| 1 |
733 |
jeremybenn |
`/* Implementation of the MATMUL intrinsic
|
| 2 |
|
|
Copyright 2002, 2005, 2006, 2007, 2009 Free Software Foundation, Inc.
|
| 3 |
|
|
Contributed by Paul Brook <paul@nowt.org>
|
| 4 |
|
|
|
| 5 |
|
|
This file is part of the GNU Fortran 95 runtime library (libgfortran).
|
| 6 |
|
|
|
| 7 |
|
|
Libgfortran is free software; you can redistribute it and/or
|
| 8 |
|
|
modify it under the terms of the GNU General Public
|
| 9 |
|
|
License as published by the Free Software Foundation; either
|
| 10 |
|
|
version 3 of the License, or (at your option) any later version.
|
| 11 |
|
|
|
| 12 |
|
|
Libgfortran is distributed in the hope that it will be useful,
|
| 13 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 14 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| 15 |
|
|
GNU General Public License for more details.
|
| 16 |
|
|
|
| 17 |
|
|
Under Section 7 of GPL version 3, you are granted additional
|
| 18 |
|
|
permissions described in the GCC Runtime Library Exception, version
|
| 19 |
|
|
3.1, as published by the Free Software Foundation.
|
| 20 |
|
|
|
| 21 |
|
|
You should have received a copy of the GNU General Public License and
|
| 22 |
|
|
a copy of the GCC Runtime Library Exception along with this program;
|
| 23 |
|
|
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
| 24 |
|
|
<http://www.gnu.org/licenses/>. */
|
| 25 |
|
|
|
| 26 |
|
|
#include "libgfortran.h"
|
| 27 |
|
|
#include <stdlib.h>
|
| 28 |
|
|
#include <assert.h>'
|
| 29 |
|
|
|
| 30 |
|
|
include(iparm.m4)dnl
|
| 31 |
|
|
|
| 32 |
|
|
`#if defined (HAVE_'rtype_name`)
|
| 33 |
|
|
|
| 34 |
|
|
/* Dimensions: retarray(x,y) a(x, count) b(count,y).
|
| 35 |
|
|
Either a or b can be rank 1. In this case x or y is 1. */
|
| 36 |
|
|
|
| 37 |
|
|
extern void matmul_'rtype_code` ('rtype` * const restrict,
|
| 38 |
|
|
gfc_array_l1 * const restrict, gfc_array_l1 * const restrict);
|
| 39 |
|
|
export_proto(matmul_'rtype_code`);
|
| 40 |
|
|
|
| 41 |
|
|
void
|
| 42 |
|
|
matmul_'rtype_code` ('rtype` * const restrict retarray,
|
| 43 |
|
|
gfc_array_l1 * const restrict a, gfc_array_l1 * const restrict b)
|
| 44 |
|
|
{
|
| 45 |
|
|
const GFC_LOGICAL_1 * restrict abase;
|
| 46 |
|
|
const GFC_LOGICAL_1 * restrict bbase;
|
| 47 |
|
|
'rtype_name` * restrict dest;
|
| 48 |
|
|
index_type rxstride;
|
| 49 |
|
|
index_type rystride;
|
| 50 |
|
|
index_type xcount;
|
| 51 |
|
|
index_type ycount;
|
| 52 |
|
|
index_type xstride;
|
| 53 |
|
|
index_type ystride;
|
| 54 |
|
|
index_type x;
|
| 55 |
|
|
index_type y;
|
| 56 |
|
|
int a_kind;
|
| 57 |
|
|
int b_kind;
|
| 58 |
|
|
|
| 59 |
|
|
const GFC_LOGICAL_1 * restrict pa;
|
| 60 |
|
|
const GFC_LOGICAL_1 * restrict pb;
|
| 61 |
|
|
index_type astride;
|
| 62 |
|
|
index_type bstride;
|
| 63 |
|
|
index_type count;
|
| 64 |
|
|
index_type n;
|
| 65 |
|
|
|
| 66 |
|
|
assert (GFC_DESCRIPTOR_RANK (a) == 2
|
| 67 |
|
|
|| GFC_DESCRIPTOR_RANK (b) == 2);
|
| 68 |
|
|
|
| 69 |
|
|
if (retarray->data == NULL)
|
| 70 |
|
|
{
|
| 71 |
|
|
if (GFC_DESCRIPTOR_RANK (a) == 1)
|
| 72 |
|
|
{
|
| 73 |
|
|
GFC_DIMENSION_SET(retarray->dim[0], 0,
