1 |
733 |
jeremybenn |
/* Generic implementation of the PACK intrinsic
|
2 |
|
|
Copyright (C) 2002, 2004, 2005, 2006, 2007, 2009, 2010
|
3 |
|
|
Free Software Foundation, Inc.
|
4 |
|
|
Contributed by Paul Brook <paul@nowt.org>
|
5 |
|
|
|
6 |
|
|
This file is part of the GNU Fortran 95 runtime library (libgfortran).
|
7 |
|
|
|
8 |
|
|
Libgfortran is free software; you can redistribute it and/or
|
9 |
|
|
modify it under the terms of the GNU General Public
|
10 |
|
|
License as published by the Free Software Foundation; either
|
11 |
|
|
version 3 of the License, or (at your option) any later version.
|
12 |
|
|
|
13 |
|
|
Ligbfortran is distributed in the hope that it will be useful,
|
14 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
15 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
16 |
|
|
GNU General Public License for more details.
|
17 |
|
|
|
18 |
|
|
Under Section 7 of GPL version 3, you are granted additional
|
19 |
|
|
permissions described in the GCC Runtime Library Exception, version
|
20 |
|
|
3.1, as published by the Free Software Foundation.
|
21 |
|
|
|
22 |
|
|
You should have received a copy of the GNU General Public License and
|
23 |
|
|
a copy of the GCC Runtime Library Exception along with this program;
|
24 |
|
|
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
25 |
|
|
<http://www.gnu.org/licenses/>. */
|
26 |
|
|
|
27 |
|
|
#include "libgfortran.h"
|
28 |
|
|
#include <stdlib.h>
|
29 |
|
|
#include <assert.h>
|
30 |
|
|
#include <string.h>
|
31 |
|
|
|
32 |
|
|
/* PACK is specified as follows:
|
33 |
|
|
|
34 |
|
|
13.14.80 PACK (ARRAY, MASK, [VECTOR])
|
35 |
|
|
|
36 |
|
|
Description: Pack an array into an array of rank one under the
|
37 |
|
|
control of a mask.
|
38 |
|
|
|
39 |
|
|
Class: Transformational function.
|
40 |
|
|
|
41 |
|
|
Arguments:
|
42 |
|
|
ARRAY may be of any type. It shall not be scalar.
|
43 |
|
|
MASK shall be of type LOGICAL. It shall be conformable with ARRAY.
|
44 |
|
|
VECTOR (optional) shall be of the same type and type parameters
|
45 |
|
|
as ARRAY. VECTOR shall have at least as many elements as
|
46 |
|
|
there are true elements in MASK. If MASK is a scalar
|
47 |
|
|
with the value true, VECTOR shall have at least as many
|
48 |
|
|
elements as there are in ARRAY.
|
49 |
|
|
|
50 |
|
|
Result Characteristics: The result is an array of rank one with the
|
51 |
|
|
same type and type parameters as ARRAY. If VECTOR is present, the
|
52 |
|
|
result size is that of VECTOR; otherwise, the result size is the
|
53 |
|
|
number /t/ of true elements in MASK unless MASK is scalar with the
|
54 |
|
|
value true, in which case the result size is the size of ARRAY.
|
55 |
|
|
|
56 |
|
|
Result Value: Element /i/ of the result is the element of ARRAY
|
57 |
|
|
that corresponds to the /i/th true element of MASK, taking elements
|
58 |
|
|
in array element order, for /i/ = 1, 2, ..., /t/. If VECTOR is
|
59 |
|
|
present and has size /n/ > /t/, element /i/ of the result has the
|
60 |
|
|
value VECTOR(/i/), for /i/ = /t/ + 1, ..., /n/.
|
61 |
|
|
|
62 |
|
|
Examples: The nonzero elements of an array M with the value
|
63 |
|
|
| 0 0 0 |
|
64 |
|
|
| 9 0 0 | may be "gathered" by the function PACK. The result of
|
65 |
|
|
| 0 0 7 |
|
66 |
|
|
PACK (M, MASK = M.NE.0) is [9,7] and the result of PACK (M, M.NE.0,
|
67 |
|
|
VECTOR = (/ 2,4,6,8,10,12 /)) is [9,7,6,8,10,12].
