1 |
747 |
jeremybenn |
// Copyright 2010 The Go Authors. All rights reserved.
|
2 |
|
|
// Use of this source code is governed by a BSD-style
|
3 |
|
|
// license that can be found in the LICENSE file.
|
4 |
|
|
|
5 |
|
|
// Package elliptic implements several standard elliptic curves over prime
|
6 |
|
|
// fields.
|
7 |
|
|
package elliptic
|
8 |
|
|
|
9 |
|
|
// This package operates, internally, on Jacobian coordinates. For a given
|
10 |
|
|
// (x, y) position on the curve, the Jacobian coordinates are (x1, y1, z1)
|
11 |
|
|
// where x = x1/z1² and y = y1/z1³. The greatest speedups come when the whole
|
12 |
|
|
// calculation can be performed within the transform (as in ScalarMult and
|
13 |
|
|
// ScalarBaseMult). But even for Add and Double, it's faster to apply and
|
14 |
|
|
// reverse the transform than to operate in affine coordinates.
|
15 |
|
|
|
16 |
|
|
import (
|
17 |
|
|
"io"
|
18 |
|
|
"math/big"
|
19 |
|
|
"sync"
|
20 |
|
|
)
|
21 |
|
|
|
22 |
|
|
// A Curve represents a short-form Weierstrass curve with a=-3.
|
23 |
|
|
// See http://www.hyperelliptic.org/EFD/g1p/auto-shortw.html
|
24 |
|
|
type Curve interface {
|
25 |
|
|
// Params returns the parameters for the curve.
|
26 |
|
|
Params() *CurveParams
|
27 |
|
|
// IsOnCurve returns true if the given (x,y) lies on the curve.
|
28 |
|
|
IsOnCurve(x, y *big.Int) bool
|
29 |
|
|
// Add returns the sum of (x1,y1) and (x2,y2)
|
30 |
|
|
Add(x1, y1, x2, y2 *big.Int) (x, y *big.Int)
|
31 |
|
|
// Double returns 2*(x,y)
|
32 |
|
|
Double(x1, y1 *big.Int) (x, y *big.Int)
|
33 |
|
|
// ScalarMult returns k*(Bx,By) where k is a number in big-endian form.
|
34 |
|
|
ScalarMult(x1, y1 *big.Int, scalar []byte) (x, y *big.Int)
|
35 |
|
|
// ScalarBaseMult returns k*G, where G is the base point of the group and k
|
36 |
|
|
// is an integer in big-endian form.
|
37 |
|
|
ScalarBaseMult(scalar []byte) (x, y *big.Int)
|
38 |
|
|
}
|
39 |
|
|
|
40 |
|
|
// CurveParams contains the parameters of an elliptic curve and also provides
|
41 |
|
|
// a generic, non-constant time implementation of Curve.
|
42 |
|
|
type CurveParams struct {
|
43 |
|
|
P *big.Int // the order of the underlying field
|
44 |
|
|
N *big.Int // the order of the base point
|
45 |
|
|
B *big.Int // the constant of the curve equation
|
46 |
|
|
Gx, Gy *big.Int // (x,y) of the base point
|
47 |
|
|
BitSize int // the size of the underlying field
|
48 |
|
|
}
|
49 |
|
|
|
50 |
|
|
func (curve *CurveParams) Params() *CurveParams {
|
51 |
|
|
return curve
|
52 |
|
|
}
|
53 |
|
|
|
54 |
|
|
func (curve *CurveParams) IsOnCurve(x, y *big.Int) bool {
|
55 |
|
|
// y² = x³ - 3x + b
|
56 |
|
|
y2 := new(big.Int).Mul(y, y)
|
57 |
|
|
y2.Mod(y2, curve.P)
|
58 |
|
|
|
59 |
|
|
x3 := new(big.Int).Mul(x, x)
|
60 |
|
|
x3.Mul(x3, x)
|
61 |
|
|
|
62 |
|
|
threeX := new(big.Int).Lsh(x, 1)
|
63 |
|
|
threeX.Add(threeX, x)
|
64 |
|
|
|
65 |
|
|
x3.Sub(x3, threeX)
|
66 |
|
|
x3.Add(x3, curve.B)
|
67 |
|
|
x3.Mod(x3, curve.P)
|
68 |
|
|
|
69 |
|
|
return x3.Cmp(y2) == 0
|
70 |
|
|
}
|
71 |
|
|
|
72 |
|
|
// affineFromJacobian reverses the Jacobian transform. See the comment at the
|
73 |
|
|
// top of the file.