|
| 74 |
|
|
GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
|
| 75 |
|
|
}
|
| 76 |
|
|
else if (GFC_DESCRIPTOR_RANK (b) == 1)
|
| 77 |
|
|
{
|
| 78 |
|
|
GFC_DIMENSION_SET(retarray->dim[0], 0,
|
| 79 |
|
|
GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
|
| 80 |
|
|
}
|
| 81 |
|
|
else
|
| 82 |
|
|
{
|
| 83 |
|
|
GFC_DIMENSION_SET(retarray->dim[0], 0,
|
| 84 |
|
|
GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
|
| 85 |
|
|
|
| 86 |
|
|
GFC_DIMENSION_SET(retarray->dim[1], 0,
|
| 87 |
|
|
GFC_DESCRIPTOR_EXTENT(b,1) - 1,
|
| 88 |
|
|
GFC_DESCRIPTOR_EXTENT(retarray,0));
|
| 89 |
|
|
}
|
| 90 |
|
|
|
| 91 |
|
|
retarray->data
|
| 92 |
|
|
= internal_malloc_size (sizeof ('rtype_name`) * size0 ((array_t *) retarray));
|
| 93 |
|
|
retarray->offset = 0;
|
| 94 |
|
|
}
|
| 95 |
|
|
else if (unlikely (compile_options.bounds_check))
|
| 96 |
|
|
{
|
| 97 |
|
|
index_type ret_extent, arg_extent;
|
| 98 |
|
|
|
| 99 |
|
|
if (GFC_DESCRIPTOR_RANK (a) == 1)
|
| 100 |
|
|
{
|
| 101 |
|
|
arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
|
| 102 |
|
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
| 103 |
|
|
if (arg_extent != ret_extent)
|
| 104 |
|
|
runtime_error ("Incorrect extent in return array in"
|
| 105 |
|
|
" MATMUL intrinsic: is %ld, should be %ld",
|
| 106 |
|
|
(long int) ret_extent, (long int) arg_extent);
|
| 107 |
|
|
}
|
| 108 |
|
|
else if (GFC_DESCRIPTOR_RANK (b) == 1)
|
| 109 |
|
|
{
|
| 110 |
|
|
arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
|
| 111 |
|
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
| 112 |
|
|
if (arg_extent != ret_extent)
|
| 113 |
|
|
runtime_error ("Incorrect extent in return array in"
|
| 114 |
|
|
" MATMUL intrinsic: is %ld, should be %ld",
|
| 115 |
|
|
(long int) ret_extent, (long int) arg_extent);
|
| 116 |
|
|
}
|
| 117 |
|
|
else
|
| 118 |
|
|
{
|
| 119 |
|
|
arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
|
| 120 |
|
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
| 121 |
|
|
if (arg_extent != ret_extent)
|
| 122 |
|
|
runtime_error ("Incorrect extent in return array in"
|
| 123 |
|
|
" MATMUL intrinsic for dimension 1:"
|
| 124 |
|
|
" is %ld, should be %ld",
|
| 125 |
|
|
(long int) ret_extent, (long int) arg_extent);
|
| 126 |
|
|
|
| 127 |
|
|
arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
|
| 128 |
|
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
|
| 129 |
|
|
if (arg_extent != ret_extent)
|
| 130 |
|
|
runtime_error ("Incorrect extent in return array in"
|
| 131 |
|
|
" MATMUL intrinsic for dimension 2:"
|
| 132 |
|
|
" is %ld, should be %ld",
|
| 133 |
|
|
(long int) ret_extent, (long int) arg_extent);
|
| 134 |
|
|
}
|
| 135 |
|
|
}
|
| 136 |
|
|
|
| 137 |
|
|
abase = a->data;
|
| 138 |
|
|
a_kind = GFC_DESCRIPTOR_SIZE (a);
|
| 139 |
|
|
|
| 140 |
|
|
if (a_kind == 1 || a_kind == 2 || a_kind == 4 || a_kind == 8
|
| 141 |
|
|
#ifdef HAVE_GFC_LOGICAL_16
|
| 142 |
|
|
|| a_kind == 16
|
| 143 |
|
|
#endif
|
| 144 |
|
|
)
|
| 145 |
|
|
abase = GFOR_POINTER_TO_L1 (abase, a_kind);
|
| 146 |
|
|
else
|
| 147 |
|
|
internal_error (NULL, "Funny sized logical array");
