OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libgo/] [go/] [compress/] [flate/] [huffman_code.go] - Blame information for rev 747

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 747 jeremybenn
// Copyright 2009 The Go Authors. All rights reserved.
2
// Use of this source code is governed by a BSD-style
3
// license that can be found in the LICENSE file.
4
 
5
package flate
6
 
7
import (
8
        "math"
9
        "sort"
10
)
11
 
12
type huffmanEncoder struct {
13
        codeBits []uint8
14
        code     []uint16
15
}
16
 
17
type literalNode struct {
18
        literal uint16
19
        freq    int32
20
}
21
 
22
type chain struct {
23
        // The sum of the leaves in this tree
24
        freq int32
25
 
26
        // The number of literals to the left of this item at this level
27
        leafCount int32
28
 
29
        // The right child of this chain in the previous level.
30
        up *chain
31
}
32
 
33
type levelInfo struct {
34
        // Our level.  for better printing
35
        level int32
36
 
37
        // The most recent chain generated for this level
38
        lastChain *chain
39
 
40
        // The frequency of the next character to add to this level
41
        nextCharFreq int32
42
 
43
        // The frequency of the next pair (from level below) to add to this level.
44
        // Only valid if the "needed" value of the next lower level is 0.
45
        nextPairFreq int32
46
 
47
        // The number of chains remaining to generate for this level before moving
48
        // up to the next level
49
        needed int32
50
 
51
        // The levelInfo for level+1
52
        up *levelInfo
53
 
54
        // The levelInfo for level-1
55
        down *levelInfo
56
}
57
 
58
func maxNode() literalNode { return literalNode{math.MaxUint16, math.MaxInt32} }
59
 
60
func newHuffmanEncoder(size int) *huffmanEncoder {
61
        return &huffmanEncoder{make([]uint8, size), make([]uint16, size)}
62
}
63
 
64
// Generates a HuffmanCode corresponding to the fixed literal table
65
func generateFixedLiteralEncoding() *huffmanEncoder {
66
        h := newHuffmanEncoder(maxLit)
67
        codeBits := h.codeBits
68
        code := h.code
69
        var ch uint16
70
        for ch = 0; ch < maxLit; ch++ {
71
                var bits uint16
72
                var size uint8
73
                switch {
74
                case ch < 144:
75
                        // size 8, 000110000  .. 10111111
76
                        bits = ch + 48
77
                        size = 8
78
                        break
79
                case ch < 256:
80
                        // size 9, 110010000 .. 111111111
81
                        bits = ch + 400 - 144
82
                        size = 9
83
                        break
84
                case ch < 280:
85
                        // size 7, 0000000 .. 0010111
86
                        bits = ch - 256
87
                        size = 7
88
                        break
89
                default:
90
                        // size 8, 11000000 .. 11000111
91
                        bits = ch + 192 - 280
92
                        size = 8
93
                }
94
                codeBits[ch] = size
95
                code[ch] = reverseBits(bits, size)
96
        }
97
        return h
98
}
99
 
100
func generateFixedOffsetEncoding() *huffmanEncoder {
101
        h := newHuffmanEncoder(30)
102
        codeBits := h.codeBits
103
        code := h.code
104
        for ch := uint16(0); ch < 30; ch++ {
105
                codeBits[ch] = 5
106
                code[ch] = reverseBits(ch, 5)
107
        }
108
        return h
109
}
110
 
111
var fixedLiteralEncoding *huffmanEncoder = generateFixedLiteralEncoding()
112
var fixedOffsetEncoding *huffmanEncoder = generateFixedOffsetEncoding()
113
 
114
func (h *huffmanEncoder) bitLength(freq []int32) int64 {
115
        var total int64
116
        for i, f := range freq {
117
                if f != 0 {
118
                        total += int64(f) * int64(h.codeBits[i])
119
                }
120
        }
121
        return total
122
}
123
 
