1 |
747 |
jeremybenn |
// Copyright 2009 The Go Authors. All rights reserved.
|
2 |
|
|
// Use of this source code is governed by a BSD-style
|
3 |
|
|
// license that can be found in the LICENSE file.
|
4 |
|
|
|
5 |
|
|
// Package asn1 implements parsing of DER-encoded ASN.1 data structures,
|
6 |
|
|
// as defined in ITU-T Rec X.690.
|
7 |
|
|
//
|
8 |
|
|
// See also ``A Layman's Guide to a Subset of ASN.1, BER, and DER,''
|
9 |
|
|
// http://luca.ntop.org/Teaching/Appunti/asn1.html.
|
10 |
|
|
package asn1
|
11 |
|
|
|
12 |
|
|
// ASN.1 is a syntax for specifying abstract objects and BER, DER, PER, XER etc
|
13 |
|
|
// are different encoding formats for those objects. Here, we'll be dealing
|
14 |
|
|
// with DER, the Distinguished Encoding Rules. DER is used in X.509 because
|
15 |
|
|
// it's fast to parse and, unlike BER, has a unique encoding for every object.
|
16 |
|
|
// When calculating hashes over objects, it's important that the resulting
|
17 |
|
|
// bytes be the same at both ends and DER removes this margin of error.
|
18 |
|
|
//
|
19 |
|
|
// ASN.1 is very complex and this package doesn't attempt to implement
|
20 |
|
|
// everything by any means.
|
21 |
|
|
|
22 |
|
|
import (
|
23 |
|
|
"fmt"
|
24 |
|
|
"math/big"
|
25 |
|
|
"reflect"
|
26 |
|
|
"time"
|
27 |
|
|
)
|
28 |
|
|
|
29 |
|
|
// A StructuralError suggests that the ASN.1 data is valid, but the Go type
|
30 |
|
|
// which is receiving it doesn't match.
|
31 |
|
|
type StructuralError struct {
|
32 |
|
|
Msg string
|
33 |
|
|
}
|
34 |
|
|
|
35 |
|
|
func (e StructuralError) Error() string { return "ASN.1 structure error: " + e.Msg }
|
36 |
|
|
|
37 |
|
|
// A SyntaxError suggests that the ASN.1 data is invalid.
|
38 |
|
|
type SyntaxError struct {
|
39 |
|
|
Msg string
|
40 |
|
|
}
|
41 |
|
|
|
42 |
|
|
func (e SyntaxError) Error() string { return "ASN.1 syntax error: " + e.Msg }
|
43 |
|
|
|
44 |
|
|
// We start by dealing with each of the primitive types in turn.
|
45 |
|
|
|
46 |
|
|
// BOOLEAN
|
47 |
|
|
|
48 |
|
|
func parseBool(bytes []byte) (ret bool, err error) {
|
49 |
|
|
if len(bytes) != 1 {
|
50 |
|
|
err = SyntaxError{"invalid boolean"}
|
51 |
|
|
return
|
52 |
|
|
}
|
53 |
|
|
|
54 |
|
|
return bytes[0] != 0, nil
|
55 |
|
|
}
|
56 |
|
|
|
57 |
|
|
// INTEGER
|
58 |
|
|
|
59 |
|
|
// parseInt64 treats the given bytes as a big-endian, signed integer and
|
60 |
|
|
// returns the result.
|
61 |
|
|
func parseInt64(bytes []byte) (ret int64, err error) {
|
62 |
|
|
if len(bytes) > 8 {
|
63 |
|
|
// We'll overflow an int64 in this case.
|
64 |
|
|
err = StructuralError{"integer too large"}
|
65 |
|
|
return
|
66 |
|
|
}
|
67 |
|
|
for bytesRead := 0; bytesRead < len(bytes); bytesRead++ {
|
68 |
|
|
ret <<= 8
|
69 |
|
|
ret |= int64(bytes[bytesRead])
|
70 |
|
|
}
|
71 |
|
|
|
72 |
|
|
// Shift up and down in order to sign extend the result.
|
73 |
|
|
ret <<= 64 - uint8(len(bytes))*8
|
74 |
|
|
ret >>= 64 - uint8(len(bytes))*8
|
75 |
|
|
return
|
76 |
|
|
}
|
77 |
|
|
|
78 |
|
|
// parseInt treats the given bytes as a big-endian, signed integer and returns
|
79 |
|
|
// the result.
|
80 |
|
|
func parseInt(bytes []byte) (int, error) {
|
81 |
|
|
ret64, err := parseInt64(bytes)
|
82 |
|
|
if err != nil {
|
83 |
|
|
return 0, err
|
84 |
|
|
}
|
85 |
|
|
if ret64 != int64(int(ret64)) {
|
86 |
|
|
return 0, StructuralError{"integer too large"}
|
87 |
|
|
}
|
88 |
|
|
return int(ret64), nil
|
89 |
|
|
}
|
90 |
|
|
|
91 |
|
|
var bigOne = big.NewInt(1)
|
92 |
|
|
|
93 |
|
|
// parseBigInt treats the given bytes as a big-endian, signed integer and returns
|
94 |
|
|
// the result.
|
95 |
|
|
func parseBigInt(bytes []byte) *big.Int {
|
96 |
|
|
ret := new(big.Int)
|
97 |
|
|
if len(bytes) > 0 && bytes[0]&0x80 == 0x80 {
|
98 |
|
|
// This is a negative number.
