OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libgo/] [go/] [crypto/] [elliptic/] [p224.go] - Blame information for rev 775

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 747 jeremybenn
// Copyright 2012 The Go Authors.  All rights reserved.
2
// Use of this source code is governed by a BSD-style
3
// license that can be found in the LICENSE file.
4
 
5
package elliptic
6
 
7
// This is a constant-time, 32-bit implementation of P224. See FIPS 186-3,
8
// section D.2.2.
9
//
10
// See http://www.imperialviolet.org/2010/12/04/ecc.html ([1]) for background.
11
 
12
import (
13
        "math/big"
14
)
15
 
16
var p224 p224Curve
17
 
18
type p224Curve struct {
19
        *CurveParams
20
        gx, gy, b p224FieldElement
21
}
22
 
23
func initP224() {
24
        // See FIPS 186-3, section D.2.2
25
        p224.CurveParams = new(CurveParams)
26
        p224.P, _ = new(big.Int).SetString("26959946667150639794667015087019630673557916260026308143510066298881", 10)
27
        p224.N, _ = new(big.Int).SetString("26959946667150639794667015087019625940457807714424391721682722368061", 10)
28
        p224.B, _ = new(big.Int).SetString("b4050a850c04b3abf54132565044b0b7d7bfd8ba270b39432355ffb4", 16)
29
        p224.Gx, _ = new(big.Int).SetString("b70e0cbd6bb4bf7f321390b94a03c1d356c21122343280d6115c1d21", 16)
30
        p224.Gy, _ = new(big.Int).SetString("bd376388b5f723fb4c22dfe6cd4375a05a07476444d5819985007e34", 16)
31
        p224.BitSize = 224
32
 
33
        p224FromBig(&p224.gx, p224.Gx)
34
        p224FromBig(&p224.gy, p224.Gy)
35
        p224FromBig(&p224.b, p224.B)
36
}
37
 
38
// P224 returns a Curve which implements P-224 (see FIPS 186-3, section D.2.2)
39
func P224() Curve {
40
        initonce.Do(initAll)
41
        return p224
42
}
43
 
44
func (curve p224Curve) Params() *CurveParams {
45
        return curve.CurveParams
46
}
47
 
48
func (curve p224Curve) IsOnCurve(bigX, bigY *big.Int) bool {
49
        var x, y p224FieldElement
50
        p224FromBig(&x, bigX)
51
        p224FromBig(&y, bigY)
52
 
53
        // y² = x³ - 3x + b
54
        var tmp p224LargeFieldElement
55
        var x3 p224FieldElement
56
        p224Square(&x3, &x, &tmp)
57
        p224Mul(&x3, &x3, &x, &tmp)
58
 
59
        for i := 0; i < 8; i++ {
60
                x[i] *= 3
61
        }
62
        p224Sub(&x3, &x3, &x)
63
        p224Reduce(&x3)
64
        p224Add(&x3, &x3, &curve.b)
65
        p224Contract(&x3, &x3)
66
 
67
        p224Square(&y, &y, &tmp)
68
        p224Contract(&y, &y)
69
 
70
        for i := 0; i < 8; i++ {
71
                if y[i] != x3[i] {
72
                        return false
73
                }
74
        }
75
        return true
76
}
77
 
78
func (p224Curve) Add(bigX1, bigY1, bigX2, bigY2 *big.Int) (x, y *big.Int) {
79
        var x1, y1, z1, x2, y2, z2, x3, y3, z3 p224FieldElement
80
 
81
        p224FromBig(&x1, bigX1)
82
        p224FromBig(&y1, bigY1)
83
        z1[0] = 1
84
        p224FromBig(&x2, bigX2)
85
        p224FromBig(&y2, bigY2)
86
        z2[0] = 1
87
 
88
        p224AddJacobian(&x3, &y3, &z3, &x1, &y1, &z1, &x2, &y2, &z2)
89
        return p224ToAffine(&x3, &y3, &z3)
90
}
91
 
92
func (p224Curve) Double(bigX1, bigY1 *big.Int) (x, y *big.Int) {
93
        var x1, y1, z1, x2, y2, z2 p224FieldElement
94
 
