| 1 |
733 |
jeremybenn |
/* Implementation of the MATMUL intrinsic
|
| 2 |
|
|
Copyright 2002, 2005, 2006, 2007, 2009 Free Software Foundation, Inc.
|
| 3 |
|
|
Contributed by Paul Brook <paul@nowt.org>
|
| 4 |
|
|
|
| 5 |
|
|
This file is part of the GNU Fortran 95 runtime library (libgfortran).
|
| 6 |
|
|
|
| 7 |
|
|
Libgfortran is free software; you can redistribute it and/or
|
| 8 |
|
|
modify it under the terms of the GNU General Public
|
| 9 |
|
|
License as published by the Free Software Foundation; either
|
| 10 |
|
|
version 3 of the License, or (at your option) any later version.
|
| 11 |
|
|
|
| 12 |
|
|
Libgfortran is distributed in the hope that it will be useful,
|
| 13 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 14 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| 15 |
|
|
GNU General Public License for more details.
|
| 16 |
|
|
|
| 17 |
|
|
Under Section 7 of GPL version 3, you are granted additional
|
| 18 |
|
|
permissions described in the GCC Runtime Library Exception, version
|
| 19 |
|
|
3.1, as published by the Free Software Foundation.
|
| 20 |
|
|
|
| 21 |
|
|
You should have received a copy of the GNU General Public License and
|
| 22 |
|
|
a copy of the GCC Runtime Library Exception along with this program;
|
| 23 |
|
|
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
| 24 |
|
|
<http://www.gnu.org/licenses/>. */
|
| 25 |
|
|
|
| 26 |
|
|
#include "libgfortran.h"
|
| 27 |
|
|
#include <stdlib.h>
|
| 28 |
|
|
#include <string.h>
|
| 29 |
|
|
#include <assert.h>
|
| 30 |
|
|
|
| 31 |
|
|
|
| 32 |
|
|
#if defined (HAVE_GFC_INTEGER_4)
|
| 33 |
|
|
|
| 34 |
|
|
/* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
|
| 35 |
|
|
passed to us by the front-end, in which case we'll call it for large
|
| 36 |
|
|
matrices. */
|
| 37 |
|
|
|
| 38 |
|
|
typedef void (*blas_call)(const char *, const char *, const int *, const int *,
|
| 39 |
|
|
const int *, const GFC_INTEGER_4 *, const GFC_INTEGER_4 *,
|
| 40 |
|
|
const int *, const GFC_INTEGER_4 *, const int *,
|
| 41 |
|
|
const GFC_INTEGER_4 *, GFC_INTEGER_4 *, const int *,
|
| 42 |
|
|
int, int);
|
| 43 |
|
|
|
| 44 |
|
|
/* The order of loops is different in the case of plain matrix
|
| 45 |
|
|
multiplication C=MATMUL(A,B), and in the frequent special case where
|
| 46 |
|
|
the argument A is the temporary result of a TRANSPOSE intrinsic:
|
| 47 |
|
|
C=MATMUL(TRANSPOSE(A),B). Transposed temporaries are detected by
|
| 48 |
|
|
looking at their strides.
|
| 49 |
|
|
|
| 50 |
|
|
The equivalent Fortran pseudo-code is:
|
| 51 |
|
|
|
| 52 |
|
|
DIMENSION A(M,COUNT), B(COUNT,N), C(M,N)
|
| 53 |
|
|
IF (.NOT.IS_TRANSPOSED(A)) THEN
|
| 54 |
|
|
C = 0
|
| 55 |
|
|
DO J=1,N
|
| 56 |
|
|
DO K=1,COUNT
|
| 57 |
|
|
DO I=1,M
|
| 58 |
|
|
C(I,J) = C(I,J)+A(I,K)*B(K,J)
|
| 59 |
|
|
ELSE
|
| 60 |
|
|
DO J=1,N
|
| 61 |
|
|
DO I=1,M
|
| 62 |
|
|
S = 0
|
| 63 |
|
|
DO K=1,COUNT
|
| 64 |
|
|
S = S+A(I,K)*B(K,J)
|
| 65 |
|
|
C(I,J) = S
|
| 66 |
|
|
ENDIF
|
| 67 |
|
|
*/
|
| 68 |
|
|
|
| 69 |
|
|
/* If try_blas is set to a nonzero value, then the matmul function will
