OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libgo/] [go/] [encoding/] [gob/] [encode.go] - Blame information for rev 747

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 747 jeremybenn
// Copyright 2009 The Go Authors. All rights reserved.
2
// Use of this source code is governed by a BSD-style
3
// license that can be found in the LICENSE file.
4
 
5
package gob
6
 
7
import (
8
        "bytes"
9
        "math"
10
        "reflect"
11
        "unsafe"
12
)
13
 
14
const uint64Size = int(unsafe.Sizeof(uint64(0)))
15
 
16
// encoderState is the global execution state of an instance of the encoder.
17
// Field numbers are delta encoded and always increase. The field
18
// number is initialized to -1 so 0 comes out as delta(1). A delta of
19
// 0 terminates the structure.
20
type encoderState struct {
21
        enc      *Encoder
22
        b        *bytes.Buffer
23
        sendZero bool                 // encoding an array element or map key/value pair; send zero values
24
        fieldnum int                  // the last field number written.
25
        buf      [1 + uint64Size]byte // buffer used by the encoder; here to avoid allocation.
26
        next     *encoderState        // for free list
27
}
28
 
29
func (enc *Encoder) newEncoderState(b *bytes.Buffer) *encoderState {
30
        e := enc.freeList
31
        if e == nil {
32
                e = new(encoderState)
33
                e.enc = enc
34
        } else {
35
                enc.freeList = e.next
36
        }
37
        e.sendZero = false
38
        e.fieldnum = 0
39
        e.b = b
40
        return e
41
}
42
 
43
func (enc *Encoder) freeEncoderState(e *encoderState) {
44
        e.next = enc.freeList
45
        enc.freeList = e
46
}
47
 
48
// Unsigned integers have a two-state encoding.  If the number is less
49
// than 128 (0 through 0x7F), its value is written directly.
50
// Otherwise the value is written in big-endian byte order preceded
51
// by the byte length, negated.
52
 
53
// encodeUint writes an encoded unsigned integer to state.b.
54
func (state *encoderState) encodeUint(x uint64) {
55
        if x <= 0x7F {
56
                err := state.b.WriteByte(uint8(x))
57
                if err != nil {
58
                        error_(err)
59
                }
60
                return
61
        }
62
        i := uint64Size
63
        for x > 0 {
64
                state.buf[i] = uint8(x)
65
                x >>= 8
66
                i--
67
        }
68
        state.buf[i] = uint8(i - uint64Size) // = loop count, negated
69
        _, err := state.b.Write(state.buf[i : uint64Size+1])
70
        if err != nil {
71
                error_(err)
72
        }
73
}
74
 
75
// encodeInt writes an encoded signed integer to state.w.
76
// The low bit of the encoding says whether to bit complement the (other bits of the)
77
// uint to recover the int.
78
func (state *encoderState) encodeInt(i int64) {
79
        var x uint64
80
        if i < 0 {
81
                x = uint64(^i<<1) | 1
82
        } else {
83
                x = uint64(i << 1)
84
        }
85
        state.encodeUint(uint64(x))
86
}
87
 
88
// encOp is the signature of an encoding operator for a given type.
89
type encOp func(i *encInstr, state *encoderState, p unsafe.Pointer)
90
 
91
// The 'instructions' of the encoding machine
92
type encInstr struct {
93
        op     encOp
94
        field  int     // field number
95
        indir  int     // how many pointer indirections to reach the value in the struct
96
        offset uintptr // offset in the structure of the field to encode
97
}
98
 
99
// update emits a field number and updates the state to record its value for delta encoding.
100
// If the instruction pointer is nil, it does nothing
101
func (state *encoderState) update(instr *encInstr) {
102
        if instr != nil {
103
                state.encodeUint(uint64(instr.field - state.fieldnum))
104
                state.fieldnum = instr.field
105
        }
106
}
107
 
108
// Each encoder for a composite is responsible for handling any
109
// indirections associated with the elements of the data structure.
110
// If any pointer so reached is nil, no bytes are written.  If the
111
// data item is zero, no bytes are written.  Single values - ints,
112
// strings etc. - are indirected before calling their encoders.
113
// Otherwise, the output (for a scalar) is the field number, as an
114
// encoded integer, followed by the field data in its appropriate
115
// format.
116
 
117
// encIndirect dereferences p indir times and returns the result.
118
func encIndirect(p unsafe.Pointer, indir int) unsafe.Pointer {
119
        for ; indir > 0; indir-- {
120
                p = *(*unsafe.Pointer)(p)
121
                if p == nil {
122
                        return unsafe.Pointer(nil)
123
                }
124
        }
125
        return p
126
}
127
 