|
68 |
|
|
|
69 |
|
|
There are two variants of the PACK intrinsic: one, where MASK is
|
70 |
|
|
array valued, and the other one where MASK is scalar. */
|
71 |
|
|
|
72 |
|
|
static void
|
73 |
|
|
pack_internal (gfc_array_char *ret, const gfc_array_char *array,
|
74 |
|
|
const gfc_array_l1 *mask, const gfc_array_char *vector,
|
75 |
|
|
index_type size)
|
76 |
|
|
{
|
77 |
|
|
/* r.* indicates the return array. */
|
78 |
|
|
index_type rstride0;
|
79 |
|
|
char * restrict rptr;
|
80 |
|
|
/* s.* indicates the source array. */
|
81 |
|
|
index_type sstride[GFC_MAX_DIMENSIONS];
|
82 |
|
|
index_type sstride0;
|
83 |
|
|
const char *sptr;
|
84 |
|
|
/* m.* indicates the mask array. */
|
85 |
|
|
index_type mstride[GFC_MAX_DIMENSIONS];
|
86 |
|
|
index_type mstride0;
|
87 |
|
|
const GFC_LOGICAL_1 *mptr;
|
88 |
|
|
|
89 |
|
|
index_type count[GFC_MAX_DIMENSIONS];
|
90 |
|
|
index_type extent[GFC_MAX_DIMENSIONS];
|
91 |
|
|
index_type n;
|
92 |
|
|
index_type dim;
|
93 |
|
|
index_type nelem;
|
94 |
|
|
index_type total;
|
95 |
|
|
int mask_kind;
|
96 |
|
|
|
97 |
|
|
dim = GFC_DESCRIPTOR_RANK (array);
|
98 |
|
|
|
99 |
|
|
sptr = array->data;
|
100 |
|
|
mptr = mask->data;
|
101 |
|
|
|
102 |
|
|
/* Use the same loop for all logical types, by using GFC_LOGICAL_1
|
103 |
|
|
and using shifting to address size and endian issues. */
|
104 |
|
|
|
105 |
|
|
mask_kind = GFC_DESCRIPTOR_SIZE (mask);
|
106 |
|
|
|
107 |
|
|
if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
|
108 |
|
|
#ifdef HAVE_GFC_LOGICAL_16
|
109 |
|
|
|| mask_kind == 16
|
110 |
|
|
#endif
|
111 |
|
|
)
|
112 |
|
|
{
|
113 |
|
|
/* Don't convert a NULL pointer as we use test for NULL below. */
|
114 |
|
|
if (mptr)
|
115 |
|
|
mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
|
116 |
|
|
}
|
117 |
|
|
else
|
118 |
|
|
runtime_error ("Funny sized logical array");
|
119 |
|
|
|
120 |
|
|
for (n = 0; n < dim; n++)
|
121 |
|
|
{
|
122 |
|
|
count[n] = 0;
|
123 |
|
|
extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
|
124 |
|
|
sstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(array,n);
|
125 |
|
|
mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n);
|
126 |
|
|
}
|
127 |
|
|
if (sstride[0] == 0)
|
128 |
|
|
sstride[0] = size;
|
129 |
|
|
if (mstride[0] == 0)
|
130 |
|
|
mstride[0] = mask_kind;
|
131 |
|
|
|
132 |
|
|
if (ret->data == NULL || unlikely (compile_options.bounds_check))
|
133 |
|
|
{
|
134 |
|
|
/* Count the elements, either for allocating memory or
|
135 |
|
|
for bounds checking. */
|
136 |
|
|
|
137 |
|
|
if (vector != NULL)
|
138 |
|
|
{
|
139 |
|
|
/* The return array will have as many
|
140 |
|
|
elements as there are in VECTOR. */
|
141 |
|
|
total = GFC_DESCRIPTOR_EXTENT(vector,0);
|
142 |
|
|
}
|
143 |
|
|
else
|
144 |
|
|
{
|
145 |
|