95
        p224FromBig(&x1, bigX1)
96
        p224FromBig(&y1, bigY1)
97
        z1[0] = 1
98
 
99
        p224DoubleJacobian(&x2, &y2, &z2, &x1, &y1, &z1)
100
        return p224ToAffine(&x2, &y2, &z2)
101
}
102
 
103
func (p224Curve) ScalarMult(bigX1, bigY1 *big.Int, scalar []byte) (x, y *big.Int) {
104
        var x1, y1, z1, x2, y2, z2 p224FieldElement
105
 
106
        p224FromBig(&x1, bigX1)
107
        p224FromBig(&y1, bigY1)
108
        z1[0] = 1
109
 
110
        p224ScalarMult(&x2, &y2, &z2, &x1, &y1, &z1, scalar)
111
        return p224ToAffine(&x2, &y2, &z2)
112
}
113
 
114
func (curve p224Curve) ScalarBaseMult(scalar []byte) (x, y *big.Int) {
115
        var z1, x2, y2, z2 p224FieldElement
116
 
117
        z1[0] = 1
118
        p224ScalarMult(&x2, &y2, &z2, &curve.gx, &curve.gy, &z1, scalar)
119
        return p224ToAffine(&x2, &y2, &z2)
120
}
121
 
122
// Field element functions.
123
//
124
// The field that we're dealing with is ℤ/pℤ where p = 2**224 - 2**96 + 1.
125
//
126
// Field elements are represented by a FieldElement, which is a typedef to an
127
// array of 8 uint32's. The value of a FieldElement, a, is:
128
//   a[0] + 2**28·a[1] + 2**56·a[1] + ... + 2**196·a[7]
129
//
130
// Using 28-bit limbs means that there's only 4 bits of headroom, which is less
131
// than we would really like. But it has the useful feature that we hit 2**224
132
// exactly, making the reflections during a reduce much nicer.
133
type p224FieldElement [8]uint32
134
 
135
// p224Add computes *out = a+b
136
//
137
// a[i] + b[i] < 2**32
138
func p224Add(out, a, b *p224FieldElement) {
139
        for i := 0; i < 8; i++ {
140
                out[i] = a[i] + b[i]
141
        }
142
}
143
 
144
const two31p3 = 1<<31 + 1<<3
145
const two31m3 = 1<<31 - 1<<3
146
const two31m15m3 = 1<<31 - 1<<15 - 1<<3
147
 
148
// p224ZeroModP31 is 0 mod p where bit 31 is set in all limbs so that we can
149
// subtract smaller amounts without underflow. See the section "Subtraction" in
150
// [1] for reasoning.
151
var p224ZeroModP31 = []uint32{two31p3, two31m3, two31m3, two31m15m3, two31m3, two31m3, two31m3, two31m3}
152
 
153
// p224Sub computes *out = a-b
154
//
155
// a[i], b[i] < 2**30
156
// out[i] < 2**32
157
func p224Sub(out, a, b *p224FieldElement) {
158
        for i := 0; i < 8; i++ {
159
                out[i] = a[i] + p224ZeroModP31[i] - b[i]
160
        }
161
}
162
 
163
// LargeFieldElement also represents an element of the field. The limbs are
164
// still spaced 28-bits apart and in little-endian order. So the limbs are at
165
// 0, 28, 56, ..., 392 bits, each 64-bits wide.
166
type p224LargeFieldElement [15]uint64
167
 
168
const two63p35 = 1<<63 + 1<<35
169
const two63m35 = 1<<63 - 1<<35
170
const two63m35m19 = 1<<63 - 1<<35 - 1<<19
171
 
172
// p224ZeroModP63 is 0 mod p where bit 63 is set in all limbs. See the section
173
// "Subtraction" in [1] for why.
174
var p224ZeroModP63 = [8]uint64{two63p35, two63m35, two63m35, two63m35, two63m35m19, two63m35, two63m35, two63m35}
175
 