|
99 |
|
|
notBytes := make([]byte, len(bytes))
|
100 |
|
|
for i := range notBytes {
|
101 |
|
|
notBytes[i] = ^bytes[i]
|
102 |
|
|
}
|
103 |
|
|
ret.SetBytes(notBytes)
|
104 |
|
|
ret.Add(ret, bigOne)
|
105 |
|
|
ret.Neg(ret)
|
106 |
|
|
return ret
|
107 |
|
|
}
|
108 |
|
|
ret.SetBytes(bytes)
|
109 |
|
|
return ret
|
110 |
|
|
}
|
111 |
|
|
|
112 |
|
|
// BIT STRING
|
113 |
|
|
|
114 |
|
|
// BitString is the structure to use when you want an ASN.1 BIT STRING type. A
|
115 |
|
|
// bit string is padded up to the nearest byte in memory and the number of
|
116 |
|
|
// valid bits is recorded. Padding bits will be zero.
|
117 |
|
|
type BitString struct {
|
118 |
|
|
Bytes []byte // bits packed into bytes.
|
119 |
|
|
BitLength int // length in bits.
|
120 |
|
|
}
|
121 |
|
|
|
122 |
|
|
// At returns the bit at the given index. If the index is out of range it
|
123 |
|
|
// returns false.
|
124 |
|
|
func (b BitString) At(i int) int {
|
125 |
|
|
if i < 0 || i >= b.BitLength {
|
126 |
|
|
return 0
|
127 |
|
|
}
|
128 |
|
|
x := i / 8
|
129 |
|
|
y := 7 - uint(i%8)
|
130 |
|
|
return int(b.Bytes[x]>>y) & 1
|
131 |
|
|
}
|
132 |
|
|
|
133 |
|
|
// RightAlign returns a slice where the padding bits are at the beginning. The
|
134 |
|
|
// slice may share memory with the BitString.
|
135 |
|
|
func (b BitString) RightAlign() []byte {
|
136 |
|
|
shift := uint(8 - (b.BitLength % 8))
|
137 |
|
|
if shift == 8 || len(b.Bytes) == 0 {
|
138 |
|
|
return b.Bytes
|
139 |
|
|
}
|
140 |
|
|
|
141 |
|
|
a := make([]byte, len(b.Bytes))
|
142 |
|
|
a[0] = b.Bytes[0] >> shift
|
143 |
|
|
for i := 1; i < len(b.Bytes); i++ {
|
144 |
|
|
a[i] = b.Bytes[i-1] << (8 - shift)
|
145 |
|
|
a[i] |= b.Bytes[i] >> shift
|
146 |
|
|
}
|
147 |
|
|
|
148 |
|
|
return a
|
149 |
|
|
}
|
150 |
|
|
|
151 |
|
|
// parseBitString parses an ASN.1 bit string from the given byte slice and returns it.
|
152 |
|
|
func parseBitString(bytes []byte) (ret BitString, err error) {
|
153 |
|
|
if len(bytes) == 0 {
|
154 |
|
|
err = SyntaxError{"zero length BIT STRING"}
|
155 |
|
|
return
|
156 |
|
|
}
|
157 |
|
|
paddingBits := int(bytes[0])
|
158 |
|
|
if paddingBits > 7 ||
|
159 |
|
|
len(bytes) == 1 && paddingBits > 0 ||
|
160 |
|
|
bytes[len(bytes)-1]&((1<
|
161 |
|
|
err = SyntaxError{"invalid padding bits in BIT STRING"}
|
162 |
|
|
return
|
163 |
|
|
}
|
164 |
|
|
ret.BitLength = (len(bytes)-1)*8 - paddingBits
|
165 |
|
|
ret.Bytes = bytes[1:]
|
166 |
|
|
return
|
167 |
|
|
}
|
168 |
|
|
|
169 |
|
|
// OBJECT IDENTIFIER
|
170 |
|
|
|
171 |
|
|
// An ObjectIdentifier represents an ASN.1 OBJECT IDENTIFIER.
|
172 |
|
|
type ObjectIdentifier []int
|
173 |
|
|
|
174 |
|
|
// Equal returns true iff oi and other represent the same identifier.
|
175 |
|
|
func (oi ObjectIdentifier) Equal(other ObjectIdentifier) bool {
|
176 |
|
|
if len(oi) != len(other) {
|
177 |
|
|
return false
|
178 |
|
|
}
|
179 |
|
|
for i := 0; i < len(oi); i++ {
|
180 |
|
|
if oi[i] != other[i] {
|
181 |
|
|
return false
|
182 |
|
|
}
|
183 |
|
|
}
|
184 |
|
|
|
185 |
|
|
return true
|
186 |
|
|
}
|
187 |
|
|
|
188 |
|
|
// parseObjectIdentifier parses an OBJECT IDENTIFIER from the given bytes and
|
189 |
|
|
// returns it. An object identifier is a sequence of variable length integers
|
190 |
|
|
// that are assigned in a hierarchy.
|
191 |
|
|
func parseObjectIdentifier(bytes []byte) (s []int, err error) {
|
192 |
|
|
if len(bytes) == 0 {
|
193 |
|
|
err = SyntaxError{"zero length OBJECT IDENTIFIER"}
|
194 |
|
|
return
|
195 |
|
|
}
|
196 |
|
|
|
197 |
|
|
// In the worst case, we get two elements from the first byte (which is
|
198 |
|
|
// encoded differently) and then every varint is a single byte long.
|
199 |
|
|
s = make([]int, len(bytes)+1)
|
200 |
|
|
|
201 |
|
|
// The first byte is 40*value1 + value2:
|
202 |
|
|
s[0] = int(bytes[0]) / 40
|
203 |
|
|
s[1] = int(bytes[0]) % 40
|
204 |
|
|
i := 2
|
205 |
|
|
for offset := 1; offset < len(bytes); i++ {
|
206 |
|
|
var v int
|
207 |
|
|
v, offset, err = parseBase128Int(bytes, offset)
|
208 |
|
|
if err != nil {
|
209 |
|
|
return
|
210 |
|
|
}
|
211 |
|
|
s[i] = v
|
212 |
|
|
}
|
213 |
|
|
s = s[0:i]
|
214 |
|
|
return
|
215 |
|
|
}
|
216 |
|
|
|
217 |
|
|
// ENUMERATED
|
218 |
|
|
|
219 |
|
|
// An Enumerated is represented as a plain int.
