OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libgo/] [go/] [crypto/] [ecdsa/] [ecdsa.go] - Blame information for rev 868

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 747 jeremybenn
// Copyright 2011 The Go Authors. All rights reserved.
2
// Use of this source code is governed by a BSD-style
3
// license that can be found in the LICENSE file.
4
 
5
// Package ecdsa implements the Elliptic Curve Digital Signature Algorithm, as
6
// defined in FIPS 186-3.
7
package ecdsa
8
 
9
// References:
10
//   [NSA]: Suite B implementor's guide to FIPS 186-3,
11
//     http://www.nsa.gov/ia/_files/ecdsa.pdf
12
//   [SECG]: SECG, SEC1
13
//     http://www.secg.org/download/aid-780/sec1-v2.pdf
14
 
15
import (
16
        "crypto/elliptic"
17
        "io"
18
        "math/big"
19
)
20
 
21
// PublicKey represents an ECDSA public key.
22
type PublicKey struct {
23
        elliptic.Curve
24
        X, Y *big.Int
25
}
26
 
27
// PrivateKey represents a ECDSA private key.
28
type PrivateKey struct {
29
        PublicKey
30
        D *big.Int
31
}
32
 
33
var one = new(big.Int).SetInt64(1)
34
 
35
// randFieldElement returns a random element of the field underlying the given
36
// curve using the procedure given in [NSA] A.2.1.
37
func randFieldElement(c elliptic.Curve, rand io.Reader) (k *big.Int, err error) {
38
        params := c.Params()
39
        b := make([]byte, params.BitSize/8+8)
40
        _, err = io.ReadFull(rand, b)
41
        if err != nil {
42
                return
43
        }
44
 
45
        k = new(big.Int).SetBytes(b)
46
        n := new(big.Int).Sub(params.N, one)
47
        k.Mod(k, n)
48
        k.Add(k, one)
49
        return
50
}
51
 
52
// GenerateKey generates a public&private key pair.
53
func GenerateKey(c elliptic.Curve, rand io.Reader) (priv *PrivateKey, err error) {
54
        k, err := randFieldElement(c, rand)
55
        if err != nil {
56
                return
57
        }
58
 
59
        priv = new(PrivateKey)
60
        priv.PublicKey.Curve = c
61
        priv.D = k
62
        priv.PublicKey.X, priv.PublicKey.Y = c.ScalarBaseMult(k.Bytes())
63
        return
64
}
65
 
66
// hashToInt converts a hash value to an integer. There is some disagreement
67
// about how this is done. [NSA] suggests that this is done in the obvious
68
// manner, but [SECG] truncates the hash to the bit-length of the curve order
69
// first. We follow [SECG] because that's what OpenSSL does.
70
func hashToInt(hash []byte, c elliptic.Curve) *big.Int {
71
        orderBits := c.Params().N.BitLen()
72
        orderBytes := (orderBits + 7) / 8
73
        if len(hash) > orderBytes {
74
                hash = hash[:orderBytes]
75
        }
76
 
77
        ret := new(big.Int).SetBytes(hash)
78
        excess := orderBytes*8 - orderBits
79
        if excess > 0 {
80
                ret.Rsh(ret, uint(excess))
81
        }
82
        return ret
83
}
84
 
85
// Sign signs an arbitrary length hash (which should be the result of hashing a
86
// larger message) using the private key, priv. It returns the signature as a
87
// pair of integers. The security of the private key depends on the entropy of
88
// rand.
89
func Sign(rand io.Reader, priv *PrivateKey, hash []byte) (r, s *big.Int, err error) {
90
        // See [NSA] 3.4.1
91
        c := priv.PublicKey.Curve
92
        N := c.Params().N
93
 
94
        var k, kInv *big.Int
95
        for {
96
                for {
97
                        k, err = randFieldElement(c, rand)
98
                        if err != nil {
99
                                r = nil
100
                                return
101
                        }
102
 
103
                        kInv = new(big.Int).ModInverse(k, N)
104
                        r, _ = priv.Curve.ScalarBaseMult(k.Bytes())
105
                        r.Mod(r, N)
106
                        if r.Sign() != 0 {
107
                                break
108
                        }
109
                }
110
 
111
                e := hashToInt(hash, c)
112
                s = new(big.Int).Mul(priv.D, r)
113
                s.Add(s, e)
114
                s.Mul(s, kInv)
115
                s.Mod(s, N)
116
                if s.Sign() != 0 {
117
                        break
118
                }
119
        }
120
 
121
        return
122
}
123
 
124
// Verify verifies the signature in r, s of hash using the public key, pub. It
125
// returns true iff the signature is valid.
126
func Verify(pub *PublicKey, hash []byte, r, s *big.Int) bool {
127
        // See [NSA] 3.4.2
128
        c := pub.Curve
129
        N := c.Params().N
130
 
131
        if r.Sign() == 0 || s.Sign() == 0 {
132
                return false
133
        }
134
        if r.Cmp(N) >= 0 || s.Cmp(N) >= 0 {
135
                return false
136
        }
137
        e := hashToInt(hash, c)
138
        w := new(big.Int).ModInverse(s, N)
139
 
140
        u1 := e.Mul(e, w)
141
        u2 := w.Mul(r, w)
142
 
143
        x1, y1 := c.ScalarBaseMult(u1.Bytes())
144
        x2, y2 := c.ScalarMult(pub.X, pub.Y, u2.Bytes())
145
        if x1.Cmp(x2) == 0 {
146
                return false
147
        }
148
        x, _ := c.Add(x1, y1, x2, y2)
149
        x.Mod(x, N)
150
        return x.Cmp(r) == 0
151
}

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.