representable bits is NULL. */
|
| 844 |
|
|
mask = size_of_encoded_value (encoding);
|
| 845 |
|
|
if (mask < sizeof (void *))
|
| 846 |
|
|
mask = (((_Unwind_Ptr) 1) << (mask << 3)) - 1;
|
| 847 |
|
|
else
|
| 848 |
|
|
mask = -1;
|
| 849 |
|
|
|
| 850 |
|
|
if ((pc_begin & mask) == 0)
|
| 851 |
|
|
continue;
|
| 852 |
|
|
}
|
| 853 |
|
|
|
| 854 |
|
|
if ((_Unwind_Ptr) pc - pc_begin < pc_range)
|
| 855 |
|
|
return this_fde;
|
| 856 |
|
|
}
|
| 857 |
|
|
|
| 858 |
|
|
return NULL;
|
| 859 |
|
|
}
|
| 860 |
|
|
|
| 861 |
|
|
/* Binary search for an FDE containing the given PC. Here are three
|
| 862 |
|
|
implementations of increasing complexity. */
|
| 863 |
|
|
|
| 864 |
|
|
static inline const fde *
|
| 865 |
|
|
binary_search_unencoded_fdes (struct object *ob, void *pc)
|
| 866 |
|
|
{
|
| 867 |
|
|
struct fde_vector *vec = ob->u.sort;
|
| 868 |
|
|
size_t lo, hi;
|
| 869 |
|
|
|
| 870 |
|
|
for (lo = 0, hi = vec->count; lo < hi; )
|
| 871 |
|
|
{
|
| 872 |
|
|
size_t i = (lo + hi) / 2;
|
| 873 |
|
|
const fde *const f = vec->array[i];
|
| 874 |
|
|
void *pc_begin;
|
| 875 |
|
|
uaddr pc_range;
|
| 876 |
|
|
memcpy (&pc_begin, (const void * const *) f->pc_begin, sizeof (void *));
|
| 877 |
|
|
memcpy (&pc_range, (const uaddr *) f->pc_begin + 1, sizeof (uaddr));
|
| 878 |
|
|
|
| 879 |
|
|
if (pc < pc_begin)
|
| 880 |
|
|
hi = i;
|
| 881 |
|
|
else if (pc >= pc_begin + pc_range)
|
| 882 |
|
|
lo = i + 1;
|
| 883 |
|
|
else
|
| 884 |
|
|
return f;
|
| 885 |
|
|
}
|
| 886 |
|
|
|
| 887 |
|
|
return NULL;
|
| 888 |
|
|
}
|
| 889 |
|
|
|
| 890 |
|
|
static inline const fde *
|
| 891 |
|
|
binary_search_single_encoding_fdes (struct object *ob, void *pc)
|
| 892 |
|
|
{
|
| 893 |
|
|
struct fde_vector *vec = ob->u.sort;
|
| 894 |
|
|
int encoding = ob->s.b.encoding;
|
| 895 |
|
|
_Unwind_Ptr base = base_from_object (encoding, ob);
|
| 896 |
|
|
size_t lo, hi;
|
| 897 |
|
|
|
| 898 |
|
|
for (lo = 0, hi = vec->count; lo < hi; )
|
| 899 |
|
|
{
|
| 900 |
|
|
size_t i = (lo + hi) / 2;
|
| 901 |
|
|
const fde *f = vec->array[i];
|
| 902 |
|
|
_Unwind_Ptr pc_begin, pc_range;
|
| 903 |
|
|
const unsigned char *p;
|
| 904 |
|
|
|
| 905 |
|
|
p = read_encoded_value_with_base (encoding, base, f->pc_begin,
|
| 906 |
|
|
&pc_begin);
|
| 907 |
|
|
read_encoded_value_with_base (encoding & 0x0F, 0, p, &pc_range);
|
| 908 |
|
|
|
| 909 |
|
|
if ((_Unwind_Ptr) pc < pc_begin)
|
| 910 |
|
|
hi = i;
|
| 911 |
|
|