|
220 |
|
|
type Enumerated int
|
221 |
|
|
|
222 |
|
|
// FLAG
|
223 |
|
|
|
224 |
|
|
// A Flag accepts any data and is set to true if present.
|
225 |
|
|
type Flag bool
|
226 |
|
|
|
227 |
|
|
// parseBase128Int parses a base-128 encoded int from the given offset in the
|
228 |
|
|
// given byte slice. It returns the value and the new offset.
|
229 |
|
|
func parseBase128Int(bytes []byte, initOffset int) (ret, offset int, err error) {
|
230 |
|
|
offset = initOffset
|
231 |
|
|
for shifted := 0; offset < len(bytes); shifted++ {
|
232 |
|
|
if shifted > 4 {
|
233 |
|
|
err = StructuralError{"base 128 integer too large"}
|
234 |
|
|
return
|
235 |
|
|
}
|
236 |
|
|
ret <<= 7
|
237 |
|
|
b := bytes[offset]
|
238 |
|
|
ret |= int(b & 0x7f)
|
239 |
|
|
offset++
|
240 |
|
|
if b&0x80 == 0 {
|
241 |
|
|
return
|
242 |
|
|
}
|
243 |
|
|
}
|
244 |
|
|
err = SyntaxError{"truncated base 128 integer"}
|
245 |
|
|
return
|
246 |
|
|
}
|
247 |
|
|
|
248 |
|
|
// UTCTime
|
249 |
|
|
|
250 |
|
|
func parseUTCTime(bytes []byte) (ret time.Time, err error) {
|
251 |
|
|
s := string(bytes)
|
252 |
|
|
ret, err = time.Parse("0601021504Z0700", s)
|
253 |
|
|
if err == nil {
|
254 |
|
|
return
|
255 |
|
|
}
|
256 |
|
|
ret, err = time.Parse("060102150405Z0700", s)
|
257 |
|
|
return
|
258 |
|
|
}
|
259 |
|
|
|
260 |
|
|
// parseGeneralizedTime parses the GeneralizedTime from the given byte slice
|
261 |
|
|
// and returns the resulting time.
|
262 |
|
|
func parseGeneralizedTime(bytes []byte) (ret time.Time, err error) {
|
263 |
|
|
return time.Parse("20060102150405Z0700", string(bytes))
|
264 |
|
|
}
|
265 |
|
|
|
266 |
|
|
// PrintableString
|
267 |
|
|
|
268 |
|
|
// parsePrintableString parses a ASN.1 PrintableString from the given byte
|
269 |
|
|
// array and returns it.
|
270 |
|
|
func parsePrintableString(bytes []byte) (ret string, err error) {
|
271 |
|
|
for _, b := range bytes {
|
272 |
|
|
if !isPrintable(b) {
|
273 |
|
|
err = SyntaxError{"PrintableString contains invalid character"}
|
274 |
|
|
return
|
275 |
|
|
}
|
276 |
|
|
}
|
277 |
|
|
ret = string(bytes)
|
278 |
|
|
return
|
279 |
|
|
}
|
280 |
|
|
|
281 |
|
|
// isPrintable returns true iff the given b is in the ASN.1 PrintableString set.
|
282 |
|
|
func isPrintable(b byte) bool {
|
283 |
|
|
return 'a' <= b && b <= 'z' ||
|
284 |
|
|
'A' <= b && b <= 'Z' ||
|
285 |
|
|
'0' <= b && b <= '9' ||
|
286 |
|
|
'\'' <= b && b <= ')' ||
|
287 |
|
|
'+' <= b && b <= '/' ||
|
288 |
|
|
b == ' ' ||
|
289 |
|
|
b == ':' ||
|
290 |
|
|
b == '=' ||
|
291 |
|
|
b == '?' ||
|
292 |
|
|
// This is technically not allowed in a PrintableString.
|
293 |
|
|
// However, x509 certificates with wildcard strings don't
|
294 |
|
|
// always use the correct string type so we permit it.
|
295 |
|
|
b == '*'
|
296 |
|
|
}
|
297 |
|
|
|
298 |
|
|
// IA5String
|
299 |
|
|
|
300 |
|
|
// parseIA5String parses a ASN.1 IA5String (ASCII string) from the given
|
301 |
|
|
// byte slice and returns it.
|
302 |
|
|
func parseIA5String(bytes []byte) (ret string, err error) {
|
303 |
|
|
for _, b := range bytes {
|
304 |
|
|
if b >= 0x80 {
|
305 |
|
|
err = SyntaxError{"IA5String contains invalid character"}
|
306 |
|
|
return
|
307 |
|
|
}
|
308 |
|
|
}
|
309 |
|
|
ret = string(bytes)
|
310 |
|
|
return
|
311 |
|
|
}
|
312 |
|
|
|
313 |
|
|
// T61String
|
314 |
|
|
|
315 |
|
|
// parseT61String parses a ASN.1 T61String (8-bit clean string) from the given
|
316 |
|
|
// byte slice and returns it.
|
317 |
|
|
func parseT61String(bytes []byte) (ret string, err error) {
|
318 |
|
|
return string(bytes), nil
|
319 |
|
|
}
|
320 |
|
|
|
321 |
|
|
// UTF8String
|
322 |
|
|
|
323 |
|
|
// parseUTF8String parses a ASN.1 UTF8String (raw UTF-8) from the given byte
|
324 |
|
|
// array and returns it.