|
/* We have to count the true elements in MASK. */
|
146 |
|
|
|
147 |
|
|
total = count_0 (mask);
|
148 |
|
|
}
|
149 |
|
|
|
150 |
|
|
if (ret->data == NULL)
|
151 |
|
|
{
|
152 |
|
|
/* Setup the array descriptor. */
|
153 |
|
|
GFC_DIMENSION_SET(ret->dim[0], 0, total-1, 1);
|
154 |
|
|
|
155 |
|
|
ret->offset = 0;
|
156 |
|
|
/* internal_malloc_size allocates a single byte for zero size. */
|
157 |
|
|
ret->data = internal_malloc_size (size * total);
|
158 |
|
|
|
159 |
|
|
if (total == 0)
|
160 |
|
|
return; /* In this case, nothing remains to be done. */
|
161 |
|
|
}
|
162 |
|
|
else
|
163 |
|
|
{
|
164 |
|
|
/* We come here because of range checking. */
|
165 |
|
|
index_type ret_extent;
|
166 |
|
|
|
167 |
|
|
ret_extent = GFC_DESCRIPTOR_EXTENT(ret,0);
|
168 |
|
|
if (total != ret_extent)
|
169 |
|
|
runtime_error ("Incorrect extent in return value of PACK intrinsic;"
|
170 |
|
|
" is %ld, should be %ld", (long int) total,
|
171 |
|
|
(long int) ret_extent);
|
172 |
|
|
}
|
173 |
|
|
}
|
174 |
|
|
|
175 |
|
|
rstride0 = GFC_DESCRIPTOR_STRIDE_BYTES(ret,0);
|
176 |
|
|
if (rstride0 == 0)
|
177 |
|
|
rstride0 = size;
|
178 |
|
|
sstride0 = sstride[0];
|
179 |
|
|
mstride0 = mstride[0];
|
180 |
|
|
rptr = ret->data;
|
181 |
|
|
|
182 |
|
|
while (sptr && mptr)
|
183 |
|
|
{
|
184 |
|
|
/* Test this element. */
|
185 |
|
|
if (*mptr)
|
186 |
|
|
{
|
187 |
|
|
/* Add it. */
|
188 |
|
|
memcpy (rptr, sptr, size);
|
189 |
|
|
rptr += rstride0;
|
190 |
|
|
}
|
191 |
|
|
/* Advance to the next element. */
|
192 |
|
|
sptr += sstride0;
|
193 |
|
|
mptr += mstride0;
|
194 |
|
|
count[0]++;
|
195 |
|
|
n = 0;
|
196 |
|
|
while (count[n] == extent[n])
|
197 |
|
|
{
|
198 |
|
|
/* When we get to the end of a dimension, reset it and increment
|
199 |
|
|
the next dimension. */
|
200 |
|
|
count[n] = 0;
|
201 |
|
|
/* We could precalculate these products, but this is a less
|
202 |
|
|
frequently used path so probably not worth it. */
|
203 |
|
|
sptr -= sstride[n] * extent[n];
|
204 |
|
|
mptr -= mstride[n] * extent[n];
|
205 |
|
|
n++;
|
206 |
|
|
if (n >= dim)
|
207 |
|
|
{
|
208 |
|
|
/* Break out of the loop. */
|
209 |
|
|
sptr = NULL;
|
210 |
|
|
break;
|
211 |
|
|
}
|
212 |
|
|
else
|
213 |
|
|
{
|
214 |
|
|
count[n]++;
|
215 |
|
|
sptr += sstride[n];
|
216 |
|
|
mptr += mstride[n];
|
217 |
|
|
}
|
218 |
|
|
}
|
219 |
|
|
}
|
220 |
|
|
|
221 |
|
|
/* Add any remaining elements from VECTOR. */
|
222 |
|
|
if (vector)
|
223 |
|
|
{
|
224 |
|
|
n = GFC_DESCRIPTOR_EXTENT(vector,0);
|
225 |
|
|
nelem = ((rptr - ret->data) / rstride0);
|
226 |
|
|
if (n > nelem)
|
227 |
|
|
{
|
228 |
|
|
sstride0 = GFC_DESCRIPTOR_STRIDE_BYTES(vector,0);
|
229 |
|
|
if (sstride0 == 0)
|
230 |
|
|
sstride0 = size;
|
231 |
|
|
|
232 |
|
|
sptr = vector->data + sstride0 * nelem;