124
// Return the number of literals assigned to each bit size in the Huffman encoding
125
//
126
// This method is only called when list.length >= 3
127
// The cases of 0, 1, and 2 literals are handled by special case code.
128
//
129
// list  An array of the literals with non-zero frequencies
130
//             and their associated frequencies.  The array is in order of increasing
131
//             frequency, and has as its last element a special element with frequency
132
//             MaxInt32
133
// maxBits     The maximum number of bits that should be used to encode any literal.
134
// return      An integer array in which array[i] indicates the number of literals
135
//             that should be encoded in i bits.
136
func (h *huffmanEncoder) bitCounts(list []literalNode, maxBits int32) []int32 {
137
        n := int32(len(list))
138
        list = list[0 : n+1]
139
        list[n] = maxNode()
140
 
141
        // The tree can't have greater depth than n - 1, no matter what.  This
142
        // saves a little bit of work in some small cases
143
        if maxBits > n-1 {
144
                maxBits = n - 1
145
        }
146
 
147
        // Create information about each of the levels.
148
        // A bogus "Level 0" whose sole purpose is so that
149
        // level1.prev.needed==0.  This makes level1.nextPairFreq
150
        // be a legitimate value that never gets chosen.
151
        top := &levelInfo{needed: 0}
152
        chain2 := &chain{list[1].freq, 2, new(chain)}
153
        for level := int32(1); level <= maxBits; level++ {
154
                // For every level, the first two items are the first two characters.
155
                // We initialize the levels as if we had already figured this out.
156
                top = &levelInfo{
157
                        level:        level,
158
                        lastChain:    chain2,
159
                        nextCharFreq: list[2].freq,
160
                        nextPairFreq: list[0].freq + list[1].freq,
161
                        down:         top,
162
                }
163
                top.down.up = top
164
                if level == 1 {
165
                        top.nextPairFreq = math.MaxInt32
166
                }
167
        }
168
 
169
        // We need a total of 2*n - 2 items at top level and have already generated 2.
170
        top.needed = 2*n - 4
171
 
172
        l := top
173
        for {
174
                if l.nextPairFreq == math.MaxInt32 && l.nextCharFreq == math.MaxInt32 {
175
                        // We've run out of both leafs and pairs.
176
                        // End all calculations for this level.
177
                        // To m sure we never come back to this level or any lower level,
178
                        // set nextPairFreq impossibly large.
179
                        l.lastChain = nil
180
                        l.needed = 0
181
                        l = l.up
182
                        l.nextPairFreq = math.MaxInt32
183
                        continue
184
                }
185
 
186
                prevFreq := l.lastChain.freq
187
                if l.nextCharFreq < l.nextPairFreq {
188
                        // The next item on this row is a leaf node.
189
                        n := l.lastChain.leafCount + 1
190
                        l.lastChain = &chain{l.nextCharFreq, n, l.lastChain.up}
191
                        l.nextCharFreq = list[n].freq
192
                } else {
193
                        // The next item on this row is a pair from the previous row.
194
                        // nextPairFreq isn't valid until we generate two
195
                        // more values in the level below
196
                        l.lastChain = &chain{l.nextPairFreq, l.lastChain.leafCount, l.down.lastChain}
197
                        l.down.needed = 2
198
                }
199
 
200
                if l.needed--; l.needed == 0 {
201
                        // We've done everything we need to do for this level.
202
                        // Continue calculating one level up.  Fill in nextPairFreq
203
                        // of that level with the sum of the two nodes we've just calculated on
204
                        // this level.
205
                        up := l.up
206
                        if up == nil {
207
                                // All done!
208
                                break
209
                        }
210
                        up.nextPairFreq = prevFreq + l.lastChain.freq
211
                        l = up
212
                } else {
213
                        // If we stole from below, move down temporarily to replenish it.
214
                        for l.down.needed > 0 {
215
                                l = l.down
216
                        }
217
                }
218
        }
219
 
220
        // Somethings is wrong if at the end, the top level is null or hasn't used
221
        // all of the leaves.
222
        if top.lastChain.leafCount != n {
223
                panic("top.lastChain.leafCount != n")
224
        }
225
 