|
325 |
|
|
func parseUTF8String(bytes []byte) (ret string, err error) {
|
326 |
|
|
return string(bytes), nil
|
327 |
|
|
}
|
328 |
|
|
|
329 |
|
|
// A RawValue represents an undecoded ASN.1 object.
|
330 |
|
|
type RawValue struct {
|
331 |
|
|
Class, Tag int
|
332 |
|
|
IsCompound bool
|
333 |
|
|
Bytes []byte
|
334 |
|
|
FullBytes []byte // includes the tag and length
|
335 |
|
|
}
|
336 |
|
|
|
337 |
|
|
// RawContent is used to signal that the undecoded, DER data needs to be
|
338 |
|
|
// preserved for a struct. To use it, the first field of the struct must have
|
339 |
|
|
// this type. It's an error for any of the other fields to have this type.
|
340 |
|
|
type RawContent []byte
|
341 |
|
|
|
342 |
|
|
// Tagging
|
343 |
|
|
|
344 |
|
|
// parseTagAndLength parses an ASN.1 tag and length pair from the given offset
|
345 |
|
|
// into a byte slice. It returns the parsed data and the new offset. SET and
|
346 |
|
|
// SET OF (tag 17) are mapped to SEQUENCE and SEQUENCE OF (tag 16) since we
|
347 |
|
|
// don't distinguish between ordered and unordered objects in this code.
|
348 |
|
|
func parseTagAndLength(bytes []byte, initOffset int) (ret tagAndLength, offset int, err error) {
|
349 |
|
|
offset = initOffset
|
350 |
|
|
b := bytes[offset]
|
351 |
|
|
offset++
|
352 |
|
|
ret.class = int(b >> 6)
|
353 |
|
|
ret.isCompound = b&0x20 == 0x20
|
354 |
|
|
ret.tag = int(b & 0x1f)
|
355 |
|
|
|
356 |
|
|
// If the bottom five bits are set, then the tag number is actually base 128
|
357 |
|
|
// encoded afterwards
|
358 |
|
|
if ret.tag == 0x1f {
|
359 |
|
|
ret.tag, offset, err = parseBase128Int(bytes, offset)
|
360 |
|
|
if err != nil {
|
361 |
|
|
return
|
362 |
|
|
}
|
363 |
|
|
}
|
364 |
|
|
if offset >= len(bytes) {
|
365 |
|
|
err = SyntaxError{"truncated tag or length"}
|
366 |
|
|
return
|
367 |
|
|
}
|
368 |
|
|
b = bytes[offset]
|
369 |
|
|
offset++
|
370 |
|
|
if b&0x80 == 0 {
|
371 |
|
|
// The length is encoded in the bottom 7 bits.
|
372 |
|
|
ret.length = int(b & 0x7f)
|
373 |
|
|
} else {
|
374 |
|
|
// Bottom 7 bits give the number of length bytes to follow.
|
375 |
|
|
numBytes := int(b & 0x7f)
|
376 |
|
|
// We risk overflowing a signed 32-bit number if we accept more than 3 bytes.
|
377 |
|
|
if numBytes > 3 {
|
378 |
|
|
err = StructuralError{"length too large"}
|
379 |
|
|
return
|
380 |
|
|
}
|
381 |
|
|
if numBytes == 0 {
|
382 |
|
|
err = SyntaxError{"indefinite length found (not DER)"}
|
383 |
|
|
return
|
384 |
|
|
}
|
385 |
|
|
ret.length = 0
|
386 |
|
|
for i := 0; i < numBytes; i++ {
|
387 |
|
|
if offset >= len(bytes) {
|
388 |
|
|
err = SyntaxError{"truncated tag or length"}
|
389 |
|
|
return
|
390 |
|
|
}
|
391 |
|
|
b = bytes[offset]
|
392 |
|
|
offset++
|
393 |
|
|
ret.length <<= 8
|
394 |
|
|
ret.length |= int(b)
|
395 |
|
|
}
|
396 |
|
|
}
|
397 |
|
|
|
398 |
|
|
return
|
399 |
|
|
}
|
400 |
|
|
|
401 |
|
|
// parseSequenceOf is used for SEQUENCE OF and SET OF values. It tries to parse
|
402 |
|
|
// a number of ASN.1 values from the given byte slice and returns them as a
|
403 |
|
|
// slice of Go values of the given type.
|
404 |
|
|
func parseSequenceOf(bytes []byte, sliceType reflect.Type, elemType reflect.Type) (ret reflect.Value, err error) {
|
405 |
|
|
expectedTag, compoundType, ok := getUniversalType(elemType)
|
406 |
|
|
if !ok {
|
407 |
|
|
err = StructuralError{"unknown Go type for slice"}
|
408 |
|
|
return
|
409 |
|
|
}
|
410 |
|
|
|
411 |
|
|
// First we iterate over the input and count the number of elements,
|
412 |
|
|
// checking that the types are correct in each case.
|
413 |
|
|
numElements := 0
|
414 |
|
|
for offset := 0; offset < len(bytes); {
|
415 |
|
|
var t tagAndLength
|
416 |
|
|
t, offset, err = parseTagAndLength(bytes, offset)
|
417 |
|
|
if err != nil {
|
418 |
|
|
return
|
419 |
|
|
}
|
420 |
|
|
// We pretend that GENERAL STRINGs are PRINTABLE STRINGs so
|
421 |
|
|
// that a sequence of them can be parsed into a []string.