|
233 |
|
|
n -= nelem;
|
234 |
|
|
while (n--)
|
235 |
|
|
{
|
236 |
|
|
memcpy (rptr, sptr, size);
|
237 |
|
|
rptr += rstride0;
|
238 |
|
|
sptr += sstride0;
|
239 |
|
|
}
|
240 |
|
|
}
|
241 |
|
|
}
|
242 |
|
|
}
|
243 |
|
|
|
244 |
|
|
extern void pack (gfc_array_char *, const gfc_array_char *,
|
245 |
|
|
const gfc_array_l1 *, const gfc_array_char *);
|
246 |
|
|
export_proto(pack);
|
247 |
|
|
|
248 |
|
|
void
|
249 |
|
|
pack (gfc_array_char *ret, const gfc_array_char *array,
|
250 |
|
|
const gfc_array_l1 *mask, const gfc_array_char *vector)
|
251 |
|
|
{
|
252 |
|
|
index_type type_size;
|
253 |
|
|
index_type size;
|
254 |
|
|
|
255 |
|
|
type_size = GFC_DTYPE_TYPE_SIZE(array);
|
256 |
|
|
|
257 |
|
|
switch(type_size)
|
258 |
|
|
{
|
259 |
|
|
case GFC_DTYPE_LOGICAL_1:
|
260 |
|
|
case GFC_DTYPE_INTEGER_1:
|
261 |
|
|
case GFC_DTYPE_DERIVED_1:
|
262 |
|
|
pack_i1 ((gfc_array_i1 *) ret, (gfc_array_i1 *) array,
|
263 |
|
|
(gfc_array_l1 *) mask, (gfc_array_i1 *) vector);
|
264 |
|
|
return;
|
265 |
|
|
|
266 |
|
|
case GFC_DTYPE_LOGICAL_2:
|
267 |
|
|
case GFC_DTYPE_INTEGER_2:
|
268 |
|
|
pack_i2 ((gfc_array_i2 *) ret, (gfc_array_i2 *) array,
|
269 |
|
|
(gfc_array_l1 *) mask, (gfc_array_i2 *) vector);
|
270 |
|
|
return;
|
271 |
|
|
|
272 |
|
|
case GFC_DTYPE_LOGICAL_4:
|
273 |
|
|
case GFC_DTYPE_INTEGER_4:
|
274 |
|
|
pack_i4 ((gfc_array_i4 *) ret, (gfc_array_i4 *) array,
|
275 |
|
|
(gfc_array_l1 *) mask, (gfc_array_i4 *) vector);
|
276 |
|
|
return;
|
277 |
|
|
|
278 |
|
|
case GFC_DTYPE_LOGICAL_8:
|
279 |
|
|
case GFC_DTYPE_INTEGER_8:
|
280 |
|
|
pack_i8 ((gfc_array_i8 *) ret, (gfc_array_i8 *) array,
|
281 |
|
|
(gfc_array_l1 *) mask, (gfc_array_i8 *) vector);
|
282 |
|
|
return;
|
283 |
|
|
|
284 |
|
|
#ifdef HAVE_GFC_INTEGER_16
|
285 |
|
|
case GFC_DTYPE_LOGICAL_16:
|
286 |
|
|
case GFC_DTYPE_INTEGER_16:
|
287 |
|
|
pack_i16 ((gfc_array_i16 *) ret, (gfc_array_i16 *) array,
|
288 |
|
|
(gfc_array_l1 *) mask, (gfc_array_i16 *) vector);
|
289 |
|
|
return;
|
290 |
|
|
#endif
|
291 |
|
|
|
292 |
|
|
case GFC_DTYPE_REAL_4:
|
293 |
|
|
pack_r4 ((gfc_array_r4 *) ret, (gfc_array_r4 *) array,
|
294 |
|
|
(gfc_array_l1 *) mask, (gfc_array_r4 *) vector);
|
295 |
|
|
return;
|
296 |
|
|
|
297 |
|
|
case GFC_DTYPE_REAL_8:
|
298 |
|
|
pack_r8 ((gfc_array_r8 *) ret, (gfc_array_r8 *) array,
|
299 |
|
|
(gfc_array_l1 *) mask, (gfc_array_r8 *) vector);
|
300 |
|
|
return;
|
301 |
|
|
|
302 |
|
|
/* FIXME: This here is a hack, which will have to be removed when
|
303 |
|
|
the array descriptor is reworked. Currently, we don't store the
|
304 |
|
|
kind value for the type, but only the size. Because on targets with
|
305 |
|
|
__float128, we have sizeof(logn double) == sizeof(__float128),
|
306 |
|
|
we cannot discriminate here and have to fall back to the generic