|
| 70 |
|
|
see if there is a way to perform the matrix multiplication by a call
|
| 71 |
|
|
to the BLAS gemm function. */
|
| 72 |
|
|
|
| 73 |
|
|
extern void matmul_i4 (gfc_array_i4 * const restrict retarray,
|
| 74 |
|
|
gfc_array_i4 * const restrict a, gfc_array_i4 * const restrict b, int try_blas,
|
| 75 |
|
|
int blas_limit, blas_call gemm);
|
| 76 |
|
|
export_proto(matmul_i4);
|
| 77 |
|
|
|
| 78 |
|
|
void
|
| 79 |
|
|
matmul_i4 (gfc_array_i4 * const restrict retarray,
|
| 80 |
|
|
gfc_array_i4 * const restrict a, gfc_array_i4 * const restrict b, int try_blas,
|
| 81 |
|
|
int blas_limit, blas_call gemm)
|
| 82 |
|
|
{
|
| 83 |
|
|
const GFC_INTEGER_4 * restrict abase;
|
| 84 |
|
|
const GFC_INTEGER_4 * restrict bbase;
|
| 85 |
|
|
GFC_INTEGER_4 * restrict dest;
|
| 86 |
|
|
|
| 87 |
|
|
index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
|
| 88 |
|
|
index_type x, y, n, count, xcount, ycount;
|
| 89 |
|
|
|
| 90 |
|
|
assert (GFC_DESCRIPTOR_RANK (a) == 2
|
| 91 |
|
|
|| GFC_DESCRIPTOR_RANK (b) == 2);
|
| 92 |
|
|
|
| 93 |
|
|
/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
|
| 94 |
|
|
|
| 95 |
|
|
Either A or B (but not both) can be rank 1:
|
| 96 |
|
|
|
| 97 |
|
|
o One-dimensional argument A is implicitly treated as a row matrix
|
| 98 |
|
|
dimensioned [1,count], so xcount=1.
|
| 99 |
|
|
|
| 100 |
|
|
o One-dimensional argument B is implicitly treated as a column matrix
|
| 101 |
|
|
dimensioned [count, 1], so ycount=1.
|
| 102 |
|
|
*/
|
| 103 |
|
|
|
| 104 |
|
|
if (retarray->data == NULL)
|
| 105 |
|
|
{
|
| 106 |
|
|
if (GFC_DESCRIPTOR_RANK (a) == 1)
|
| 107 |
|
|
{
|
| 108 |
|
|
GFC_DIMENSION_SET(retarray->dim[0], 0,
|
| 109 |
|
|
GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
|
| 110 |
|
|
}
|
| 111 |
|
|
else if (GFC_DESCRIPTOR_RANK (b) == 1)
|
| 112 |
|
|
{
|
| 113 |
|
|
GFC_DIMENSION_SET(retarray->dim[0], 0,
|
| 114 |
|
|
GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
|
| 115 |
|
|
}
|
| 116 |
|
|
else
|
| 117 |
|
|
{
|
| 118 |
|
|
GFC_DIMENSION_SET(retarray->dim[0], 0,
|
| 119 |
|
|
GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
|
| 120 |
|
|
|
| 121 |
|
|
GFC_DIMENSION_SET(retarray->dim[1], 0,
|
| 122 |
|
|
GFC_DESCRIPTOR_EXTENT(b,1) - 1,
|
| 123 |
|
|
GFC_DESCRIPTOR_EXTENT(retarray,0));
|
| 124 |
|
|
}
|
| 125 |
|
|
|
| 126 |
|
|
retarray->data
|
| 127 |
|
|
= internal_malloc_size (sizeof (GFC_INTEGER_4) * size0 ((array_t *) retarray));
|
| 128 |
|
|
retarray->offset = 0;
|
| 129 |
|
|
}
|
| 130 |
|
|
else if (unlikely (compile_options.bounds_check))
|
| 131 |
|
|
{
|
| 132 |
|
|
index_type ret_extent, arg_extent;
|
| 133 |
|
|
|
| 134 |
|
|
if (GFC_DESCRIPTOR_RANK (a) == 1)
|
| 135 |
|
|
{
|
| 136 |
|
|
arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
|
| 137 |
|
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
| 138 |
|
|
if (arg_extent != ret_extent)
|
| 139 |
|
|
runtime_error ("Incorrect extent in return array in"
|
| 140 |
|
|
" MATMUL intrinsic: is %ld, should be %ld",
|
| 141 |
|
|