|
422 |
|
|
if t.tag == tagGeneralString {
|
423 |
|
|
t.tag = tagPrintableString
|
424 |
|
|
}
|
425 |
|
|
if t.class != classUniversal || t.isCompound != compoundType || t.tag != expectedTag {
|
426 |
|
|
err = StructuralError{"sequence tag mismatch"}
|
427 |
|
|
return
|
428 |
|
|
}
|
429 |
|
|
if invalidLength(offset, t.length, len(bytes)) {
|
430 |
|
|
err = SyntaxError{"truncated sequence"}
|
431 |
|
|
return
|
432 |
|
|
}
|
433 |
|
|
offset += t.length
|
434 |
|
|
numElements++
|
435 |
|
|
}
|
436 |
|
|
ret = reflect.MakeSlice(sliceType, numElements, numElements)
|
437 |
|
|
params := fieldParameters{}
|
438 |
|
|
offset := 0
|
439 |
|
|
for i := 0; i < numElements; i++ {
|
440 |
|
|
offset, err = parseField(ret.Index(i), bytes, offset, params)
|
441 |
|
|
if err != nil {
|
442 |
|
|
return
|
443 |
|
|
}
|
444 |
|
|
}
|
445 |
|
|
return
|
446 |
|
|
}
|
447 |
|
|
|
448 |
|
|
var (
|
449 |
|
|
bitStringType = reflect.TypeOf(BitString{})
|
450 |
|
|
objectIdentifierType = reflect.TypeOf(ObjectIdentifier{})
|
451 |
|
|
enumeratedType = reflect.TypeOf(Enumerated(0))
|
452 |
|
|
flagType = reflect.TypeOf(Flag(false))
|
453 |
|
|
timeType = reflect.TypeOf(time.Time{})
|
454 |
|
|
rawValueType = reflect.TypeOf(RawValue{})
|
455 |
|
|
rawContentsType = reflect.TypeOf(RawContent(nil))
|
456 |
|
|
bigIntType = reflect.TypeOf(new(big.Int))
|
457 |
|
|
)
|
458 |
|
|
|
459 |
|
|
// invalidLength returns true iff offset + length > sliceLength, or if the
|
460 |
|
|
// addition would overflow.
|
461 |
|
|
func invalidLength(offset, length, sliceLength int) bool {
|
462 |
|
|
return offset+length < offset || offset+length > sliceLength
|
463 |
|
|
}
|
464 |
|
|
|
465 |
|
|
// parseField is the main parsing function. Given a byte slice and an offset
|
466 |
|
|
// into the array, it will try to parse a suitable ASN.1 value out and store it
|
467 |
|
|
// in the given Value.
|
468 |
|
|
func parseField(v reflect.Value, bytes []byte, initOffset int, params fieldParameters) (offset int, err error) {
|
469 |
|
|
offset = initOffset
|
470 |
|
|
fieldType := v.Type()
|
471 |
|
|
|
472 |
|
|
// If we have run out of data, it may be that there are optional elements at the end.
|
473 |
|
|
if offset == len(bytes) {
|
474 |
|
|
if !setDefaultValue(v, params) {
|
475 |
|
|
err = SyntaxError{"sequence truncated"}
|
476 |
|
|
}
|
477 |
|
|
return
|
478 |
|
|
}
|
479 |
|
|
|
480 |
|
|
// Deal with raw values.
|
481 |
|
|
if fieldType == rawValueType {
|
482 |
|
|
var t tagAndLength
|
483 |
|
|
t, offset, err = parseTagAndLength(bytes, offset)
|
484 |
|
|
if err != nil {
|
485 |
|
|
return
|
486 |
|
|
}
|
487 |
|
|
if invalidLength(offset, t.length, len(bytes)) {
|
488 |
|
|
err = SyntaxError{"data truncated"}
|
489 |
|
|
return
|
490 |
|
|
}
|
491 |
|
|
result := RawValue{t.class, t.tag, t.isCompound, bytes[offset : offset+t.length], bytes[initOffset : offset+t.length]}
|
492 |
|
|
offset += t.length
|
493 |
|
|
v.Set(reflect.ValueOf(result))
|
494 |
|
|
return
|
495 |
|
|
}
|
496 |
|
|
|
497 |
|
|
// Deal with the ANY type.
|
498 |
|
|
if ifaceType := fieldType; ifaceType.Kind() == reflect.Interface && ifaceType.NumMethod() == 0 {
|
499 |
|
|
var t tagAndLength
|
500 |
|
|
t, offset, err = parseTagAndLength(bytes, offset)
|
501 |
|
|
if err != nil {
|
502 |
|
|
return
|
503 |
|
|
}
|
504 |
|
|
if invalidLength(offset, t.length, len(bytes)) {
|
505 |
|
|
err = SyntaxError{"data truncated"}
|
506 |
|
|
return
|
507 |
|
|
}
|
508 |
|
|
var result interface{}
|
509 |
|
|
if !t.isCompound && t.class == classUniversal {
|
510 |
|
|
innerBytes := bytes[offset : offset+t.length]
|
511 |
|
|
switch t.tag {
|
512 |
|
|
case tagPrintableString:
|
513 |
|
|
result, err = parsePrintableString(innerBytes)
|
514 |
|
|
case tagIA5String:
|
515 |
|
|
result, err = parseIA5String(innerBytes)
|
516 |
|
|
case tagT61String:
|
517 |
|
|
result, err = parseT61String(innerBytes)
|
518 |
|
|
case tagUTF8String:
|
519 |
|
|
result, err = parseUTF8String(innerBytes)
|
520 |
|
|
case tagInteger:
|
521 |
|
|
result, err = parseInt64(innerBytes)
|
522 |
|
|
case tagBitString:
|
523 |
|
|
result, err = parseBitString(innerBytes)
|
524 |
|
|
case tagOID:
|
525 |
|
|
result, err = parseObjectIdentifier(innerBytes)
|
526 |
|
|
case tagUTCTime:
|
527 |
|
|
result, err = parseUTCTime(innerBytes)
|
528 |
|
|
case tagOctetString:
|
529 |
|
|
result = innerBytes
|
530 |
|
|
default:
|
531 |
|
|
// If we don't know how to handle the type, we just leave Value as nil.