176
const bottom12Bits = 0xfff
177
const bottom28Bits = 0xfffffff
178
 
179
// p224Mul computes *out = a*b
180
//
181
// a[i] < 2**29, b[i] < 2**30 (or vice versa)
182
// out[i] < 2**29
183
func p224Mul(out, a, b *p224FieldElement, tmp *p224LargeFieldElement) {
184
        for i := 0; i < 15; i++ {
185
                tmp[i] = 0
186
        }
187
 
188
        for i := 0; i < 8; i++ {
189
                for j := 0; j < 8; j++ {
190
                        tmp[i+j] += uint64(a[i]) * uint64(b[j])
191
                }
192
        }
193
 
194
        p224ReduceLarge(out, tmp)
195
}
196
 
197
// Square computes *out = a*a
198
//
199
// a[i] < 2**29
200
// out[i] < 2**29
201
func p224Square(out, a *p224FieldElement, tmp *p224LargeFieldElement) {
202
        for i := 0; i < 15; i++ {
203
                tmp[i] = 0
204
        }
205
 
206
        for i := 0; i < 8; i++ {
207
                for j := 0; j <= i; j++ {
208
                        r := uint64(a[i]) * uint64(a[j])
209
                        if i == j {
210
                                tmp[i+j] += r
211
                        } else {
212
                                tmp[i+j] += r << 1
213
                        }
214
                }
215
        }
216
 
217
        p224ReduceLarge(out, tmp)
218
}
219
 
220
// ReduceLarge converts a p224LargeFieldElement to a p224FieldElement.
221
//
222
// in[i] < 2**62
223
func p224ReduceLarge(out *p224FieldElement, in *p224LargeFieldElement) {
224
        for i := 0; i < 8; i++ {
225
                in[i] += p224ZeroModP63[i]
226
        }
227
 
228
        // Eliminate the coefficients at 2**224 and greater.
229
        for i := 14; i >= 8; i-- {
230
                in[i-8] -= in[i]
231
                in[i-5] += (in[i] & 0xffff) << 12
232
                in[i-4] += in[i] >> 16
233
        }
234
        in[8] = 0
235
        // in[0..8] < 2**64
236
 
237
        // As the values become small enough, we start to store them in |out|
238
        // and use 32-bit operations.
239
        for i := 1; i < 8; i++ {
240
                in[i+1] += in[i] >> 28
241
                out[i] = uint32(in[i] & bottom28Bits)
242
        }
243
        in[0] -= in[8]
244
        out[3] += uint32(in[8]&0xffff) << 12
245
        out[4] += uint32(in[8] >> 16)
246
        // in[0] < 2**64
247
        // out[3] < 2**29
248
        // out[4] < 2**29
249
        // out[1,2,5..7] < 2**28
250
 
251
        out[0] = uint32(in[0] & bottom28Bits)
252
        out[1] += uint32((in[0] >> 28) & bottom28Bits)
253
        out[2] += uint32(in[0] >> 56)
254
        // out[0] < 2**28
255
        // out[1..4] < 2**29
256
        // out[5..7] < 2**28
257
}
258
 
259
// Reduce reduces the coefficients of a to smaller bounds.
260
//
261
// On entry: a[i] < 2**31 + 2**30
262
// On exit: a[i] < 2**29
263
func p224Reduce(a *p224FieldElement) {
264
        for i := 0; i < 7; i++ {
265
                a[i+1] += a[i] >> 28
266
                a[i] &= bottom28Bits
267
        }
268
        top := a[7] >> 28
269
        a[7] &= bottom28Bits
270
 
271
        // top < 2**4
272
        mask := top
273
        mask |= mask >> 2
274
        mask |= mask >> 1
275
        mask <<= 31
276
        mask = uint32(int32(mask) >> 31)
277
        // Mask is all ones if top != 0, all zero otherwise
278
 
279
        a[0] -= top
280
        a[3] += top << 12
281
 
282
        // We may have just made a[0] negative but, if we did, then we must
283
        // have added something to a[3], this it's > 2**12. Therefore we can
284
        // carry down to a[0].
285
        a[3] -= 1 & mask
286
        a[2] += mask & (1<<28 - 1)
287
        a[1] += mask & (1<<28 - 1)
288
        a[0] += mask & (1 << 28)
289
}
290
 
