OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libgo/] [go/] [compress/] [bzip2/] [huffman.go] - Blame information for rev 774

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 747 jeremybenn
// Copyright 2011 The Go Authors. All rights reserved.
2
// Use of this source code is governed by a BSD-style
3
// license that can be found in the LICENSE file.
4
 
5
package bzip2
6
 
7
import "sort"
8
 
9
// A huffmanTree is a binary tree which is navigated, bit-by-bit to reach a
10
// symbol.
11
type huffmanTree struct {
12
        // nodes contains all the non-leaf nodes in the tree. nodes[0] is the
13
        // root of the tree and nextNode contains the index of the next element
14
        // of nodes to use when the tree is being constructed.
15
        nodes    []huffmanNode
16
        nextNode int
17
}
18
 
19
// A huffmanNode is a node in the tree. left and right contain indexes into the
20
// nodes slice of the tree. If left or right is invalidNodeValue then the child
21
// is a left node and its value is in leftValue/rightValue.
22
//
23
// The symbols are uint16s because bzip2 encodes not only MTF indexes in the
24
// tree, but also two magic values for run-length encoding and an EOF symbol.
25
// Thus there are more than 256 possible symbols.
26
type huffmanNode struct {
27
        left, right           uint16
28
        leftValue, rightValue uint16
29
}
30
 
31
// invalidNodeValue is an invalid index which marks a leaf node in the tree.
32
const invalidNodeValue = 0xffff
33
 
34
// Decode reads bits from the given bitReader and navigates the tree until a
35
// symbol is found.
36
func (t huffmanTree) Decode(br *bitReader) (v uint16) {
37
        nodeIndex := uint16(0) // node 0 is the root of the tree.
38
 
39
        for {
40
                node := &t.nodes[nodeIndex]
41
                bit := br.ReadBit()
42
                // bzip2 encodes left as a true bit.
43
                if bit {
44
                        // left
45
                        if node.left == invalidNodeValue {
46
                                return node.leftValue
47
                        }
48
                        nodeIndex = node.left
49
                } else {
50
                        // right
51
                        if node.right == invalidNodeValue {
52
                                return node.rightValue
53
                        }
54
                        nodeIndex = node.right
55
                }
56
        }
57
 
58
        panic("unreachable")
59
}
60
 
61
// newHuffmanTree builds a Huffman tree from a slice containing the code
62
// lengths of each symbol. The maximum code length is 32 bits.
63
func newHuffmanTree(lengths []uint8) (huffmanTree, error) {
64
        // There are many possible trees that assign the same code length to
65
        // each symbol (consider reflecting a tree down the middle, for
66
        // example). Since the code length assignments determine the
67
        // efficiency of the tree, each of these trees is equally good. In
68
        // order to minimize the amount of information needed to build a tree
69
        // bzip2 uses a canonical tree so that it can be reconstructed given
70
        // only the code length assignments.
71
 
72
        if len(lengths) < 2 {
73
                panic("newHuffmanTree: too few symbols")
74
        }
75
 
76
        var t huffmanTree
77
 
78
        // First we sort the code length assignments by ascending code length,
79
        // using the symbol value to break ties.
80
        pairs := huffmanSymbolLengthPairs(make([]huffmanSymbolLengthPair, len(lengths)))
81
        for i, length := range lengths {
82
                pairs[i].value = uint16(i)
83
                pairs[i].length = length
84
        }
85
 
86
        sort.Sort(pairs)
87
 
88
        // Now we assign codes to the symbols, starting with the longest code.
89
        // We keep the codes packed into a uint32, at the most-significant end.
90
        // So branches are taken from the MSB downwards. This makes it easy to
91
        // sort them later.
92
        code := uint32(0)
93
        length := uint8(32)
94
 