|
532 |
|
|
}
|
533 |
|
|
}
|
534 |
|
|
offset += t.length
|
535 |
|
|
if err != nil {
|
536 |
|
|
return
|
537 |
|
|
}
|
538 |
|
|
if result != nil {
|
539 |
|
|
v.Set(reflect.ValueOf(result))
|
540 |
|
|
}
|
541 |
|
|
return
|
542 |
|
|
}
|
543 |
|
|
universalTag, compoundType, ok1 := getUniversalType(fieldType)
|
544 |
|
|
if !ok1 {
|
545 |
|
|
err = StructuralError{fmt.Sprintf("unknown Go type: %v", fieldType)}
|
546 |
|
|
return
|
547 |
|
|
}
|
548 |
|
|
|
549 |
|
|
t, offset, err := parseTagAndLength(bytes, offset)
|
550 |
|
|
if err != nil {
|
551 |
|
|
return
|
552 |
|
|
}
|
553 |
|
|
if params.explicit {
|
554 |
|
|
expectedClass := classContextSpecific
|
555 |
|
|
if params.application {
|
556 |
|
|
expectedClass = classApplication
|
557 |
|
|
}
|
558 |
|
|
if t.class == expectedClass && t.tag == *params.tag && (t.length == 0 || t.isCompound) {
|
559 |
|
|
if t.length > 0 {
|
560 |
|
|
t, offset, err = parseTagAndLength(bytes, offset)
|
561 |
|
|
if err != nil {
|
562 |
|
|
return
|
563 |
|
|
}
|
564 |
|
|
} else {
|
565 |
|
|
if fieldType != flagType {
|
566 |
|
|
err = StructuralError{"Zero length explicit tag was not an asn1.Flag"}
|
567 |
|
|
return
|
568 |
|
|
}
|
569 |
|
|
v.SetBool(true)
|
570 |
|
|
return
|
571 |
|
|
}
|
572 |
|
|
} else {
|
573 |
|
|
// The tags didn't match, it might be an optional element.
|
574 |
|
|
ok := setDefaultValue(v, params)
|
575 |
|
|
if ok {
|
576 |
|
|
offset = initOffset
|
577 |
|
|
} else {
|
578 |
|
|
err = StructuralError{"explicitly tagged member didn't match"}
|
579 |
|
|
}
|
580 |
|
|
return
|
581 |
|
|
}
|
582 |
|
|
}
|
583 |
|
|
|
584 |
|
|
// Special case for strings: all the ASN.1 string types map to the Go
|
585 |
|
|
// type string. getUniversalType returns the tag for PrintableString
|
586 |
|
|
// when it sees a string, so if we see a different string type on the
|
587 |
|
|
// wire, we change the universal type to match.
|
588 |
|
|
if universalTag == tagPrintableString {
|
589 |
|
|
switch t.tag {
|
590 |
|
|
case tagIA5String, tagGeneralString, tagT61String, tagUTF8String:
|
591 |
|
|
universalTag = t.tag
|
592 |
|
|
}
|
593 |
|
|
}
|
594 |
|
|
|
595 |
|
|
// Special case for time: UTCTime and GeneralizedTime both map to the
|
596 |
|
|
// Go type time.Time.
|
597 |
|
|
if universalTag == tagUTCTime && t.tag == tagGeneralizedTime {
|
598 |
|
|
universalTag = tagGeneralizedTime
|
599 |
|
|
}
|
600 |
|
|
|
601 |
|
|
expectedClass := classUniversal
|
602 |
|
|
expectedTag := universalTag
|
603 |
|
|
|
604 |
|
|
if !params.explicit && params.tag != nil {
|
605 |
|
|
expectedClass = classContextSpecific
|
606 |
|
|
expectedTag = *params.tag
|
607 |
|
|
}
|
608 |
|
|
|
609 |
|
|
if !params.explicit && params.application && params.tag != nil {
|
610 |
|
|
expectedClass = classApplication
|
611 |
|
|
expectedTag = *params.tag
|
612 |
|
|
}
|
613 |
|
|
|
614 |
|
|
// We have unwrapped any explicit tagging at this point.
|
615 |
|
|
if t.class != expectedClass || t.tag != expectedTag || t.isCompound != compoundType {
|
616 |
|
|
// Tags don't match. Again, it could be an optional element.
|
617 |
|
|
ok := setDefaultValue(v, params)
|
618 |
|
|
if ok {
|
619 |
|
|
offset = initOffset
|
620 |
|
|
} else {
|
621 |
|
|
err = StructuralError{fmt.Sprintf("tags don't match (%d vs %+v) %+v %s @%d", expectedTag, t, params, fieldType.Name(), offset)}
|
622 |
|
|
}
|
623 |
|
|
return
|
624 |
|
|
}
|
625 |
|
|
if invalidLength(offset, t.length, len(bytes)) {
|
626 |
|
|
err = SyntaxError{"data truncated"}
|
627 |
|
|
return
|
628 |
|
|
}
|
629 |
|
|
innerBytes := bytes[offset : offset+t.length]
|
630 |
|
|
offset += t.length
|
631 |
|
|
|
632 |
|
|
// We deal with the structures defined in this package first.