291
// p224Invert calculates *out = in**-1 by computing in**(2**224 - 2**96 - 1),
292
// i.e. Fermat's little theorem.
293
func p224Invert(out, in *p224FieldElement) {
294
        var f1, f2, f3, f4 p224FieldElement
295
        var c p224LargeFieldElement
296
 
297
        p224Square(&f1, in, &c)    // 2
298
        p224Mul(&f1, &f1, in, &c)  // 2**2 - 1
299
        p224Square(&f1, &f1, &c)   // 2**3 - 2
300
        p224Mul(&f1, &f1, in, &c)  // 2**3 - 1
301
        p224Square(&f2, &f1, &c)   // 2**4 - 2
302
        p224Square(&f2, &f2, &c)   // 2**5 - 4
303
        p224Square(&f2, &f2, &c)   // 2**6 - 8
304
        p224Mul(&f1, &f1, &f2, &c) // 2**6 - 1
305
        p224Square(&f2, &f1, &c)   // 2**7 - 2
306
        for i := 0; i < 5; i++ {   // 2**12 - 2**6
307
                p224Square(&f2, &f2, &c)
308
        }
309
        p224Mul(&f2, &f2, &f1, &c) // 2**12 - 1
310
        p224Square(&f3, &f2, &c)   // 2**13 - 2
311
        for i := 0; i < 11; i++ {  // 2**24 - 2**12
312
                p224Square(&f3, &f3, &c)
313
        }
314
        p224Mul(&f2, &f3, &f2, &c) // 2**24 - 1
315
        p224Square(&f3, &f2, &c)   // 2**25 - 2
316
        for i := 0; i < 23; i++ {  // 2**48 - 2**24
317
                p224Square(&f3, &f3, &c)
318
        }
319
        p224Mul(&f3, &f3, &f2, &c) // 2**48 - 1
320
        p224Square(&f4, &f3, &c)   // 2**49 - 2
321
        for i := 0; i < 47; i++ {  // 2**96 - 2**48
322
                p224Square(&f4, &f4, &c)
323
        }
324
        p224Mul(&f3, &f3, &f4, &c) // 2**96 - 1
325
        p224Square(&f4, &f3, &c)   // 2**97 - 2
326
        for i := 0; i < 23; i++ {  // 2**120 - 2**24
327
                p224Square(&f4, &f4, &c)
328
        }
329
        p224Mul(&f2, &f4, &f2, &c) // 2**120 - 1
330
        for i := 0; i < 6; i++ {   // 2**126 - 2**6
331
                p224Square(&f2, &f2, &c)
332
        }
333
        p224Mul(&f1, &f1, &f2, &c) // 2**126 - 1
334
        p224Square(&f1, &f1, &c)   // 2**127 - 2
335
        p224Mul(&f1, &f1, in, &c)  // 2**127 - 1
336
        for i := 0; i < 97; i++ {  // 2**224 - 2**97
337
                p224Square(&f1, &f1, &c)
338
        }
339
        p224Mul(out, &f1, &f3, &c) // 2**224 - 2**96 - 1
340
}
341
 
342
// p224Contract converts a FieldElement to its unique, minimal form.
343
//
344
// On entry, in[i] < 2**29
345
// On exit, in[i] < 2**28
346
func p224Contract(out, in *p224FieldElement) {
347
        copy(out[:], in[:])
348
 
349
        for i := 0; i < 7; i++ {
350
                out[i+1] += out[i] >> 28
351
                out[i] &= bottom28Bits
352
        }
353
        top := out[7] >> 28
354
        out[7] &= bottom28Bits
355
 
356
        out[0] -= top
357
        out[3] += top << 12
358
 
359
        // We may just have made out[i] negative. So we carry down. If we made
360
        // out[0] negative then we know that out[3] is sufficiently positive
361
        // because we just added to it.
362
        for i := 0; i < 3; i++ {
363
                mask := uint32(int32(out[i]) >> 31)
364
                out[i] += (1 << 28) & mask
365
                out[i+1] -= 1 & mask
366
        }
367
 