128
// encBool encodes the bool with address p as an unsigned 0 or 1.
129
func encBool(i *encInstr, state *encoderState, p unsafe.Pointer) {
130
        b := *(*bool)(p)
131
        if b || state.sendZero {
132
                state.update(i)
133
                if b {
134
                        state.encodeUint(1)
135
                } else {
136
                        state.encodeUint(0)
137
                }
138
        }
139
}
140
 
141
// encInt encodes the int with address p.
142
func encInt(i *encInstr, state *encoderState, p unsafe.Pointer) {
143
        v := int64(*(*int)(p))
144
        if v != 0 || state.sendZero {
145
                state.update(i)
146
                state.encodeInt(v)
147
        }
148
}
149
 
150
// encUint encodes the uint with address p.
151
func encUint(i *encInstr, state *encoderState, p unsafe.Pointer) {
152
        v := uint64(*(*uint)(p))
153
        if v != 0 || state.sendZero {
154
                state.update(i)
155
                state.encodeUint(v)
156
        }
157
}
158
 
159
// encInt8 encodes the int8 with address p.
160
func encInt8(i *encInstr, state *encoderState, p unsafe.Pointer) {
161
        v := int64(*(*int8)(p))
162
        if v != 0 || state.sendZero {
163
                state.update(i)
164
                state.encodeInt(v)
165
        }
166
}
167
 
168
// encUint8 encodes the uint8 with address p.
169
func encUint8(i *encInstr, state *encoderState, p unsafe.Pointer) {
170
        v := uint64(*(*uint8)(p))
171
        if v != 0 || state.sendZero {
172
                state.update(i)
173
                state.encodeUint(v)
174
        }
175
}
176
 
177
// encInt16 encodes the int16 with address p.
178
func encInt16(i *encInstr, state *encoderState, p unsafe.Pointer) {
179
        v := int64(*(*int16)(p))
180
        if v != 0 || state.sendZero {
181
                state.update(i)
182
                state.encodeInt(v)
183
        }
184
}
185
 
186
// encUint16 encodes the uint16 with address p.
187
func encUint16(i *encInstr, state *encoderState, p unsafe.Pointer) {
188
        v := uint64(*(*uint16)(p))
189
        if v != 0 || state.sendZero {
190
                state.update(i)
191
                state.encodeUint(v)
192
        }
193
}
194
 
195
// encInt32 encodes the int32 with address p.
196
func encInt32(i *encInstr, state *encoderState, p unsafe.Pointer) {
197
        v := int64(*(*int32)(p))
198
        if v != 0 || state.sendZero {
199
                state.update(i)
200
                state.encodeInt(v)
201
        }
202
}
203
 
204
// encUint encodes the uint32 with address p.
205
func encUint32(i *encInstr, state *encoderState, p unsafe.Pointer) {
206
        v := uint64(*(*uint32)(p))
207
        if v != 0 || state.sendZero {
208
                state.update(i)
209
                state.encodeUint(v)
210
        }
211
}
212
 
213
// encInt64 encodes the int64 with address p.
214
func encInt64(i *encInstr, state *encoderState, p unsafe.Pointer) {
215
        v := *(*int64)(p)
216
        if v != 0 || state.sendZero {
217
                state.update(i)
218
                state.encodeInt(v)
219
        }
220
}
221
 
222
// encInt64 encodes the uint64 with address p.
223
func encUint64(i *encInstr, state *encoderState, p unsafe.Pointer) {
224
        v := *(*uint64)(p)
225
        if v != 0 || state.sendZero {
226
                state.update(i)
227
                state.encodeUint(v)
228
        }
229
}
230
 
231
// encUintptr encodes the uintptr with address p.
232
func encUintptr(i *encInstr, state *encoderState, p unsafe.Pointer) {
233
        v := uint64(*(*uintptr)(p))
234
        if v != 0 || state.sendZero {
235
                state.update(i)
236
                state.encodeUint(v)
237
        }
238
}
239
 
240
// floatBits returns a uint64 holding the bits of a floating-point number.
241
// Floating-point numbers are transmitted as uint64s holding the bits
242
// of the underlying representation.  They are sent byte-reversed, with
243
// the exponent end coming out first, so integer floating point numbers
244
// (for example) transmit more compactly.  This routine does the
245
// swizzling.
246
func floatBits(f float64) uint64 {
247
        u := math.Float64bits(f)
248
        var v uint64
249
        for i := 0; i < 8; i++ {
250
                v <<= 8
251
                v |= u & 0xFF
252
                u >>= 8
253
        }
254
        return v
255
}
256
 