|
74 |
|
|
func (curve *CurveParams) affineFromJacobian(x, y, z *big.Int) (xOut, yOut *big.Int) {
|
75 |
|
|
zinv := new(big.Int).ModInverse(z, curve.P)
|
76 |
|
|
zinvsq := new(big.Int).Mul(zinv, zinv)
|
77 |
|
|
|
78 |
|
|
xOut = new(big.Int).Mul(x, zinvsq)
|
79 |
|
|
xOut.Mod(xOut, curve.P)
|
80 |
|
|
zinvsq.Mul(zinvsq, zinv)
|
81 |
|
|
yOut = new(big.Int).Mul(y, zinvsq)
|
82 |
|
|
yOut.Mod(yOut, curve.P)
|
83 |
|
|
return
|
84 |
|
|
}
|
85 |
|
|
|
86 |
|
|
func (curve *CurveParams) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) {
|
87 |
|
|
z := new(big.Int).SetInt64(1)
|
88 |
|
|
return curve.affineFromJacobian(curve.addJacobian(x1, y1, z, x2, y2, z))
|
89 |
|
|
}
|
90 |
|
|
|
91 |
|
|
// addJacobian takes two points in Jacobian coordinates, (x1, y1, z1) and
|
92 |
|
|
// (x2, y2, z2) and returns their sum, also in Jacobian form.
|
93 |
|
|
func (curve *CurveParams) addJacobian(x1, y1, z1, x2, y2, z2 *big.Int) (*big.Int, *big.Int, *big.Int) {
|
94 |
|
|
// See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl
|
95 |
|
|
z1z1 := new(big.Int).Mul(z1, z1)
|
96 |
|
|
z1z1.Mod(z1z1, curve.P)
|
97 |
|
|
z2z2 := new(big.Int).Mul(z2, z2)
|
98 |
|
|
z2z2.Mod(z2z2, curve.P)
|
99 |
|
|
|
100 |
|
|
u1 := new(big.Int).Mul(x1, z2z2)
|
101 |
|
|
u1.Mod(u1, curve.P)
|
102 |
|
|
u2 := new(big.Int).Mul(x2, z1z1)
|
103 |
|
|
u2.Mod(u2, curve.P)
|
104 |
|
|
h := new(big.Int).Sub(u2, u1)
|
105 |
|
|
if h.Sign() == -1 {
|
106 |
|
|
h.Add(h, curve.P)
|
107 |
|
|
}
|
108 |
|
|
i := new(big.Int).Lsh(h, 1)
|
109 |
|
|
i.Mul(i, i)
|
110 |
|
|
j := new(big.Int).Mul(h, i)
|
111 |
|
|
|
112 |
|
|
s1 := new(big.Int).Mul(y1, z2)
|
113 |
|
|
s1.Mul(s1, z2z2)
|
114 |
|
|
s1.Mod(s1, curve.P)
|
115 |
|
|
s2 := new(big.Int).Mul(y2, z1)
|
116 |
|
|
s2.Mul(s2, z1z1)
|
117 |
|
|
s2.Mod(s2, curve.P)
|
118 |
|
|
r := new(big.Int).Sub(s2, s1)
|
119 |
|
|
if r.Sign() == -1 {
|
120 |
|
|
r.Add(r, curve.P)
|
121 |
|
|
}
|
122 |
|
|
r.Lsh(r, 1)
|
123 |
|
|
v := new(big.Int).Mul(u1, i)
|
124 |
|
|
|
125 |
|
|
x3 := new(big.Int).Set(r)
|
126 |
|
|
x3.Mul(x3, x3)
|
127 |
|
|
x3.Sub(x3, j)
|
128 |
|
|
x3.Sub(x3, v)
|
129 |
|
|
x3.Sub(x3, v)
|
130 |
|
|
x3.Mod(x3, curve.P)
|
131 |
|
|
|
132 |
|
|
y3 := new(big.Int).Set(r)
|
133 |
|
|
v.Sub(v, x3)
|
134 |
|
|
y3.Mul(y3, v)