(long int) ret_extent, (long int) arg_extent);
|
| 142 |
|
|
}
|
| 143 |
|
|
else if (GFC_DESCRIPTOR_RANK (b) == 1)
|
| 144 |
|
|
{
|
| 145 |
|
|
arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
|
| 146 |
|
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
| 147 |
|
|
if (arg_extent != ret_extent)
|
| 148 |
|
|
runtime_error ("Incorrect extent in return array in"
|
| 149 |
|
|
" MATMUL intrinsic: is %ld, should be %ld",
|
| 150 |
|
|
(long int) ret_extent, (long int) arg_extent);
|
| 151 |
|
|
}
|
| 152 |
|
|
else
|
| 153 |
|
|
{
|
| 154 |
|
|
arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
|
| 155 |
|
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
| 156 |
|
|
if (arg_extent != ret_extent)
|
| 157 |
|
|
runtime_error ("Incorrect extent in return array in"
|
| 158 |
|
|
" MATMUL intrinsic for dimension 1:"
|
| 159 |
|
|
" is %ld, should be %ld",
|
| 160 |
|
|
(long int) ret_extent, (long int) arg_extent);
|
| 161 |
|
|
|
| 162 |
|
|
arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
|
| 163 |
|
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
|
| 164 |
|
|
if (arg_extent != ret_extent)
|
| 165 |
|
|
runtime_error ("Incorrect extent in return array in"
|
| 166 |
|
|
" MATMUL intrinsic for dimension 2:"
|
| 167 |
|
|
" is %ld, should be %ld",
|
| 168 |
|
|
(long int) ret_extent, (long int) arg_extent);
|
| 169 |
|
|
}
|
| 170 |
|
|
}
|
| 171 |
|
|
|
| 172 |
|
|
|
| 173 |
|
|
if (GFC_DESCRIPTOR_RANK (retarray) == 1)
|
| 174 |
|
|
{
|
| 175 |
|
|
/* One-dimensional result may be addressed in the code below
|
| 176 |
|
|
either as a row or a column matrix. We want both cases to
|
| 177 |
|
|
work. */
|
| 178 |
|
|
rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
|
| 179 |
|
|
}
|
| 180 |
|
|
else
|
| 181 |
|
|
{
|
| 182 |
|
|
rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
|
| 183 |
|
|
rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
|
| 184 |
|
|
}
|
| 185 |
|
|
|
| 186 |
|
|
|
| 187 |
|
|
if (GFC_DESCRIPTOR_RANK (a) == 1)
|
| 188 |
|
|
{
|
| 189 |
|
|
/* Treat it as a a row matrix A[1,count]. */
|
| 190 |
|
|
axstride = GFC_DESCRIPTOR_STRIDE(a,0);
|
| 191 |
|
|
aystride = 1;
|
| 192 |
|
|
|
| 193 |
|
|
xcount = 1;
|
| 194 |
|
|
count = GFC_DESCRIPTOR_EXTENT(a,0);
|
| 195 |
|
|
}
|
| 196 |
|
|
else
|
| 197 |
|
|
{
|
| 198 |
|
|
axstride = GFC_DESCRIPTOR_STRIDE(a,0);
|
| 199 |
|
|
aystride = GFC_DESCRIPTOR_STRIDE(a,1);
|
| 200 |
|
|
|
| 201 |
|
|
count = GFC_DESCRIPTOR_EXTENT(a,1);
|
| 202 |
|
|
xcount = GFC_DESCRIPTOR_EXTENT(a,0);
|
| 203 |
|
|
}
|
| 204 |
|
|
|
| 205 |
|
|
if (count != GFC_DESCRIPTOR_EXTENT(b,0))
|
| 206 |
|
|
{
|
| 207 |
|
|
if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
|
| 208 |
|
|
runtime_error ("dimension of array B incorrect in MATMUL intrinsic");
|
| 209 |
|
|
}
|
| 210 |
|
|
|
| 211 |
|
|
if (GFC_DESCRIPTOR_RANK (b) == 1)
|
| 212 |
|
|
{
|
| 213 |
|
|
/* Treat it as a column matrix B[count,1] */
|
| 214 |
|
|
bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
|
| 215 |
|
|
|
| 216 |
|
|
/* bystride should never be used for 1-dimensional b.