|
633 |
|
|
switch fieldType {
|
634 |
|
|
case objectIdentifierType:
|
635 |
|
|
newSlice, err1 := parseObjectIdentifier(innerBytes)
|
636 |
|
|
v.Set(reflect.MakeSlice(v.Type(), len(newSlice), len(newSlice)))
|
637 |
|
|
if err1 == nil {
|
638 |
|
|
reflect.Copy(v, reflect.ValueOf(newSlice))
|
639 |
|
|
}
|
640 |
|
|
err = err1
|
641 |
|
|
return
|
642 |
|
|
case bitStringType:
|
643 |
|
|
bs, err1 := parseBitString(innerBytes)
|
644 |
|
|
if err1 == nil {
|
645 |
|
|
v.Set(reflect.ValueOf(bs))
|
646 |
|
|
}
|
647 |
|
|
err = err1
|
648 |
|
|
return
|
649 |
|
|
case timeType:
|
650 |
|
|
var time time.Time
|
651 |
|
|
var err1 error
|
652 |
|
|
if universalTag == tagUTCTime {
|
653 |
|
|
time, err1 = parseUTCTime(innerBytes)
|
654 |
|
|
} else {
|
655 |
|
|
time, err1 = parseGeneralizedTime(innerBytes)
|
656 |
|
|
}
|
657 |
|
|
if err1 == nil {
|
658 |
|
|
v.Set(reflect.ValueOf(time))
|
659 |
|
|
}
|
660 |
|
|
err = err1
|
661 |
|
|
return
|
662 |
|
|
case enumeratedType:
|
663 |
|
|
parsedInt, err1 := parseInt(innerBytes)
|
664 |
|
|
if err1 == nil {
|
665 |
|
|
v.SetInt(int64(parsedInt))
|
666 |
|
|
}
|
667 |
|
|
err = err1
|
668 |
|
|
return
|
669 |
|
|
case flagType:
|
670 |
|
|
v.SetBool(true)
|
671 |
|
|
return
|
672 |
|
|
case bigIntType:
|
673 |
|
|
parsedInt := parseBigInt(innerBytes)
|
674 |
|
|
v.Set(reflect.ValueOf(parsedInt))
|
675 |
|
|
return
|
676 |
|
|
}
|
677 |
|
|
switch val := v; val.Kind() {
|
678 |
|
|
case reflect.Bool:
|
679 |
|
|
parsedBool, err1 := parseBool(innerBytes)
|
680 |
|
|
if err1 == nil {
|
681 |
|
|
val.SetBool(parsedBool)
|
682 |
|
|
}
|
683 |
|
|
err = err1
|
684 |
|
|
return
|
685 |
|
|
case reflect.Int, reflect.Int32:
|
686 |
|
|
parsedInt, err1 := parseInt(innerBytes)
|
687 |
|
|
if err1 == nil {
|
688 |
|
|
val.SetInt(int64(parsedInt))
|
689 |
|
|
}
|
690 |
|
|
err = err1
|
691 |
|
|
return
|
692 |
|
|
case reflect.Int64:
|
693 |
|
|
parsedInt, err1 := parseInt64(innerBytes)
|
694 |
|
|
if err1 == nil {
|
695 |
|
|
val.SetInt(parsedInt)
|
696 |
|
|
}
|
697 |
|
|
err = err1
|
698 |
|
|
return
|
699 |
|
|
// TODO(dfc) Add support for the remaining integer types
|
700 |
|
|
case reflect.Struct:
|
701 |
|
|
structType := fieldType
|
702 |
|
|
|
703 |
|
|
if structType.NumField() > 0 &&
|
704 |
|
|
structType.Field(0).Type == rawContentsType {
|
705 |
|
|
bytes := bytes[initOffset:offset]
|
706 |
|
|
val.Field(0).Set(reflect.ValueOf(RawContent(bytes)))
|
707 |
|
|
}
|
708 |
|
|
|
709 |
|
|
innerOffset := 0
|
710 |
|
|
for i := 0; i < structType.NumField(); i++ {
|
711 |
|
|
field := structType.Field(i)
|
712 |
|
|
if i == 0 && field.Type == rawContentsType {
|
713 |
|
|
continue
|
714 |
|
|
}
|
715 |
|
|
innerOffset, err = parseField(val.Field(i), innerBytes, innerOffset, parseFieldParameters(field.Tag.Get("asn1")))
|
716 |
|
|
if err != nil {
|
717 |
|
|
return
|
718 |
|
|
}
|
719 |
|
|
}
|
720 |
|
|
// We allow extra bytes at the end of the SEQUENCE because
|
721 |
|
|
// adding elements to the end has been used in X.509 as the
|
722 |
|
|
// version numbers have increased.
|
723 |
|
|
return
|
724 |
|
|
case reflect.Slice:
|
725 |
|
|
sliceType := fieldType
|
726 |
|
|
if sliceType.Elem().Kind() == reflect.Uint8 {
|
727 |
|
|
val.Set(reflect.MakeSlice(sliceType, len(innerBytes), len(innerBytes)))
|
728 |
|
|
reflect.Copy(val, reflect.ValueOf(innerBytes))
|
729 |
|
|
return
|
730 |
|
|
}
|
731 |
|
|
newSlice, err1 := parseSequenceOf(innerBytes, sliceType, sliceType.Elem())
|
732 |
|
|
if err1 == nil {
|
733 |
|
|
val.Set(newSlice)
|
734 |
|
|
}
|
735 |
|
|
err = err1
|
736 |
|
|
return
|
737 |
|
|
case reflect.String:
|
738 |
|
|
var v string
|
739 |
|
|
switch universalTag {
|
740 |
|
|
case tagPrintableString:
|
741 |
|
|
v, err = parsePrintableString(innerBytes)
|
742 |
|
|
case tagIA5String:
|
743 |
|
|
v, err = parseIA5String(innerBytes)
|
744 |
|
|
case tagT61String:
|
745 |
|
|
v, err = parseT61String(innerBytes)
|
746 |
|
|
case tagUTF8String:
|
747 |
|
|
v, err = parseUTF8String(innerBytes)
|
748 |
|
|
case tagGeneralString:
|
749 |
|
|
// GeneralString is specified in ISO-2022/ECMA-35,
|
750 |
|
|
// A brief review suggests that it includes structures
|
751 |
|
|
// that allow the encoding to change midstring and
|
752 |
|
|
// such. We give up and pass it as an 8-bit string.