|
135 |
|
|
s1.Mul(s1, j)
|
136 |
|
|
s1.Lsh(s1, 1)
|
137 |
|
|
y3.Sub(y3, s1)
|
138 |
|
|
y3.Mod(y3, curve.P)
|
139 |
|
|
|
140 |
|
|
z3 := new(big.Int).Add(z1, z2)
|
141 |
|
|
z3.Mul(z3, z3)
|
142 |
|
|
z3.Sub(z3, z1z1)
|
143 |
|
|
if z3.Sign() == -1 {
|
144 |
|
|
z3.Add(z3, curve.P)
|
145 |
|
|
}
|
146 |
|
|
z3.Sub(z3, z2z2)
|
147 |
|
|
if z3.Sign() == -1 {
|
148 |
|
|
z3.Add(z3, curve.P)
|
149 |
|
|
}
|
150 |
|
|
z3.Mul(z3, h)
|
151 |
|
|
z3.Mod(z3, curve.P)
|
152 |
|
|
|
153 |
|
|
return x3, y3, z3
|
154 |
|
|
}
|
155 |
|
|
|
156 |
|
|
func (curve *CurveParams) Double(x1, y1 *big.Int) (*big.Int, *big.Int) {
|
157 |
|
|
z1 := new(big.Int).SetInt64(1)
|
158 |
|
|
return curve.affineFromJacobian(curve.doubleJacobian(x1, y1, z1))
|
159 |
|
|
}
|
160 |
|
|
|
161 |
|
|
// doubleJacobian takes a point in Jacobian coordinates, (x, y, z), and
|
162 |
|
|
// returns its double, also in Jacobian form.
|
163 |
|
|
func (curve *CurveParams) doubleJacobian(x, y, z *big.Int) (*big.Int, *big.Int, *big.Int) {
|
164 |
|
|
// See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
|
165 |
|
|
delta := new(big.Int).Mul(z, z)
|
166 |
|
|
delta.Mod(delta, curve.P)
|
167 |
|
|
gamma := new(big.Int).Mul(y, y)
|
168 |
|
|
gamma.Mod(gamma, curve.P)
|
169 |
|
|
alpha := new(big.Int).Sub(x, delta)
|
170 |
|
|
if alpha.Sign() == -1 {
|
171 |
|
|
alpha.Add(alpha, curve.P)
|
172 |
|
|
}
|
173 |
|
|
alpha2 := new(big.Int).Add(x, delta)
|
174 |
|
|
alpha.Mul(alpha, alpha2)
|
175 |
|
|
alpha2.Set(alpha)
|
176 |
|
|
alpha.Lsh(alpha, 1)
|
177 |
|
|
alpha.Add(alpha, alpha2)
|
178 |
|
|
|
179 |
|
|
beta := alpha2.Mul(x, gamma)
|
180 |
|
|
|
181 |
|
|
x3 := new(big.Int).Mul(alpha, alpha)
|
182 |
|
|
beta8 := new(big.Int).Lsh(beta, 3)
|
183 |
|
|
x3.Sub(x3, beta8)
|
184 |
|
|
for x3.Sign() == -1 {
|
185 |
|
|
x3.Add(x3, curve.P)
|
186 |
|
|
}
|
187 |
|
|
x3.Mod(x3, curve.P)
|
188 |
|
|
|
189 |
|
|
z3 := new(big.Int).Add(y, z)
|
190 |
|
|
z3.Mul(z3, z3)
|
191 |
|
|
z3.Sub(z3, gamma)
|
192 |
|
|
if z3.Sign() == -1 {
|
193 |
|
|
z3.Add(z3, curve.P)
|
194 |
|
|
}
|
195 |
|
|
z3.Sub(z3, delta)
|
196 |
|
|
if z3.Sign() == -1 {
|
197 |
|
|
z3.Add(z3, curve.P)
|
198 |
|
|
}
|
199 |
|
|
z3.Mod(z3, curve.P)
|
200 |
|
|
|
201 |
|
|
beta.Lsh(beta, 2)
|
202 |
|
|
beta.Sub(beta, x3)
|