95
        codes := huffmanCodes(make([]huffmanCode, len(lengths)))
96
        for i := len(pairs) - 1; i >= 0; i-- {
97
                if length > pairs[i].length {
98
                        // If the code length decreases we shift in order to
99
                        // zero any bits beyond the end of the code.
100
                        length >>= 32 - pairs[i].length
101
                        length <<= 32 - pairs[i].length
102
                        length = pairs[i].length
103
                }
104
                codes[i].code = code
105
                codes[i].codeLen = length
106
                codes[i].value = pairs[i].value
107
                // We need to 'increment' the code, which means treating |code|
108
                // like a |length| bit number.
109
                code += 1 << (32 - length)
110
        }
111
 
112
        // Now we can sort by the code so that the left half of each branch are
113
        // grouped together, recursively.
114
        sort.Sort(codes)
115
 
116
        t.nodes = make([]huffmanNode, len(codes))
117
        _, err := buildHuffmanNode(&t, codes, 0)
118
        return t, err
119
}
120
 
121
// huffmanSymbolLengthPair contains a symbol and its code length.
122
type huffmanSymbolLengthPair struct {
123
        value  uint16
124
        length uint8
125
}
126
 
127
// huffmanSymbolLengthPair is used to provide an interface for sorting.
128
type huffmanSymbolLengthPairs []huffmanSymbolLengthPair
129
 
130
func (h huffmanSymbolLengthPairs) Len() int {
131
        return len(h)
132
}
133
 
134
func (h huffmanSymbolLengthPairs) Less(i, j int) bool {
135
        if h[i].length < h[j].length {
136
                return true
137
        }
138
        if h[i].length > h[j].length {
139
                return false
140
        }
141
        if h[i].value < h[j].value {
142
                return true
143
        }
144
        return false
145
}
146
 
147
func (h huffmanSymbolLengthPairs) Swap(i, j int) {
148
        h[i], h[j] = h[j], h[i]
149
}
150
 
151
// huffmanCode contains a symbol, its code and code length.
152
type huffmanCode struct {
153
        code    uint32
154
        codeLen uint8
155
        value   uint16
156
}
157
 
158
// huffmanCodes is used to provide an interface for sorting.
159
type huffmanCodes []huffmanCode
160
 
161
func (n huffmanCodes) Len() int {
162
        return len(n)
163
}
164
 
165
func (n huffmanCodes) Less(i, j int) bool {
166
        return n[i].code < n[j].code
167
}
168
 
169
func (n huffmanCodes) Swap(i, j int) {
170
        n[i], n[j] = n[j], n[i]
171
}
172
 
173
// buildHuffmanNode takes a slice of sorted huffmanCodes and builds a node in
174
// the Huffman tree at the given level. It returns the index of the newly
175
// constructed node.
176
func buildHuffmanNode(t *huffmanTree, codes []huffmanCode, level uint32) (nodeIndex uint16, err error) {
177
        test := uint32(1) << (31 - level)
178
 
179
        // We have to search the list of codes to find the divide between the left and right sides.
180
        firstRightIndex := len(codes)
181
        for i, code := range codes {
182
                if code.code&test != 0 {
183
                        firstRightIndex = i
184
                        break
185
                }
186
        }
187
 
188
        left := codes[:firstRightIndex]
189
        right := codes[firstRightIndex:]
190
 
191
        if len(left) == 0 || len(right) == 0 {
192
                return 0, StructuralError("superfluous level in Huffman tree")
193
        }
194
 
195
        nodeIndex = uint16(t.nextNode)
196
        node := &t.nodes[t.nextNode]
197
        t.nextNode++
198
 
199
        if len(left) == 1 {
200
                // leaf node
201
                node.left = invalidNodeValue
202
                node.leftValue = left[0].value
203
        } else {
204
                node.left, err = buildHuffmanNode(t, left, level+1)
205
        }
206
 
207
        if err != nil {
208
                return
209
        }
210
 
211
        if len(right) == 1 {
212
                // leaf node
213
                node.right = invalidNodeValue
214
                node.rightValue = right[0].value
215
        } else {
216
                node.right, err = buildHuffmanNode(t, right, level+1)
217
        }
218
 
219
        return
220
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.