|
753 |
|
|
v, err = parseT61String(innerBytes)
|
754 |
|
|
default:
|
755 |
|
|
err = SyntaxError{fmt.Sprintf("internal error: unknown string type %d", universalTag)}
|
756 |
|
|
}
|
757 |
|
|
if err == nil {
|
758 |
|
|
val.SetString(v)
|
759 |
|
|
}
|
760 |
|
|
return
|
761 |
|
|
}
|
762 |
|
|
err = StructuralError{"unsupported: " + v.Type().String()}
|
763 |
|
|
return
|
764 |
|
|
}
|
765 |
|
|
|
766 |
|
|
// setDefaultValue is used to install a default value, from a tag string, into
|
767 |
|
|
// a Value. It is successful is the field was optional, even if a default value
|
768 |
|
|
// wasn't provided or it failed to install it into the Value.
|
769 |
|
|
func setDefaultValue(v reflect.Value, params fieldParameters) (ok bool) {
|
770 |
|
|
if !params.optional {
|
771 |
|
|
return
|
772 |
|
|
}
|
773 |
|
|
ok = true
|
774 |
|
|
if params.defaultValue == nil {
|
775 |
|
|
return
|
776 |
|
|
}
|
777 |
|
|
switch val := v; val.Kind() {
|
778 |
|
|
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
|
779 |
|
|
val.SetInt(*params.defaultValue)
|
780 |
|
|
}
|
781 |
|
|
return
|
782 |
|
|
}
|
783 |
|
|
|
784 |
|
|
// Unmarshal parses the DER-encoded ASN.1 data structure b
|
785 |
|
|
// and uses the reflect package to fill in an arbitrary value pointed at by val.
|
786 |
|
|
// Because Unmarshal uses the reflect package, the structs
|
787 |
|
|
// being written to must use upper case field names.
|
788 |
|
|
//
|
789 |
|
|
// An ASN.1 INTEGER can be written to an int, int32, int64,
|
790 |
|
|
// or *big.Int (from the math/big package).
|
791 |
|
|
// If the encoded value does not fit in the Go type,
|
792 |
|
|
// Unmarshal returns a parse error.
|
793 |
|
|
//
|
794 |
|
|
// An ASN.1 BIT STRING can be written to a BitString.
|
795 |
|
|
//
|
796 |
|
|
// An ASN.1 OCTET STRING can be written to a []byte.
|
797 |
|
|
//
|
798 |
|
|
// An ASN.1 OBJECT IDENTIFIER can be written to an
|
799 |
|
|
// ObjectIdentifier.
|
800 |
|
|
//
|
801 |
|
|
// An ASN.1 ENUMERATED can be written to an Enumerated.
|
802 |
|
|
//
|
803 |
|
|
// An ASN.1 UTCTIME or GENERALIZEDTIME can be written to a time.Time.
|
804 |
|
|
//
|
805 |
|
|
// An ASN.1 PrintableString or IA5String can be written to a string.
|
806 |
|
|
//
|
807 |
|
|
// Any of the above ASN.1 values can be written to an interface{}.
|
808 |
|
|
// The value stored in the interface has the corresponding Go type.
|
809 |
|
|
// For integers, that type is int64.
|
810 |
|
|
//
|
811 |
|
|
// An ASN.1 SEQUENCE OF x or SET OF x can be written
|
812 |
|
|
// to a slice if an x can be written to the slice's element type.
|
813 |
|
|
//
|
814 |
|
|
// An ASN.1 SEQUENCE or SET can be written to a struct
|
815 |
|
|
// if each of the elements in the sequence can be
|
816 |
|
|
// written to the corresponding element in the struct.
|
817 |
|
|
//
|
818 |
|
|
// The following tags on struct fields have special meaning to Unmarshal:
|
819 |
|
|
//
|
820 |
|
|
// optional marks the field as ASN.1 OPTIONAL
|
821 |
|
|
// [explicit] tag:x specifies the ASN.1 tag number; implies ASN.1 CONTEXT SPECIFIC
|
822 |
|
|
// default:x sets the default value for optional integer fields
|
823 |
|
|
//
|
824 |
|
|
// If the type of the first field of a structure is RawContent then the raw
|
825 |
|
|
// ASN1 contents of the struct will be stored in it.
|
826 |
|
|
//
|
827 |
|
|
// Other ASN.1 types are not supported; if it encounters them,
|
828 |
|
|
// Unmarshal returns a parse error.
|
829 |
|
|
func Unmarshal(b []byte, val interface{}) (rest []byte, err error) {
|
830 |
|
|
return UnmarshalWithParams(b, val, "")
|
831 |
|
|
}
|
832 |
|
|
|
833 |
|
|
// UnmarshalWithParams allows field parameters to be specified for the
|
834 |
|
|
// top-level element. The form of the params is the same as the field tags.
|
835 |
|
|
func UnmarshalWithParams(b []byte, val interface{}, params string) (rest []byte, err error) {
|
836 |
|
|
v := reflect.ValueOf(val).Elem()
|
837 |
|
|
offset, err := parseField(v, b, 0, parseFieldParameters(params))
|
838 |
|
|
if err != nil {
|
839 |
|
|
return nil, err
|
840 |
|
|
}
|
841 |
|
|
return b[offset:], nil
|
842 |
|
|
}
|