else if ((_Unwind_Ptr) pc >= pc_begin + pc_range)
|
| 912 |
|
|
lo = i + 1;
|
| 913 |
|
|
else
|
| 914 |
|
|
return f;
|
| 915 |
|
|
}
|
| 916 |
|
|
|
| 917 |
|
|
return NULL;
|
| 918 |
|
|
}
|
| 919 |
|
|
|
| 920 |
|
|
static inline const fde *
|
| 921 |
|
|
binary_search_mixed_encoding_fdes (struct object *ob, void *pc)
|
| 922 |
|
|
{
|
| 923 |
|
|
struct fde_vector *vec = ob->u.sort;
|
| 924 |
|
|
size_t lo, hi;
|
| 925 |
|
|
|
| 926 |
|
|
for (lo = 0, hi = vec->count; lo < hi; )
|
| 927 |
|
|
{
|
| 928 |
|
|
size_t i = (lo + hi) / 2;
|
| 929 |
|
|
const fde *f = vec->array[i];
|
| 930 |
|
|
_Unwind_Ptr pc_begin, pc_range;
|
| 931 |
|
|
const unsigned char *p;
|
| 932 |
|
|
int encoding;
|
| 933 |
|
|
|
| 934 |
|
|
encoding = get_fde_encoding (f);
|
| 935 |
|
|
p = read_encoded_value_with_base (encoding,
|
| 936 |
|
|
base_from_object (encoding, ob),
|
| 937 |
|
|
f->pc_begin, &pc_begin);
|
| 938 |
|
|
read_encoded_value_with_base (encoding & 0x0F, 0, p, &pc_range);
|
| 939 |
|
|
|
| 940 |
|
|
if ((_Unwind_Ptr) pc < pc_begin)
|
| 941 |
|
|
hi = i;
|
| 942 |
|
|
else if ((_Unwind_Ptr) pc >= pc_begin + pc_range)
|
| 943 |
|
|
lo = i + 1;
|
| 944 |
|
|
else
|
| 945 |
|
|
return f;
|
| 946 |
|
|
}
|
| 947 |
|
|
|
| 948 |
|
|
return NULL;
|
| 949 |
|
|
}
|
| 950 |
|
|
|
| 951 |
|
|
static const fde *
|
| 952 |
|
|
search_object (struct object* ob, void *pc)
|
| 953 |
|
|
{
|
| 954 |
|
|
/* If the data hasn't been sorted, try to do this now. We may have
|
| 955 |
|
|
more memory available than last time we tried. */
|
| 956 |
|
|
if (! ob->s.b.sorted)
|
| 957 |
|
|
{
|
| 958 |
|
|
init_object (ob);
|
| 959 |
|
|
|
| 960 |
|
|
/* Despite the above comment, the normal reason to get here is
|
| 961 |
|
|
that we've not processed this object before. A quick range
|
| 962 |
|
|
check is in order. */
|
| 963 |
|
|
if (pc < ob->pc_begin)
|
| 964 |
|
|
return NULL;
|
| 965 |
|
|
}
|
| 966 |
|
|
|
| 967 |
|
|
if (ob->s.b.sorted)
|
| 968 |
|
|
{
|
| 969 |
|
|
if (ob->s.b.mixed_encoding)
|
| 970 |
|
|
return binary_search_mixed_encoding_fdes (ob, pc);
|
| 971 |
|
|
else if (ob->s.b.encoding == DW_EH_PE_absptr)
|
| 972 |
|
|
return binary_search_unencoded_fdes (ob, pc);
|
| 973 |
|
|
else
|
| 974 |
|
|
return binary_search_single_encoding_fdes (ob, pc);
|
| 975 |
|
|
}
|
| 976 |
|
|
else
|
| 977 |
|
|
{
|
| 978 |
|
|
/* Long slow laborious linear search, cos we've no memory. */
|
| 979 |
|
|
if (ob->s.b.from_array)
|
| 980 |
|
|
{
|
| 981 |
|
|
fde **p;