|
307 |
|
|
handling (which is suboptimal). */
|
308 |
|
|
#if !defined(GFC_REAL_16_IS_FLOAT128)
|
309 |
|
|
# ifdef HAVE_GFC_REAL_10
|
310 |
|
|
case GFC_DTYPE_REAL_10:
|
311 |
|
|
pack_r10 ((gfc_array_r10 *) ret, (gfc_array_r10 *) array,
|
312 |
|
|
(gfc_array_l1 *) mask, (gfc_array_r10 *) vector);
|
313 |
|
|
return;
|
314 |
|
|
# endif
|
315 |
|
|
|
316 |
|
|
# ifdef HAVE_GFC_REAL_16
|
317 |
|
|
case GFC_DTYPE_REAL_16:
|
318 |
|
|
pack_r16 ((gfc_array_r16 *) ret, (gfc_array_r16 *) array,
|
319 |
|
|
(gfc_array_l1 *) mask, (gfc_array_r16 *) vector);
|
320 |
|
|
return;
|
321 |
|
|
# endif
|
322 |
|
|
#endif
|
323 |
|
|
|
324 |
|
|
case GFC_DTYPE_COMPLEX_4:
|
325 |
|
|
pack_c4 ((gfc_array_c4 *) ret, (gfc_array_c4 *) array,
|
326 |
|
|
(gfc_array_l1 *) mask, (gfc_array_c4 *) vector);
|
327 |
|
|
return;
|
328 |
|
|
|
329 |
|
|
case GFC_DTYPE_COMPLEX_8:
|
330 |
|
|
pack_c8 ((gfc_array_c8 *) ret, (gfc_array_c8 *) array,
|
331 |
|
|
(gfc_array_l1 *) mask, (gfc_array_c8 *) vector);
|
332 |
|
|
return;
|
333 |
|
|
|
334 |
|
|
/* FIXME: This here is a hack, which will have to be removed when
|
335 |
|
|
the array descriptor is reworked. Currently, we don't store the
|
336 |
|
|
kind value for the type, but only the size. Because on targets with
|
337 |
|
|
__float128, we have sizeof(logn double) == sizeof(__float128),
|
338 |
|
|
we cannot discriminate here and have to fall back to the generic
|
339 |
|
|
handling (which is suboptimal). */
|
340 |
|
|
#if !defined(GFC_REAL_16_IS_FLOAT128)
|
341 |
|
|
# ifdef HAVE_GFC_COMPLEX_10
|
342 |
|
|
case GFC_DTYPE_COMPLEX_10:
|
343 |
|
|
pack_c10 ((gfc_array_c10 *) ret, (gfc_array_c10 *) array,
|
344 |
|
|
(gfc_array_l1 *) mask, (gfc_array_c10 *) vector);
|
345 |
|
|
return;
|
346 |
|
|
# endif
|
347 |
|
|
|
348 |
|
|
# ifdef HAVE_GFC_COMPLEX_16
|
349 |
|
|
case GFC_DTYPE_COMPLEX_16:
|
350 |
|
|
pack_c16 ((gfc_array_c16 *) ret, (gfc_array_c16 *) array,
|
351 |
|
|
(gfc_array_l1 *) mask, (gfc_array_c16 *) vector);
|
352 |
|
|
return;
|
353 |
|
|
# endif
|
354 |
|
|
#endif
|
355 |
|
|
|
356 |
|
|
/* For derived types, let's check the actual alignment of the
|
357 |
|
|
data pointers. If they are aligned, we can safely call
|
358 |
|
|
the unpack functions. */
|
359 |
|
|
|
360 |
|
|
case GFC_DTYPE_DERIVED_2:
|
361 |
|
|
if (GFC_UNALIGNED_2(ret->data) || GFC_UNALIGNED_2(array->data)
|
362 |
|
|
|| (vector && GFC_UNALIGNED_2(vector->data)))
|
363 |
|
|
break;
|
364 |
|
|
else
|
365 |
|
|
{
|
366 |
|
|
pack_i2 ((gfc_array_i2 *) ret, (gfc_array_i2 *) array,
|
367 |
|
|
(gfc_array_l1 *) mask, (gfc_array_i2 *) vector);
|
368 |
|
|
return;
|
369 |
|
|
}
|
370 |
|
|
|
371 |
|
|
case GFC_DTYPE_DERIVED_4:
|
372 |
|
|
if (GFC_UNALIGNED_4(ret->data) || GFC_UNALIGNED_4(array->data)
|
373 |
|
|