368
        // We might have pushed out[3] over 2**28 so we perform another, partial,
369
        // carry chain.
370
        for i := 3; i < 7; i++ {
371
                out[i+1] += out[i] >> 28
372
                out[i] &= bottom28Bits
373
        }
374
        top = out[7] >> 28
375
        out[7] &= bottom28Bits
376
 
377
        // Eliminate top while maintaining the same value mod p.
378
        out[0] -= top
379
        out[3] += top << 12
380
 
381
        // There are two cases to consider for out[3]:
382
        //   1) The first time that we eliminated top, we didn't push out[3] over
383
        //      2**28. In this case, the partial carry chain didn't change any values
384
        //      and top is zero.
385
        //   2) We did push out[3] over 2**28 the first time that we eliminated top.
386
        //      The first value of top was in [0..16), therefore, prior to eliminating
387
        //      the first top, 0xfff1000 <= out[3] <= 0xfffffff. Therefore, after
388
        //      overflowing and being reduced by the second carry chain, out[3] <=
389
        //      0xf000. Thus it cannot have overflowed when we eliminated top for the
390
        //      second time.
391
 
392
        // Again, we may just have made out[0] negative, so do the same carry down.
393
        // As before, if we made out[0] negative then we know that out[3] is
394
        // sufficiently positive.
395
        for i := 0; i < 3; i++ {
396
                mask := uint32(int32(out[i]) >> 31)
397
                out[i] += (1 << 28) & mask
398
                out[i+1] -= 1 & mask
399
        }
400
 
401
        // Now we see if the value is >= p and, if so, subtract p.
402
 
403
        // First we build a mask from the top four limbs, which must all be
404
        // equal to bottom28Bits if the whole value is >= p. If top4AllOnes
405
        // ends up with any zero bits in the bottom 28 bits, then this wasn't
406
        // true.
407
        top4AllOnes := uint32(0xffffffff)
408
        for i := 4; i < 8; i++ {
409
                top4AllOnes &= (out[i] & bottom28Bits) - 1
410
        }
411
        top4AllOnes |= 0xf0000000
412
        // Now we replicate any zero bits to all the bits in top4AllOnes.
413
        top4AllOnes &= top4AllOnes >> 16
414
        top4AllOnes &= top4AllOnes >> 8
415
        top4AllOnes &= top4AllOnes >> 4
416
        top4AllOnes &= top4AllOnes >> 2
417
        top4AllOnes &= top4AllOnes >> 1
418
        top4AllOnes = uint32(int32(top4AllOnes<<31) >> 31)
419
 
420
        // Now we test whether the bottom three limbs are non-zero.
421
        bottom3NonZero := out[0] | out[1] | out[2]
422
        bottom3NonZero |= bottom3NonZero >> 16
423
        bottom3NonZero |= bottom3NonZero >> 8
424
        bottom3NonZero |= bottom3NonZero >> 4
425
        bottom3NonZero |= bottom3NonZero >> 2
426
        bottom3NonZero |= bottom3NonZero >> 1
427
        bottom3NonZero = uint32(int32(bottom3NonZero<<31) >> 31)
428
 
429
        // Everything depends on the value of out[3].
430
        //    If it's > 0xffff000 and top4AllOnes != 0 then the whole value is >= p
431
        //    If it's = 0xffff000 and top4AllOnes != 0 and bottom3NonZero != 0,
432
        //      then the whole value is >= p
433
        //    If it's < 0xffff000, then the whole value is < p
434
        n := out[3] - 0xffff000
435
        out3Equal := n
436
        out3Equal |= out3Equal >> 16
437
        out3Equal |= out3Equal >> 8
438
        out3Equal |= out3Equal >> 4
439
        out3Equal |= out3Equal >> 2
440
        out3Equal |= out3Equal >> 1
441
        out3Equal = ^uint32(int32(out3Equal<<31) >> 31)
442
 
443
        // If out[3] > 0xffff000 then n's MSB will be zero.
444
        out3GT := ^uint32(int32(n<<31) >> 31)
445
 