|
| 217 |
|
|
in case it is we want it to cause a segfault, rather than
|
| 218 |
|
|
an incorrect result. */
|
| 219 |
|
|
bystride = 0xDEADBEEF;
|
| 220 |
|
|
ycount = 1;
|
| 221 |
|
|
}
|
| 222 |
|
|
else
|
| 223 |
|
|
{
|
| 224 |
|
|
bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
|
| 225 |
|
|
bystride = GFC_DESCRIPTOR_STRIDE(b,1);
|
| 226 |
|
|
ycount = GFC_DESCRIPTOR_EXTENT(b,1);
|
| 227 |
|
|
}
|
| 228 |
|
|
|
| 229 |
|
|
abase = a->data;
|
| 230 |
|
|
bbase = b->data;
|
| 231 |
|
|
dest = retarray->data;
|
| 232 |
|
|
|
| 233 |
|
|
|
| 234 |
|
|
/* Now that everything is set up, we're performing the multiplication
|
| 235 |
|
|
itself. */
|
| 236 |
|
|
|
| 237 |
|
|
#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
|
| 238 |
|
|
|
| 239 |
|
|
if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
|
| 240 |
|
|
&& (bxstride == 1 || bystride == 1)
|
| 241 |
|
|
&& (((float) xcount) * ((float) ycount) * ((float) count)
|
| 242 |
|
|
> POW3(blas_limit)))
|
| 243 |
|
|
{
|
| 244 |
|
|
const int m = xcount, n = ycount, k = count, ldc = rystride;
|
| 245 |
|
|
const GFC_INTEGER_4 one = 1, zero = 0;
|
| 246 |
|
|
const int lda = (axstride == 1) ? aystride : axstride,
|
| 247 |
|
|
ldb = (bxstride == 1) ? bystride : bxstride;
|
| 248 |
|
|
|
| 249 |
|
|
if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
|
| 250 |
|
|
{
|
| 251 |
|
|
assert (gemm != NULL);
|
| 252 |
|
|
gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, &n, &k,
|
| 253 |
|
|
&one, abase, &lda, bbase, &ldb, &zero, dest, &ldc, 1, 1);
|
| 254 |
|
|
return;
|
| 255 |
|
|
}
|
| 256 |
|
|
}
|
| 257 |
|
|
|
| 258 |
|
|
if (rxstride == 1 && axstride == 1 && bxstride == 1)
|
| 259 |
|
|
{
|
| 260 |
|
|
const GFC_INTEGER_4 * restrict bbase_y;
|
| 261 |
|
|
GFC_INTEGER_4 * restrict dest_y;
|
| 262 |
|
|
const GFC_INTEGER_4 * restrict abase_n;
|
| 263 |
|
|
GFC_INTEGER_4 bbase_yn;
|
| 264 |
|
|
|
| 265 |
|
|
if (rystride == xcount)
|
| 266 |
|
|
memset (dest, 0, (sizeof (GFC_INTEGER_4) * xcount * ycount));
|
| 267 |
|
|
else
|
| 268 |
|
|
{
|
| 269 |
|
|
for (y = 0; y < ycount; y++)
|
| 270 |
|
|
for (x = 0; x < xcount; x++)
|
| 271 |
|
|
dest[x + y*rystride] = (GFC_INTEGER_4)0;
|
| 272 |
|
|
}
|
| 273 |
|
|
|
| 274 |
|
|
for (y = 0; y < ycount; y++)
|
| 275 |
|
|
{
|
| 276 |
|
|
bbase_y = bbase + y*bystride;
|
| 277 |
|
|
dest_y = dest + y*rystride;
|
| 278 |
|
|
for (n = 0; n < count; n++)
|
| 279 |
|
|
{
|
| 280 |
|
|
abase_n = abase + n*aystride;
|
| 281 |
|
|
bbase_yn = bbase_y[n];
|
| 282 |
|
|
for (x = 0; x < xcount; x++)
|
| 283 |
|
|
{
|
| 284 |
|
|
dest_y[x] += abase_n[x] * bbase_yn;
|
| 285 |
|
|
}
|
| 286 |
|
|
}
|
| 287 |
|
|
}
|
| 288 |
|
|
}
|
| 289 |
|
|
else if (rxstride == 1 && aystride == 1 && bxstride == 1)
|
| 290 |
|
|
{
|
| 291 |
|
|
if (GFC_DESCRIPTOR_RANK (a) != 1)
|
| 292 |