203 |
|
|
if beta.Sign() == -1 {
|
204 |
|
|
beta.Add(beta, curve.P)
|
205 |
|
|
}
|
206 |
|
|
y3 := alpha.Mul(alpha, beta)
|
207 |
|
|
|
208 |
|
|
gamma.Mul(gamma, gamma)
|
209 |
|
|
gamma.Lsh(gamma, 3)
|
210 |
|
|
gamma.Mod(gamma, curve.P)
|
211 |
|
|
|
212 |
|
|
y3.Sub(y3, gamma)
|
213 |
|
|
if y3.Sign() == -1 {
|
214 |
|
|
y3.Add(y3, curve.P)
|
215 |
|
|
}
|
216 |
|
|
y3.Mod(y3, curve.P)
|
217 |
|
|
|
218 |
|
|
return x3, y3, z3
|
219 |
|
|
}
|
220 |
|
|
|
221 |
|
|
func (curve *CurveParams) ScalarMult(Bx, By *big.Int, k []byte) (*big.Int, *big.Int) {
|
222 |
|
|
// We have a slight problem in that the identity of the group (the
|
223 |
|
|
// point at infinity) cannot be represented in (x, y) form on a finite
|
224 |
|
|
// machine. Thus the standard add/double algorithm has to be tweaked
|
225 |
|
|
// slightly: our initial state is not the identity, but x, and we
|
226 |
|
|
// ignore the first true bit in |k|. If we don't find any true bits in
|
227 |
|
|
// |k|, then we return nil, nil, because we cannot return the identity
|
228 |
|
|
// element.
|
229 |
|
|
|
230 |
|
|
Bz := new(big.Int).SetInt64(1)
|
231 |
|
|
x := Bx
|
232 |
|
|
y := By
|
233 |
|
|
z := Bz
|
234 |
|
|
|
235 |
|
|
seenFirstTrue := false
|
236 |
|
|
for _, byte := range k {
|
237 |
|
|
for bitNum := 0; bitNum < 8; bitNum++ {
|
238 |
|
|
if seenFirstTrue {
|
239 |
|
|
x, y, z = curve.doubleJacobian(x, y, z)
|
240 |
|
|
}
|
241 |
|
|
if byte&0x80 == 0x80 {
|
242 |
|
|
if !seenFirstTrue {
|
243 |
|
|
seenFirstTrue = true
|
244 |
|
|
} else {
|
245 |
|
|
x, y, z = curve.addJacobian(Bx, By, Bz, x, y, z)
|
246 |
|
|
}
|
247 |
|
|
}
|
248 |
|
|
byte <<= 1
|
249 |
|
|
}
|
250 |
|
|
}
|
251 |
|
|
|
252 |
|
|
if !seenFirstTrue {
|
253 |
|
|
return nil, nil
|
254 |
|
|
}
|
255 |
|
|
|
256 |
|
|
return curve.affineFromJacobian(x, y, z)
|
257 |
|
|
}
|
258 |
|
|
|
259 |
|
|
func (curve *CurveParams) ScalarBaseMult(k []byte) (*big.Int, *big.Int) {
|
260 |
|
|
return curve.ScalarMult(curve.Gx, curve.Gy, k)
|
261 |
|
|
}
|
262 |
|
|
|
263 |
|
|
var mask = []byte{0xff, 0x1, 0x3, 0x7, 0xf, 0x1f, 0x3f, 0x7f}
|
264 |
|
|
|
265 |
|
|
// GenerateKey returns a public/private key pair. The private key is
|
266 |
|
|
// generated using the given reader, which must return random data.