446
        mask := top4AllOnes & ((out3Equal & bottom3NonZero) | out3GT)
447
        out[0] -= 1 & mask
448
        out[3] -= 0xffff000 & mask
449
        out[4] -= 0xfffffff & mask
450
        out[5] -= 0xfffffff & mask
451
        out[6] -= 0xfffffff & mask
452
        out[7] -= 0xfffffff & mask
453
}
454
 
455
// Group element functions.
456
//
457
// These functions deal with group elements. The group is an elliptic curve
458
// group with a = -3 defined in FIPS 186-3, section D.2.2.
459
 
460
// p224AddJacobian computes *out = a+b where a != b.
461
func p224AddJacobian(x3, y3, z3, x1, y1, z1, x2, y2, z2 *p224FieldElement) {
462
        // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-p224Add-2007-bl
463
        var z1z1, z2z2, u1, u2, s1, s2, h, i, j, r, v p224FieldElement
464
        var c p224LargeFieldElement
465
 
466
        // Z1Z1 = Z1²
467
        p224Square(&z1z1, z1, &c)
468
        // Z2Z2 = Z2²
469
        p224Square(&z2z2, z2, &c)
470
        // U1 = X1*Z2Z2
471
        p224Mul(&u1, x1, &z2z2, &c)
472
        // U2 = X2*Z1Z1
473
        p224Mul(&u2, x2, &z1z1, &c)
474
        // S1 = Y1*Z2*Z2Z2
475
        p224Mul(&s1, z2, &z2z2, &c)
476
        p224Mul(&s1, y1, &s1, &c)
477
        // S2 = Y2*Z1*Z1Z1
478
        p224Mul(&s2, z1, &z1z1, &c)
479
        p224Mul(&s2, y2, &s2, &c)
480
        // H = U2-U1
481
        p224Sub(&h, &u2, &u1)
482
        p224Reduce(&h)
483
        // I = (2*H)²
484
        for j := 0; j < 8; j++ {
485
                i[j] = h[j] << 1
486
        }
487
        p224Reduce(&i)
488
        p224Square(&i, &i, &c)
489
        // J = H*I
490
        p224Mul(&j, &h, &i, &c)
491
        // r = 2*(S2-S1)
492
        p224Sub(&r, &s2, &s1)
493
        p224Reduce(&r)
494
        for i := 0; i < 8; i++ {
495
                r[i] <<= 1
496
        }
497
        p224Reduce(&r)
498
        // V = U1*I
499
        p224Mul(&v, &u1, &i, &c)
500
        // Z3 = ((Z1+Z2)²-Z1Z1-Z2Z2)*H
501
        p224Add(&z1z1, &z1z1, &z2z2)
502
        p224Add(&z2z2, z1, z2)
503
        p224Reduce(&z2z2)
504
        p224Square(&z2z2, &z2z2, &c)
505
        p224Sub(z3, &z2z2, &z1z1)
506
        p224Reduce(z3)
507
        p224Mul(z3, z3, &h, &c)
508
        // X3 = r²-J-2*V
509
        for i := 0; i < 8; i++ {
510
                z1z1[i] = v[i] << 1
511
        }
512
        p224Add(&z1z1, &j, &z1z1)
513
        p224Reduce(&z1z1)
514
        p224Square(x3, &r, &c)
515
        p224Sub(x3, x3, &z1z1)
516
        p224Reduce(x3)
517
        // Y3 = r*(V-X3)-2*S1*J
518
        for i := 0; i < 8; i++ {
519
                s1[i] <<= 1
520
        }
521
        p224Mul(&s1, &s1, &j, &c)
522
        p224Sub(&z1z1, &v, x3)
523
        p224Reduce(&z1z1)
524
        p224Mul(&z1z1, &z1z1, &r, &c)
525
        p224Sub(y3, &z1z1, &s1)
526
        p224Reduce(y3)
527
}
528
 
529
// p224DoubleJacobian computes *out = a+a.
530
func p224DoubleJacobian(x3, y3, z3, x1, y1, z1 *p224FieldElement) {
531
        var delta, gamma, beta, alpha, t p224FieldElement
532
        var c p224LargeFieldElement
533
 