226
        bitCount := make([]int32, maxBits+1)
227
        bits := 1
228
        for chain := top.lastChain; chain.up != nil; chain = chain.up {
229
                // chain.leafCount gives the number of literals requiring at least "bits"
230
                // bits to encode.
231
                bitCount[bits] = chain.leafCount - chain.up.leafCount
232
                bits++
233
        }
234
        return bitCount
235
}
236
 
237
// Look at the leaves and assign them a bit count and an encoding as specified
238
// in RFC 1951 3.2.2
239
func (h *huffmanEncoder) assignEncodingAndSize(bitCount []int32, list []literalNode) {
240
        code := uint16(0)
241
        for n, bits := range bitCount {
242
                code <<= 1
243
                if n == 0 || bits == 0 {
244
                        continue
245
                }
246
                // The literals list[len(list)-bits] .. list[len(list)-bits]
247
                // are encoded using "bits" bits, and get the values
248
                // code, code + 1, ....  The code values are
249
                // assigned in literal order (not frequency order).
250
                chunk := list[len(list)-int(bits):]
251
                sortByLiteral(chunk)
252
                for _, node := range chunk {
253
                        h.codeBits[node.literal] = uint8(n)
254
                        h.code[node.literal] = reverseBits(code, uint8(n))
255
                        code++
256
                }
257
                list = list[0 : len(list)-int(bits)]
258
        }
259
}
260
 
261
// Update this Huffman Code object to be the minimum code for the specified frequency count.
262
//
263
// freq  An array of frequencies, in which frequency[i] gives the frequency of literal i.
264
// maxBits  The maximum number of bits to use for any literal.
265
func (h *huffmanEncoder) generate(freq []int32, maxBits int32) {
266
        list := make([]literalNode, len(freq)+1)
267
        // Number of non-zero literals
268
        count := 0
269
        // Set list to be the set of all non-zero literals and their frequencies
270
        for i, f := range freq {
271
                if f != 0 {
272
                        list[count] = literalNode{uint16(i), f}
273
                        count++
274
                } else {
275
                        h.codeBits[i] = 0
276
                }
277
        }
278
        // If freq[] is shorter than codeBits[], fill rest of codeBits[] with zeros
279
        h.codeBits = h.codeBits[0:len(freq)]
280
        list = list[0:count]
281
        if count <= 2 {
282
                // Handle the small cases here, because they are awkward for the general case code.  With
283
                // two or fewer literals, everything has bit length 1.
284
                for i, node := range list {
285
                        // "list" is in order of increasing literal value.
286
                        h.codeBits[node.literal] = 1
287
                        h.code[node.literal] = uint16(i)
288
                }
289
                return
290
        }
291
        sortByFreq(list)
292
 
293
        // Get the number of literals for each bit count
294
        bitCount := h.bitCounts(list, maxBits)
295
        // And do the assignment
296
        h.assignEncodingAndSize(bitCount, list)
297
}
298
 
299
type literalNodeSorter struct {
300
        a    []literalNode
301
        less func(i, j int) bool
302
}
303
 
304
func (s literalNodeSorter) Len() int { return len(s.a) }
305
 
306
func (s literalNodeSorter) Less(i, j int) bool {
307
        return s.less(i, j)
308
}
309
 
310
func (s literalNodeSorter) Swap(i, j int) { s.a[i], s.a[j] = s.a[j], s.a[i] }
311
 
312
func sortByFreq(a []literalNode) {
313
        s := &literalNodeSorter{a, func(i, j int) bool {
314
                if a[i].freq == a[j].freq {
315
                        return a[i].literal < a[j].literal
316
                }
317
                return a[i].freq < a[j].freq
318
        }}
319
        sort.Sort(s)
320
}
321
 
322
func sortByLiteral(a []literalNode) {
323
        s := &literalNodeSorter{a, func(i, j int) bool { return a[i].literal < a[j].literal }}
324
        sort.Sort(s)
325
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.