|
267 |
|
|
func GenerateKey(curve Curve, rand io.Reader) (priv []byte, x, y *big.Int, err error) {
|
268 |
|
|
bitSize := curve.Params().BitSize
|
269 |
|
|
byteLen := (bitSize + 7) >> 3
|
270 |
|
|
priv = make([]byte, byteLen)
|
271 |
|
|
|
272 |
|
|
for x == nil {
|
273 |
|
|
_, err = io.ReadFull(rand, priv)
|
274 |
|
|
if err != nil {
|
275 |
|
|
return
|
276 |
|
|
}
|
277 |
|
|
// We have to mask off any excess bits in the case that the size of the
|
278 |
|
|
// underlying field is not a whole number of bytes.
|
279 |
|
|
priv[0] &= mask[bitSize%8]
|
280 |
|
|
// This is because, in tests, rand will return all zeros and we don't
|
281 |
|
|
// want to get the point at infinity and loop forever.
|
282 |
|
|
priv[1] ^= 0x42
|
283 |
|
|
x, y = curve.ScalarBaseMult(priv)
|
284 |
|
|
}
|
285 |
|
|
return
|
286 |
|
|
}
|
287 |
|
|
|
288 |
|
|
// Marshal converts a point into the form specified in section 4.3.6 of ANSI X9.62.
|
289 |
|
|
func Marshal(curve Curve, x, y *big.Int) []byte {
|
290 |
|
|
byteLen := (curve.Params().BitSize + 7) >> 3
|
291 |
|
|
|
292 |
|
|
ret := make([]byte, 1+2*byteLen)
|
293 |
|
|
ret[0] = 4 // uncompressed point
|
294 |
|
|
|
295 |
|
|
xBytes := x.Bytes()
|
296 |
|
|
copy(ret[1+byteLen-len(xBytes):], xBytes)
|
297 |
|
|
yBytes := y.Bytes()
|
298 |
|
|
copy(ret[1+2*byteLen-len(yBytes):], yBytes)
|
299 |
|
|
return ret
|
300 |
|
|
}
|
301 |
|
|
|
302 |
|
|
// Unmarshal converts a point, serialized by Marshal, into an x, y pair. On error, x = nil.
|
303 |
|
|
func Unmarshal(curve Curve, data []byte) (x, y *big.Int) {
|
304 |
|
|
byteLen := (curve.Params().BitSize + 7) >> 3
|
305 |
|
|
if len(data) != 1+2*byteLen {
|
306 |
|
|
return
|
307 |
|
|
}
|
308 |
|
|
if data[0] != 4 { // uncompressed form
|
309 |
|
|
return
|
310 |
|
|
}
|
311 |
|
|
x = new(big.Int).SetBytes(data[1 : 1+byteLen])
|
312 |
|
|
y = new(big.Int).SetBytes(data[1+byteLen:])
|
313 |
|
|
return
|
314 |
|
|
}
|
315 |
|
|
|
316 |
|
|
var initonce sync.Once
|
317 |
|
|
var p256 *CurveParams
|
318 |
|
|
var p384 *CurveParams
|
319 |
|
|
var p521 *CurveParams
|
320 |
|
|
|
321 |
|
|
func initAll() {
|
322 |
|
|
initP224()
|
323 |
|
|
initP256()
|
324 |
|
|
initP384()
|
325 |
|
|
initP521()
|
326 |
|
|
}
|
327 |
|
|
|
328 |
|
|
func initP256() {
|
329 |
|
|
// See FIPS 186-3, section D.2.3
|
330 |
|
|
p256 = new(CurveParams)
|
331 |
|
|
p256.P, _ = new(big.Int).SetString("115792089210356248762697446949407573530086143415290314195533631308867097853951", 10)
|
332 |
|
|
p256.N, _ = new(big.Int).SetString("115792089210356248762697446949407573529996955224135760342422259061068512044369", 10)
|
333 |
|
|
p256.B, _ = new(big.Int).SetString("5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b", 16)
|
334 |
|
|
p256.Gx, _ = new(big.Int).SetString("6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296", 16)
|
335 |
|
|