534
        p224Square(&delta, z1, &c)
535
        p224Square(&gamma, y1, &c)
536
        p224Mul(&beta, x1, &gamma, &c)
537
 
538
        // alpha = 3*(X1-delta)*(X1+delta)
539
        p224Add(&t, x1, &delta)
540
        for i := 0; i < 8; i++ {
541
                t[i] += t[i] << 1
542
        }
543
        p224Reduce(&t)
544
        p224Sub(&alpha, x1, &delta)
545
        p224Reduce(&alpha)
546
        p224Mul(&alpha, &alpha, &t, &c)
547
 
548
        // Z3 = (Y1+Z1)²-gamma-delta
549
        p224Add(z3, y1, z1)
550
        p224Reduce(z3)
551
        p224Square(z3, z3, &c)
552
        p224Sub(z3, z3, &gamma)
553
        p224Reduce(z3)
554
        p224Sub(z3, z3, &delta)
555
        p224Reduce(z3)
556
 
557
        // X3 = alpha²-8*beta
558
        for i := 0; i < 8; i++ {
559
                delta[i] = beta[i] << 3
560
        }
561
        p224Reduce(&delta)
562
        p224Square(x3, &alpha, &c)
563
        p224Sub(x3, x3, &delta)
564
        p224Reduce(x3)
565
 
566
        // Y3 = alpha*(4*beta-X3)-8*gamma²
567
        for i := 0; i < 8; i++ {
568
                beta[i] <<= 2
569
        }
570
        p224Sub(&beta, &beta, x3)
571
        p224Reduce(&beta)
572
        p224Square(&gamma, &gamma, &c)
573
        for i := 0; i < 8; i++ {
574
                gamma[i] <<= 3
575
        }
576
        p224Reduce(&gamma)
577
        p224Mul(y3, &alpha, &beta, &c)
578
        p224Sub(y3, y3, &gamma)
579
        p224Reduce(y3)
580
}
581
 
582
// p224CopyConditional sets *out = *in iff the least-significant-bit of control
583
// is true, and it runs in constant time.
584
func p224CopyConditional(out, in *p224FieldElement, control uint32) {
585
        control <<= 31
586
        control = uint32(int32(control) >> 31)
587
 
588
        for i := 0; i < 8; i++ {
589
                out[i] ^= (out[i] ^ in[i]) & control
590
        }
591
}
592
 
593
func p224ScalarMult(outX, outY, outZ, inX, inY, inZ *p224FieldElement, scalar []byte) {
594
        var xx, yy, zz p224FieldElement
595
        for i := 0; i < 8; i++ {
596
                outZ[i] = 0
597
        }
598
 
599
        firstBit := uint32(1)
600
        for _, byte := range scalar {
601
                for bitNum := uint(0); bitNum < 8; bitNum++ {
602
                        p224DoubleJacobian(outX, outY, outZ, outX, outY, outZ)
603
                        bit := uint32((byte >> (7 - bitNum)) & 1)
604
                        p224AddJacobian(&xx, &yy, &zz, inX, inY, inZ, outX, outY, outZ)
605
                        p224CopyConditional(outX, inX, firstBit&bit)
606
                        p224CopyConditional(outY, inY, firstBit&bit)
607
                        p224CopyConditional(outZ, inZ, firstBit&bit)
608
                        p224CopyConditional(outX, &xx, ^firstBit&bit)
609
                        p224CopyConditional(outY, &yy, ^firstBit&bit)
610
                        p224CopyConditional(outZ, &zz, ^firstBit&bit)
611
                        firstBit = firstBit & ^bit
612
                }
613
        }
614
}
615
 
616
// p224ToAffine converts from Jacobian to affine form.
617
func p224ToAffine(x, y, z *p224FieldElement) (*big.Int, *big.Int) {
618
        var zinv, zinvsq, outx, outy p224FieldElement
619
        var tmp p224LargeFieldElement
620
 
621
        isPointAtInfinity := true
622
        for i := 0; i < 8; i++ {
623
                if z[i] != 0 {
624
                        isPointAtInfinity = false
625
                        break
626
                }
627
        }
628
 
629
        if isPointAtInfinity {
630
                return nil, nil
631
        }
632
 