257
// encFloat32 encodes the float32 with address p.
258
func encFloat32(i *encInstr, state *encoderState, p unsafe.Pointer) {
259
        f := *(*float32)(p)
260
        if f != 0 || state.sendZero {
261
                v := floatBits(float64(f))
262
                state.update(i)
263
                state.encodeUint(v)
264
        }
265
}
266
 
267
// encFloat64 encodes the float64 with address p.
268
func encFloat64(i *encInstr, state *encoderState, p unsafe.Pointer) {
269
        f := *(*float64)(p)
270
        if f != 0 || state.sendZero {
271
                state.update(i)
272
                v := floatBits(f)
273
                state.encodeUint(v)
274
        }
275
}
276
 
277
// encComplex64 encodes the complex64 with address p.
278
// Complex numbers are just a pair of floating-point numbers, real part first.
279
func encComplex64(i *encInstr, state *encoderState, p unsafe.Pointer) {
280
        c := *(*complex64)(p)
281
        if c != 0+0i || state.sendZero {
282
                rpart := floatBits(float64(real(c)))
283
                ipart := floatBits(float64(imag(c)))
284
                state.update(i)
285
                state.encodeUint(rpart)
286
                state.encodeUint(ipart)
287
        }
288
}
289
 
290
// encComplex128 encodes the complex128 with address p.
291
func encComplex128(i *encInstr, state *encoderState, p unsafe.Pointer) {
292
        c := *(*complex128)(p)
293
        if c != 0+0i || state.sendZero {
294
                rpart := floatBits(real(c))
295
                ipart := floatBits(imag(c))
296
                state.update(i)
297
                state.encodeUint(rpart)
298
                state.encodeUint(ipart)
299
        }
300
}
301
 
302
// encUint8Array encodes the byte slice whose header has address p.
303
// Byte arrays are encoded as an unsigned count followed by the raw bytes.
304
func encUint8Array(i *encInstr, state *encoderState, p unsafe.Pointer) {
305
        b := *(*[]byte)(p)
306
        if len(b) > 0 || state.sendZero {
307
                state.update(i)
308
                state.encodeUint(uint64(len(b)))
309
                state.b.Write(b)
310
        }
311
}
312
 
313
// encString encodes the string whose header has address p.
314
// Strings are encoded as an unsigned count followed by the raw bytes.
315
func encString(i *encInstr, state *encoderState, p unsafe.Pointer) {
316
        s := *(*string)(p)
317
        if len(s) > 0 || state.sendZero {
318
                state.update(i)
319
                state.encodeUint(uint64(len(s)))
320
                state.b.WriteString(s)
321
        }
322
}
323
 
324
// encStructTerminator encodes the end of an encoded struct
325
// as delta field number of 0.
326
func encStructTerminator(i *encInstr, state *encoderState, p unsafe.Pointer) {
327
        state.encodeUint(0)
328
}
329
 
330
// Execution engine
331
 
332
// encEngine an array of instructions indexed by field number of the encoding
333
// data, typically a struct.  It is executed top to bottom, walking the struct.
334
type encEngine struct {
335
        instr []encInstr
336
}
337
 
338
const singletonField = 0
339
 
340
// encodeSingle encodes a single top-level non-struct value.
341
func (enc *Encoder) encodeSingle(b *bytes.Buffer, engine *encEngine, basep uintptr) {
342
        state := enc.newEncoderState(b)
343
        state.fieldnum = singletonField
344
        // There is no surrounding struct to frame the transmission, so we must
345
        // generate data even if the item is zero.  To do this, set sendZero.
346
        state.sendZero = true
347
        instr := &engine.instr[singletonField]
348
        p := unsafe.Pointer(basep) // offset will be zero
349
        if instr.indir > 0 {
350
                if p = encIndirect(p, instr.indir); p == nil {
351
                        return
352
                }
353
        }
354
        instr.op(instr, state, p)
355
        enc.freeEncoderState(state)
356
}
357
 
358
// encodeStruct encodes a single struct value.
359
func (enc *Encoder) encodeStruct(b *bytes.Buffer, engine *encEngine, basep uintptr) {
360
        state := enc.newEncoderState(b)
361
        state.fieldnum = -1
362
        for i := 0; i < len(engine.instr); i++ {
363
                instr := &engine.instr[i]
364
                p := unsafe.Pointer(basep + instr.offset)
365
                if instr.indir > 0 {
366
                        if p = encIndirect(p, instr.indir); p == nil {
367
                                continue
368
                        }
369
                }
370
                instr.op(instr, state, p)
371
        }
372
        enc.freeEncoderState(state)
373
}
374
 