|
| 148 |
|
|
|
| 149 |
|
|
bbase = b->data;
|
| 150 |
|
|
b_kind = GFC_DESCRIPTOR_SIZE (b);
|
| 151 |
|
|
|
| 152 |
|
|
if (b_kind == 1 || b_kind == 2 || b_kind == 4 || b_kind == 8
|
| 153 |
|
|
#ifdef HAVE_GFC_LOGICAL_16
|
| 154 |
|
|
|| b_kind == 16
|
| 155 |
|
|
#endif
|
| 156 |
|
|
)
|
| 157 |
|
|
bbase = GFOR_POINTER_TO_L1 (bbase, b_kind);
|
| 158 |
|
|
else
|
| 159 |
|
|
internal_error (NULL, "Funny sized logical array");
|
| 160 |
|
|
|
| 161 |
|
|
dest = retarray->data;
|
| 162 |
|
|
'
|
| 163 |
|
|
sinclude(`matmul_asm_'rtype_code`.m4')dnl
|
| 164 |
|
|
`
|
| 165 |
|
|
if (GFC_DESCRIPTOR_RANK (retarray) == 1)
|
| 166 |
|
|
{
|
| 167 |
|
|
rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
|
| 168 |
|
|
rystride = rxstride;
|
| 169 |
|
|
}
|
| 170 |
|
|
else
|
| 171 |
|
|
{
|
| 172 |
|
|
rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
|
| 173 |
|
|
rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
|
| 174 |
|
|
}
|
| 175 |
|
|
|
| 176 |
|
|
/* If we have rank 1 parameters, zero the absent stride, and set the size to
|
| 177 |
|
|
one. */
|
| 178 |
|
|
if (GFC_DESCRIPTOR_RANK (a) == 1)
|
| 179 |
|
|
{
|
| 180 |
|
|
astride = GFC_DESCRIPTOR_STRIDE_BYTES(a,0);
|
| 181 |
|
|
count = GFC_DESCRIPTOR_EXTENT(a,0);
|
| 182 |
|
|
xstride = 0;
|
| 183 |
|
|
rxstride = 0;
|
| 184 |
|
|
xcount = 1;
|
| 185 |
|
|
}
|
| 186 |
|
|
else
|
| 187 |
|
|
{
|
| 188 |
|
|
astride = GFC_DESCRIPTOR_STRIDE_BYTES(a,1);
|
| 189 |
|
|
count = GFC_DESCRIPTOR_EXTENT(a,1);
|
| 190 |
|
|
xstride = GFC_DESCRIPTOR_STRIDE_BYTES(a,0);
|
| 191 |
|
|
xcount = GFC_DESCRIPTOR_EXTENT(a,0);
|
| 192 |
|
|
}
|
| 193 |
|
|
if (GFC_DESCRIPTOR_RANK (b) == 1)
|
| 194 |
|
|
{
|
| 195 |
|
|
bstride = GFC_DESCRIPTOR_STRIDE_BYTES(b,0);
|
| 196 |
|
|
assert(count == GFC_DESCRIPTOR_EXTENT(b,0));
|
| 197 |
|
|
ystride = 0;
|
| 198 |
|
|
rystride = 0;
|
| 199 |
|
|
ycount = 1;
|
| 200 |
|
|
}
|
| 201 |
|
|
else
|
| 202 |
|
|
{
|
| 203 |
|
|
bstride = GFC_DESCRIPTOR_STRIDE_BYTES(b,0);
|
| 204 |
|
|
assert(count == GFC_DESCRIPTOR_EXTENT(b,0));
|
| 205 |
|
|
ystride = GFC_DESCRIPTOR_STRIDE_BYTES(b,1);
|
| 206 |
|
|
ycount = GFC_DESCRIPTOR_EXTENT(b,1);
|
| 207 |
|
|
}
|
| 208 |
|
|
|
| 209 |
|
|
for (y = 0; y < ycount; y++)
|
| 210 |
|
|
{
|
| 211 |
|
|
for (x = 0; x < xcount; x++)
|
| 212 |
|
|
{
|
| 213 |
|
|
/* Do the summation for this element. For real and integer types
|
| 214 |
|
|
this is the same as DOT_PRODUCT. For complex types we use do
|
| 215 |
|
|
a*b, not conjg(a)*b. */
|
| 216 |
|
|
pa = abase;
|
| 217 |
|
|
pb = bbase;
|
| 218 |
|
|
*dest = 0;
|
| 219 |
|
|
|
| 220 |
|
|
for (n = 0; n < count; n++)
|
| 221 |
|
|
{
|
| 222 |
|
|
if (*pa && *pb)
|
| 223 |
|
|
{
|
| 224 |
|
|
*dest = 1;
|
| 225 |
|
|
break;
|
| 226 |
|
|
}
|
| 227 |
|
|
pa += astride;
|
| 228 |
|
|
pb += bstride;
|
| 229 |
|
|
}
|
| 230 |
|
|
|
| 231 |
|
|
dest += rxstride;
|
| 232 |
|
|
abase += xstride;
|
| 233 |
|
|
}
|
| 234 |
|
|
abase -= xstride * xcount;
|
| 235 |
|
|
bbase += ystride;
|
| 236 |
|
|
dest += rystride - (rxstride * xcount);
|
| 237 |
|
|
}
|
| 238 |
|
|
}
|
| 239 |
|
|
|
| 240 |
|
|
#endif
|
| 241 |
|
|
'
|