633
        p224Invert(&zinv, z)
634
        p224Square(&zinvsq, &zinv, &tmp)
635
        p224Mul(x, x, &zinvsq, &tmp)
636
        p224Mul(&zinvsq, &zinvsq, &zinv, &tmp)
637
        p224Mul(y, y, &zinvsq, &tmp)
638
 
639
        p224Contract(&outx, x)
640
        p224Contract(&outy, y)
641
        return p224ToBig(&outx), p224ToBig(&outy)
642
}
643
 
644
// get28BitsFromEnd returns the least-significant 28 bits from buf>>shift,
645
// where buf is interpreted as a big-endian number.
646
func get28BitsFromEnd(buf []byte, shift uint) (uint32, []byte) {
647
        var ret uint32
648
 
649
        for i := uint(0); i < 4; i++ {
650
                var b byte
651
                if l := len(buf); l > 0 {
652
                        b = buf[l-1]
653
                        // We don't remove the byte if we're about to return and we're not
654
                        // reading all of it.
655
                        if i != 3 || shift == 4 {
656
                                buf = buf[:l-1]
657
                        }
658
                }
659
                ret |= uint32(b) << (8 * i) >> shift
660
        }
661
        ret &= bottom28Bits
662
        return ret, buf
663
}
664
 
665
// p224FromBig sets *out = *in.
666
func p224FromBig(out *p224FieldElement, in *big.Int) {
667
        bytes := in.Bytes()
668
        out[0], bytes = get28BitsFromEnd(bytes, 0)
669
        out[1], bytes = get28BitsFromEnd(bytes, 4)
670
        out[2], bytes = get28BitsFromEnd(bytes, 0)
671
        out[3], bytes = get28BitsFromEnd(bytes, 4)
672
        out[4], bytes = get28BitsFromEnd(bytes, 0)
673
        out[5], bytes = get28BitsFromEnd(bytes, 4)
674
        out[6], bytes = get28BitsFromEnd(bytes, 0)
675
        out[7], bytes = get28BitsFromEnd(bytes, 4)
676
}
677
 
678
// p224ToBig returns in as a big.Int.
679
func p224ToBig(in *p224FieldElement) *big.Int {
680
        var buf [28]byte
681
        buf[27] = byte(in[0])
682
        buf[26] = byte(in[0] >> 8)
683
        buf[25] = byte(in[0] >> 16)
684
        buf[24] = byte(((in[0] >> 24) & 0x0f) | (in[1]<<4)&0xf0)
685
 
686
        buf[23] = byte(in[1] >> 4)
687
        buf[22] = byte(in[1] >> 12)
688
        buf[21] = byte(in[1] >> 20)
689
 
690
        buf[20] = byte(in[2])
691
        buf[19] = byte(in[2] >> 8)
692
        buf[18] = byte(in[2] >> 16)
693
        buf[17] = byte(((in[2] >> 24) & 0x0f) | (in[3]<<4)&0xf0)
694
 
695
        buf[16] = byte(in[3] >> 4)
696
        buf[15] = byte(in[3] >> 12)
697
        buf[14] = byte(in[3] >> 20)
698
 
699
        buf[13] = byte(in[4])
700
        buf[12] = byte(in[4] >> 8)
701
        buf[11] = byte(in[4] >> 16)
702
        buf[10] = byte(((in[4] >> 24) & 0x0f) | (in[5]<<4)&0xf0)
703
 
704
        buf[9] = byte(in[5] >> 4)
705
        buf[8] = byte(in[5] >> 12)
706
        buf[7] = byte(in[5] >> 20)
707
 
708
        buf[6] = byte(in[6])
709
        buf[5] = byte(in[6] >> 8)
710
        buf[4] = byte(in[6] >> 16)
711
        buf[3] = byte(((in[6] >> 24) & 0x0f) | (in[7]<<4)&0xf0)
712
 
713
        buf[2] = byte(in[7] >> 4)
714
        buf[1] = byte(in[7] >> 12)
715
        buf[0] = byte(in[7] >> 20)
716
 
717
        return new(big.Int).SetBytes(buf[:])
718
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.