|
|
{
|
| 293 |
|
|
const GFC_INTEGER_4 *restrict abase_x;
|
| 294 |
|
|
const GFC_INTEGER_4 *restrict bbase_y;
|
| 295 |
|
|
GFC_INTEGER_4 *restrict dest_y;
|
| 296 |
|
|
GFC_INTEGER_4 s;
|
| 297 |
|
|
|
| 298 |
|
|
for (y = 0; y < ycount; y++)
|
| 299 |
|
|
{
|
| 300 |
|
|
bbase_y = &bbase[y*bystride];
|
| 301 |
|
|
dest_y = &dest[y*rystride];
|
| 302 |
|
|
for (x = 0; x < xcount; x++)
|
| 303 |
|
|
{
|
| 304 |
|
|
abase_x = &abase[x*axstride];
|
| 305 |
|
|
s = (GFC_INTEGER_4) 0;
|
| 306 |
|
|
for (n = 0; n < count; n++)
|
| 307 |
|
|
s += abase_x[n] * bbase_y[n];
|
| 308 |
|
|
dest_y[x] = s;
|
| 309 |
|
|
}
|
| 310 |
|
|
}
|
| 311 |
|
|
}
|
| 312 |
|
|
else
|
| 313 |
|
|
{
|
| 314 |
|
|
const GFC_INTEGER_4 *restrict bbase_y;
|
| 315 |
|
|
GFC_INTEGER_4 s;
|
| 316 |
|
|
|
| 317 |
|
|
for (y = 0; y < ycount; y++)
|
| 318 |
|
|
{
|
| 319 |
|
|
bbase_y = &bbase[y*bystride];
|
| 320 |
|
|
s = (GFC_INTEGER_4) 0;
|
| 321 |
|
|
for (n = 0; n < count; n++)
|
| 322 |
|
|
s += abase[n*axstride] * bbase_y[n];
|
| 323 |
|
|
dest[y*rystride] = s;
|
| 324 |
|
|
}
|
| 325 |
|
|
}
|
| 326 |
|
|
}
|
| 327 |
|
|
else if (axstride < aystride)
|
| 328 |
|
|
{
|
| 329 |
|
|
for (y = 0; y < ycount; y++)
|
| 330 |
|
|
for (x = 0; x < xcount; x++)
|
| 331 |
|
|
dest[x*rxstride + y*rystride] = (GFC_INTEGER_4)0;
|
| 332 |
|
|
|
| 333 |
|
|
for (y = 0; y < ycount; y++)
|
| 334 |
|
|
for (n = 0; n < count; n++)
|
| 335 |
|
|
for (x = 0; x < xcount; x++)
|
| 336 |
|
|
/* dest[x,y] += a[x,n] * b[n,y] */
|
| 337 |
|
|
dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride];
|
| 338 |
|
|
}
|
| 339 |
|
|
else if (GFC_DESCRIPTOR_RANK (a) == 1)
|
| 340 |
|
|
{
|
| 341 |
|
|
const GFC_INTEGER_4 *restrict bbase_y;
|
| 342 |
|
|
GFC_INTEGER_4 s;
|
| 343 |
|
|
|
| 344 |
|
|
for (y = 0; y < ycount; y++)
|
| 345 |
|
|
{
|
| 346 |
|
|
bbase_y = &bbase[y*bystride];
|
| 347 |
|
|
s = (GFC_INTEGER_4) 0;
|
| 348 |
|
|
for (n = 0; n < count; n++)
|
| 349 |
|
|
s += abase[n*axstride] * bbase_y[n*bxstride];
|
| 350 |
|
|
dest[y*rxstride] = s;
|
| 351 |
|
|
}
|
| 352 |
|
|
}
|
| 353 |
|
|
else
|
| 354 |
|
|
{
|
| 355 |
|
|
const GFC_INTEGER_4 *restrict abase_x;
|
| 356 |
|
|
const GFC_INTEGER_4 *restrict bbase_y;
|
| 357 |
|
|
GFC_INTEGER_4 *restrict dest_y;
|
| 358 |
|
|
GFC_INTEGER_4 s;
|
| 359 |
|
|
|
| 360 |
|
|
for (y = 0; y < ycount; y++)
|
| 361 |
|
|
{
|
| 362 |
|
|
bbase_y = &bbase[y*bystride];
|
| 363 |
|
|
dest_y = &dest[y*rystride];
|
| 364 |
|
|
for (x = 0; x < xcount; x++)
|
| 365 |
|
|
{
|
| 366 |
|
|
abase_x = &abase[x*axstride];
|
| 367 |
|
|
s = (GFC_INTEGER_4) 0;
|
| 368 |
|
|
for (n = 0; n < count; n++)
|
| 369 |
|
|
s += abase_x[n*aystride] * bbase_y[n*bxstride];
|
| 370 |
|
|
dest_y[x*rxstride] = s;
|
| 371 |
|
|
}
|
| 372 |
|
|
}
|
| 373 |
|
|
}
|
| 374 |
|
|
}
|
| 375 |
|
|
|
| 376 |
|
|
#endif
|