|| (vector && GFC_UNALIGNED_4(vector->data)))
|
374 |
|
|
break;
|
375 |
|
|
else
|
376 |
|
|
{
|
377 |
|
|
pack_i4 ((gfc_array_i4 *) ret, (gfc_array_i4 *) array,
|
378 |
|
|
(gfc_array_l1 *) mask, (gfc_array_i4 *) vector);
|
379 |
|
|
return;
|
380 |
|
|
}
|
381 |
|
|
|
382 |
|
|
case GFC_DTYPE_DERIVED_8:
|
383 |
|
|
if (GFC_UNALIGNED_8(ret->data) || GFC_UNALIGNED_8(array->data)
|
384 |
|
|
|| (vector && GFC_UNALIGNED_8(vector->data)))
|
385 |
|
|
break;
|
386 |
|
|
else
|
387 |
|
|
{
|
388 |
|
|
pack_i8 ((gfc_array_i8 *) ret, (gfc_array_i8 *) array,
|
389 |
|
|
(gfc_array_l1 *) mask, (gfc_array_i8 *) vector);
|
390 |
|
|
return;
|
391 |
|
|
}
|
392 |
|
|
|
393 |
|
|
#ifdef HAVE_GFC_INTEGER_16
|
394 |
|
|
case GFC_DTYPE_DERIVED_16:
|
395 |
|
|
if (GFC_UNALIGNED_16(ret->data) || GFC_UNALIGNED_16(array->data)
|
396 |
|
|
|| (vector && GFC_UNALIGNED_16(vector->data)))
|
397 |
|
|
break;
|
398 |
|
|
else
|
399 |
|
|
{
|
400 |
|
|
pack_i16 ((gfc_array_i16 *) ret, (gfc_array_i16 *) array,
|
401 |
|
|
(gfc_array_l1 *) mask, (gfc_array_i16 *) vector);
|
402 |
|
|
return;
|
403 |
|
|
}
|
404 |
|
|
#endif
|
405 |
|
|
|
406 |
|
|
}
|
407 |
|
|
|
408 |
|
|
size = GFC_DESCRIPTOR_SIZE (array);
|
409 |
|
|
pack_internal (ret, array, mask, vector, size);
|
410 |
|
|
}
|
411 |
|
|
|
412 |
|
|
|
413 |
|
|
extern void pack_char (gfc_array_char *, GFC_INTEGER_4, const gfc_array_char *,
|
414 |
|
|
const gfc_array_l1 *, const gfc_array_char *,
|
415 |
|
|
GFC_INTEGER_4, GFC_INTEGER_4);
|
416 |
|
|
export_proto(pack_char);
|
417 |
|
|
|
418 |
|
|
void
|
419 |
|
|
pack_char (gfc_array_char *ret,
|
420 |
|
|
GFC_INTEGER_4 ret_length __attribute__((unused)),
|
421 |
|
|
const gfc_array_char *array, const gfc_array_l1 *mask,
|
422 |
|
|
const gfc_array_char *vector, GFC_INTEGER_4 array_length,
|
423 |
|
|
GFC_INTEGER_4 vector_length __attribute__((unused)))
|
424 |
|
|
{
|
425 |
|
|
pack_internal (ret, array, mask, vector, array_length);
|
426 |
|
|
}
|
427 |
|
|
|
428 |
|
|
|
429 |
|
|
extern void pack_char4 (gfc_array_char *, GFC_INTEGER_4, const gfc_array_char *,
|
430 |
|
|
const gfc_array_l1 *, const gfc_array_char *,
|
431 |
|
|
GFC_INTEGER_4, GFC_INTEGER_4);
|
432 |
|
|
export_proto(pack_char4);
|
433 |
|
|
|
434 |
|
|
void
|
435 |
|
|
pack_char4 (gfc_array_char *ret,
|
436 |
|
|
GFC_INTEGER_4 ret_length __attribute__((unused)),
|
437 |
|
|
const gfc_array_char *array, const gfc_array_l1 *mask,
|
438 |
|
|
const gfc_array_char *vector, GFC_INTEGER_4 array_length,
|
439 |
|
|
GFC_INTEGER_4 vector_length __attribute__((unused)))
|
440 |
|
|
{
|
441 |
|
|
pack_internal (ret, array, mask, vector, array_length * sizeof (gfc_char4_t));
|
442 |
|
|
}
|
443 |
|
|
|
444 |
|
|
|
445 |
|
|
static void
|
446 |
|
|
pack_s_internal (gfc_array_char *ret, const gfc_array_char *array,