p256.Gy, _ = new(big.Int).SetString("4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5", 16)
|
336 |
|
|
p256.BitSize = 256
|
337 |
|
|
}
|
338 |
|
|
|
339 |
|
|
func initP384() {
|
340 |
|
|
// See FIPS 186-3, section D.2.4
|
341 |
|
|
p384 = new(CurveParams)
|
342 |
|
|
p384.P, _ = new(big.Int).SetString("39402006196394479212279040100143613805079739270465446667948293404245721771496870329047266088258938001861606973112319", 10)
|
343 |
|
|
p384.N, _ = new(big.Int).SetString("39402006196394479212279040100143613805079739270465446667946905279627659399113263569398956308152294913554433653942643", 10)
|
344 |
|
|
p384.B, _ = new(big.Int).SetString("b3312fa7e23ee7e4988e056be3f82d19181d9c6efe8141120314088f5013875ac656398d8a2ed19d2a85c8edd3ec2aef", 16)
|
345 |
|
|
p384.Gx, _ = new(big.Int).SetString("aa87ca22be8b05378eb1c71ef320ad746e1d3b628ba79b9859f741e082542a385502f25dbf55296c3a545e3872760ab7", 16)
|
346 |
|
|
p384.Gy, _ = new(big.Int).SetString("3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9da3113b5f0b8c00a60b1ce1d7e819d7a431d7c90ea0e5f", 16)
|
347 |
|
|
p384.BitSize = 384
|
348 |
|
|
}
|
349 |
|
|
|
350 |
|
|
func initP521() {
|
351 |
|
|
// See FIPS 186-3, section D.2.5
|
352 |
|
|
p521 = new(CurveParams)
|
353 |
|
|
p521.P, _ = new(big.Int).SetString("6864797660130609714981900799081393217269435300143305409394463459185543183397656052122559640661454554977296311391480858037121987999716643812574028291115057151", 10)
|
354 |
|
|
p521.N, _ = new(big.Int).SetString("6864797660130609714981900799081393217269435300143305409394463459185543183397655394245057746333217197532963996371363321113864768612440380340372808892707005449", 10)
|
355 |
|
|
p521.B, _ = new(big.Int).SetString("051953eb9618e1c9a1f929a21a0b68540eea2da725b99b315f3b8b489918ef109e156193951ec7e937b1652c0bd3bb1bf073573df883d2c34f1ef451fd46b503f00", 16)
|
356 |
|
|
p521.Gx, _ = new(big.Int).SetString("c6858e06b70404e9cd9e3ecb662395b4429c648139053fb521f828af606b4d3dbaa14b5e77efe75928fe1dc127a2ffa8de3348b3c1856a429bf97e7e31c2e5bd66", 16)
|
357 |
|
|
p521.Gy, _ = new(big.Int).SetString("11839296a789a3bc0045c8a5fb42c7d1bd998f54449579b446817afbd17273e662c97ee72995ef42640c550b9013fad0761353c7086a272c24088be94769fd16650", 16)
|
358 |
|
|
p521.BitSize = 521
|
359 |
|
|
}
|
360 |
|
|
|
361 |
|
|
// P256 returns a Curve which implements P-256 (see FIPS 186-3, section D.2.3)
|
362 |
|
|
func P256() Curve {
|
363 |
|
|
initonce.Do(initAll)
|
364 |
|
|
return p256
|
365 |
|
|
}
|
366 |
|
|
|
367 |
|
|
// P384 returns a Curve which implements P-384 (see FIPS 186-3, section D.2.4)
|
368 |
|
|
func P384() Curve {
|
369 |
|
|
initonce.Do(initAll)
|
370 |
|
|
return p384
|
371 |
|
|
}
|
372 |
|
|
|
373 |
|
|
// P256 returns a Curve which implements P-521 (see FIPS 186-3, section D.2.5)
|
374 |
|
|
func P521() Curve {
|
375 |
|
|
initonce.Do(initAll)
|
376 |
|
|
return p521
|
377 |
|
|
}
|