|
| 982 |
|
|
for (p = ob->u.array; *p ; p++)
|
| 983 |
|
|
{
|
| 984 |
|
|
const fde *f = linear_search_fdes (ob, *p, pc);
|
| 985 |
|
|
if (f)
|
| 986 |
|
|
return f;
|
| 987 |
|
|
}
|
| 988 |
|
|
return NULL;
|
| 989 |
|
|
}
|
| 990 |
|
|
else
|
| 991 |
|
|
return linear_search_fdes (ob, ob->u.single, pc);
|
| 992 |
|
|
}
|
| 993 |
|
|
}
|
| 994 |
|
|
|
| 995 |
|
|
const fde *
|
| 996 |
|
|
_Unwind_Find_FDE (void *pc, struct dwarf_eh_bases *bases)
|
| 997 |
|
|
{
|
| 998 |
|
|
struct object *ob;
|
| 999 |
|
|
const fde *f = NULL;
|
| 1000 |
|
|
|
| 1001 |
|
|
init_object_mutex_once ();
|
| 1002 |
|
|
__gthread_mutex_lock (&object_mutex);
|
| 1003 |
|
|
|
| 1004 |
|
|
/* Linear search through the classified objects, to find the one
|
| 1005 |
|
|
containing the pc. Note that pc_begin is sorted descending, and
|
| 1006 |
|
|
we expect objects to be non-overlapping. */
|
| 1007 |
|
|
for (ob = seen_objects; ob; ob = ob->next)
|
| 1008 |
|
|
if (pc >= ob->pc_begin)
|
| 1009 |
|
|
{
|
| 1010 |
|
|
f = search_object (ob, pc);
|
| 1011 |
|
|
if (f)
|
| 1012 |
|
|
goto fini;
|
| 1013 |
|
|
break;
|
| 1014 |
|
|
}
|
| 1015 |
|
|
|
| 1016 |
|
|
/* Classify and search the objects we've not yet processed. */
|
| 1017 |
|
|
while ((ob = unseen_objects))
|
| 1018 |
|
|
{
|
| 1019 |
|
|
struct object **p;
|
| 1020 |
|
|
|
| 1021 |
|
|
unseen_objects = ob->next;
|
| 1022 |
|
|
f = search_object (ob, pc);
|
| 1023 |
|
|
|
| 1024 |
|
|
/* Insert the object into the classified list. */
|
| 1025 |
|
|
for (p = &seen_objects; *p ; p = &(*p)->next)
|
| 1026 |
|
|
if ((*p)->pc_begin < ob->pc_begin)
|
| 1027 |
|
|
break;
|
| 1028 |
|
|
ob->next = *p;
|
| 1029 |
|
|
*p = ob;
|
| 1030 |
|
|
|
| 1031 |
|
|
if (f)
|
| 1032 |
|
|
goto fini;
|
| 1033 |
|
|
}
|
| 1034 |
|
|
|
| 1035 |
|
|
fini:
|
| 1036 |
|
|
__gthread_mutex_unlock (&object_mutex);
|
| 1037 |
|
|
|
| 1038 |
|
|
if (f)
|
| 1039 |
|
|
{
|
| 1040 |
|
|
int encoding;
|
| 1041 |
|
|
_Unwind_Ptr func;
|
| 1042 |
|
|
|
| 1043 |
|
|
bases->tbase = ob->tbase;
|
| 1044 |
|
|
bases->dbase = ob->dbase;
|
| 1045 |
|
|
|
| 1046 |
|
|
encoding = ob->s.b.encoding;
|
| 1047 |
|
|
if (ob->s.b.mixed_encoding)
|
| 1048 |
|
|
encoding = get_fde_encoding (f);
|
| 1049 |
|
|
read_encoded_value_with_base (encoding, base_from_object (encoding, ob),
|
| 1050 |
|
|
f->pc_begin, &func);
|
| 1051 |
|
|
bases->func = (void *) func;
|
| 1052 |
|
|
}
|
| 1053 |
|
|
|
| 1054 |
|
|
return f;
|
| 1055 |
|
|
}
|