|
447 |
|
|
const GFC_LOGICAL_4 *mask, const gfc_array_char *vector,
|
448 |
|
|
index_type size)
|
449 |
|
|
{
|
450 |
|
|
/* r.* indicates the return array. */
|
451 |
|
|
index_type rstride0;
|
452 |
|
|
char *rptr;
|
453 |
|
|
/* s.* indicates the source array. */
|
454 |
|
|
index_type sstride[GFC_MAX_DIMENSIONS];
|
455 |
|
|
index_type sstride0;
|
456 |
|
|
const char *sptr;
|
457 |
|
|
|
458 |
|
|
index_type count[GFC_MAX_DIMENSIONS];
|
459 |
|
|
index_type extent[GFC_MAX_DIMENSIONS];
|
460 |
|
|
index_type n;
|
461 |
|
|
index_type dim;
|
462 |
|
|
index_type ssize;
|
463 |
|
|
index_type nelem;
|
464 |
|
|
index_type total;
|
465 |
|
|
|
466 |
|
|
dim = GFC_DESCRIPTOR_RANK (array);
|
467 |
|
|
ssize = 1;
|
468 |
|
|
for (n = 0; n < dim; n++)
|
469 |
|
|
{
|
470 |
|
|
count[n] = 0;
|
471 |
|
|
extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
|
472 |
|
|
if (extent[n] < 0)
|
473 |
|
|
extent[n] = 0;
|
474 |
|
|
|
475 |
|
|
sstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(array,n);
|
476 |
|
|
ssize *= extent[n];
|
477 |
|
|
}
|
478 |
|
|
if (sstride[0] == 0)
|
479 |
|
|
sstride[0] = size;
|
480 |
|
|
|
481 |
|
|
sstride0 = sstride[0];
|
482 |
|
|
|
483 |
|
|
if (ssize != 0)
|
484 |
|
|
sptr = array->data;
|
485 |
|
|
else
|
486 |
|
|
sptr = NULL;
|
487 |
|
|
|
488 |
|
|
if (ret->data == NULL)
|
489 |
|
|
{
|
490 |
|
|
/* Allocate the memory for the result. */
|
491 |
|
|
|
492 |
|
|
if (vector != NULL)
|
493 |
|
|
{
|
494 |
|
|
/* The return array will have as many elements as there are
|
495 |
|
|
in vector. */
|
496 |
|
|
total = GFC_DESCRIPTOR_EXTENT(vector,0);
|
497 |
|
|
if (total <= 0)
|
498 |
|
|
{
|
499 |
|
|
total = 0;
|
500 |
|
|
vector = NULL;
|
501 |
|
|
}
|
502 |
|
|
}
|
503 |
|
|
else
|
504 |
|
|
{
|
505 |
|
|
if (*mask)
|
506 |
|
|
{
|
507 |
|
|
/* The result array will have as many elements as the input
|
508 |
|
|
array. */
|
509 |
|
|
total = extent[0];
|
510 |
|
|
for (n = 1; n < dim; n++)
|
511 |
|
|
total *= extent[n];
|
512 |
|
|
}
|
513 |
|
|
else
|
514 |
|
|
/* The result array will be empty. */
|
515 |
|
|
total = 0;
|
516 |
|
|
}
|
517 |
|
|
|
518 |
|
|
/* Setup the array descriptor. */
|
519 |
|
|
GFC_DIMENSION_SET(ret->dim[0],0,total-1,1);
|
520 |
|
|
|
521 |
|
|
ret->offset = 0;
|
522 |
|
|
|
523 |
|
|
ret->data = internal_malloc_size (size * total);
|
524 |
|
|
|
525 |
|
|
if (total == 0)
|
526 |
|
|
return;
|
527 |
|
|
}
|
528 |
|
|
|
529 |
|
|
rstride0 = GFC_DESCRIPTOR_STRIDE_BYTES(ret,0);
|
530 |
|
|
if (rstride0 == 0)
|
531 |
|
|
rstride0 = size;
|
532 |
|
|
rptr = ret->data;
|
533 |
|
|
|
534 |
|
|
/* The remaining possibilities are now:
|
535 |
|
|
If MASK is .TRUE., we have to copy the source array into the
|
536 |
|
|
result array. We then have to fill it up with elements from VECTOR.
|
537 |
|
|
If MASK is .FALSE., we have to copy VECTOR into the result
|
538 |
|
|
array. If VECTOR were not present we would have already returned. */
|
539 |
|
|
|
540 |
|
|
if (*mask && ssize != 0)
|
541 |
|
|
{
|
542 |
|
|
while (sptr)
|
543 |
|
|
{
|
544 |
|
|
/* Add this element. */
|
545 |
|
|
memcpy (rptr, sptr, size);
|
546 |
|
|
rptr += rstride0;
|
547 |
|
|
|
548 |
|
|
/* Advance to the next element. */
|
549 |
|
|
sptr += sstride0;
|
550 |
|
|
count[0]++;
|
551 |
|
|
n = 0;
|
552 |
|
|
while (count[n] == extent[n])
|
553 |
|
|
{
|
554 |
|
|
/* When we get to the end of a dimension, reset it and
|
555 |
|
|
increment the next dimension. */
|
556 |
|
|
count[n] = 0;
|
557 |
|
|
/* We could precalculate these products, but this is a
|
558 |
|
|
less frequently used path so probably not worth it. */
|
559 |
|
|
sptr -= sstride[n] * extent[n];
|
560 |
|
|
n++;
|
561 |
|
|
if (n >= dim)
|
562 |
|
|
{
|
563 |
|
|
/* Break out of the loop. */
|
564 |
|
|
sptr = NULL;
|
565 |
|
|
break;
|
566 |
|
|
}
|
567 |
|
|
else
|
568 |
|
|
{
|
569 |
|
|
count[n]++;
|
570 |
|
|
sptr += sstride[n];
|
571 |
|
|
}
|
572 |
|
|
}
|
573 |
|
|
}
|
574 |
|
|
}
|
575 |
|
|
|
576 |
|
|
/* Add any remaining elements from VECTOR. */
|
577 |
|
|
if (vector)
|
578 |
|
|
{
|
579 |
|
|
n = GFC_DESCRIPTOR_EXTENT(vector,0);
|
580 |
|
|
nelem = ((rptr - ret->data) / rstride0);
|
581 |
|
|
if (n > nelem)
|
582 |
|
|
{
|
583 |
|
|
sstride0 = GFC_DESCRIPTOR_STRIDE_BYTES(vector,0);
|
584 |
|
|
if (sstride0 == 0)
|
585 |
|
|
sstride0 = size;
|
586 |
|
|
|
587 |
|
|
sptr = vector->data + sstride0 * nelem;
|
588 |
|
|
n -= nelem;
|
589 |
|
|
while (n--)
|
590 |
|
|
{
|
591 |
|
|
memcpy (rptr, sptr, size);
|
592 |
|
|
rptr += rstride0;
|
593 |
|
|
sptr += sstride0;
|
594 |
|
|
}
|
595 |
|
|
}
|
596 |
|
|
}
|
597 |
|
|
}
|
598 |
|
|
|
599 |
|
|
extern void pack_s (gfc_array_char *ret, const gfc_array_char *array,
|
600 |
|
|
const GFC_LOGICAL_4 *, const gfc_array_char *);
|
601 |
|
|
export_proto(pack_s);
|
602 |
|
|
|
603 |
|
|
void
|
604 |
|
|
pack_s (gfc_array_char *ret, const gfc_array_char *array,
|
605 |
|
|
const GFC_LOGICAL_4 *mask, const gfc_array_char *vector)
|
606 |
|
|
{
|
607 |
|
|
pack_s_internal (ret, array, mask, vector, GFC_DESCRIPTOR_SIZE (array));
|
608 |
|
|
}
|
609 |
|
|
|
610 |
|
|
|
611 |
|
|
extern void pack_s_char (gfc_array_char *ret, GFC_INTEGER_4,
|
612 |
|
|
const gfc_array_char *array, const GFC_LOGICAL_4 *,
|
613 |
|
|
const gfc_array_char *, GFC_INTEGER_4,
|
614 |
|
|
GFC_INTEGER_4);
|
615 |
|
|
export_proto(pack_s_char);
|
616 |
|
|
|
617 |
|
|
void
|
618 |
|
|
pack_s_char (gfc_array_char *ret,
|
619 |
|
|
GFC_INTEGER_4 ret_length __attribute__((unused)),
|
620 |
|
|
const gfc_array_char *array, const GFC_LOGICAL_4 *mask,
|
621 |
|
|
const gfc_array_char *vector, GFC_INTEGER_4 array_length,
|
622 |
|
|
GFC_INTEGER_4 vector_length __attribute__((unused)))
|
623 |
|
|
{
|
624 |
|
|
pack_s_internal (ret, array, mask, vector, array_length);
|
625 |
|
|
}
|
626 |
|
|
|
627 |
|
|
|
628 |
|
|
extern void pack_s_char4 (gfc_array_char *ret, GFC_INTEGER_4,
|
629 |
|
|
const gfc_array_char *array, const GFC_LOGICAL_4 *,
|
630 |
|
|
const gfc_array_char *, GFC_INTEGER_4,
|
631 |
|
|
GFC_INTEGER_4);
|
632 |
|
|
export_proto(pack_s_char4);
|
633 |
|
|
|
634 |
|
|
void
|
635 |
|
|
pack_s_char4 (gfc_array_char *ret,
|
636 |
|
|
GFC_INTEGER_4 ret_length __attribute__((unused)),
|
637 |
|
|
const gfc_array_char *array, const GFC_LOGICAL_4 *mask,
|
638 |
|
|
const gfc_array_char *vector, GFC_INTEGER_4 array_length,
|
639 |
|
|
GFC_INTEGER_4 vector_length __attribute__((unused)))
|
640 |
|
|
{
|
641 |
|
|
pack_s_internal (ret, array, mask, vector,
|
642 |
|
|
array_length * sizeof (gfc_char4_t));
|
643 |
|
|
}
|