375
// encodeArray encodes the array whose 0th element is at p.
376
func (enc *Encoder) encodeArray(b *bytes.Buffer, p uintptr, op encOp, elemWid uintptr, elemIndir int, length int) {
377
        state := enc.newEncoderState(b)
378
        state.fieldnum = -1
379
        state.sendZero = true
380
        state.encodeUint(uint64(length))
381
        for i := 0; i < length; i++ {
382
                elemp := p
383
                up := unsafe.Pointer(elemp)
384
                if elemIndir > 0 {
385
                        if up = encIndirect(up, elemIndir); up == nil {
386
                                errorf("encodeArray: nil element")
387
                        }
388
                        elemp = uintptr(up)
389
                }
390
                op(nil, state, unsafe.Pointer(elemp))
391
                p += uintptr(elemWid)
392
        }
393
        enc.freeEncoderState(state)
394
}
395
 
396
// encodeReflectValue is a helper for maps. It encodes the value v.
397
func encodeReflectValue(state *encoderState, v reflect.Value, op encOp, indir int) {
398
        for i := 0; i < indir && v.IsValid(); i++ {
399
                v = reflect.Indirect(v)
400
        }
401
        if !v.IsValid() {
402
                errorf("encodeReflectValue: nil element")
403
        }
404
        op(nil, state, unsafe.Pointer(unsafeAddr(v)))
405
}
406
 
407
// encodeMap encodes a map as unsigned count followed by key:value pairs.
408
// Because map internals are not exposed, we must use reflection rather than
409
// addresses.
410
func (enc *Encoder) encodeMap(b *bytes.Buffer, mv reflect.Value, keyOp, elemOp encOp, keyIndir, elemIndir int) {
411
        state := enc.newEncoderState(b)
412
        state.fieldnum = -1
413
        state.sendZero = true
414
        keys := mv.MapKeys()
415
        state.encodeUint(uint64(len(keys)))
416
        for _, key := range keys {
417
                encodeReflectValue(state, key, keyOp, keyIndir)
418
                encodeReflectValue(state, mv.MapIndex(key), elemOp, elemIndir)
419
        }
420
        enc.freeEncoderState(state)
421
}
422
 
423
// encodeInterface encodes the interface value iv.
424
// To send an interface, we send a string identifying the concrete type, followed
425
// by the type identifier (which might require defining that type right now), followed
426
// by the concrete value.  A nil value gets sent as the empty string for the name,
427
// followed by no value.
428
func (enc *Encoder) encodeInterface(b *bytes.Buffer, iv reflect.Value) {
429
        state := enc.newEncoderState(b)
430
        state.fieldnum = -1
431
        state.sendZero = true
432
        if iv.IsNil() {
433
                state.encodeUint(0)
434
                return
435
        }
436
 
437
        ut := userType(iv.Elem().Type())
438
        name, ok := concreteTypeToName[ut.base]
439
        if !ok {
440
                errorf("type not registered for interface: %s", ut.base)
441
        }
442
        // Send the name.
443
        state.encodeUint(uint64(len(name)))
444
        _, err := state.b.WriteString(name)
445
        if err != nil {
446
                error_(err)
447
        }
448
        // Define the type id if necessary.
449
        enc.sendTypeDescriptor(enc.writer(), state, ut)
450
        // Send the type id.
451
        enc.sendTypeId(state, ut)
452
        // Encode the value into a new buffer.  Any nested type definitions
453
        // should be written to b, before the encoded value.
454
        enc.pushWriter(b)
455
        data := new(bytes.Buffer)
456
        data.Write(spaceForLength)
457
        enc.encode(data, iv.Elem(), ut)
458
        if enc.err != nil {
459
                error_(enc.err)
460
        }
461
        enc.popWriter()
462
        enc.writeMessage(b, data)
463
        if enc.err != nil {
464
                error_(err)
465
        }
466
        enc.freeEncoderState(state)
467
}
468
 
469
// isZero returns whether the value is the zero of its type.
470
func isZero(val reflect.Value) bool {
471
        switch val.Kind() {
472
        case reflect.Array:
473
                for i := 0; i < val.Len(); i++ {
474
                        if !isZero(val.Index(i)) {
475
                                return false
476
                        }
477
                }
478
                return true
479
        case reflect.Map, reflect.Slice, reflect.String:
480
                return val.Len() == 0
481
        case reflect.Bool:
482
                return !val.Bool()
483
        case reflect.Complex64, reflect.Complex128:
484
                return val.Complex() == 0
485
        case reflect.Chan, reflect.Func, reflect.Ptr:
486
                return val.IsNil()
487
        case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
488
                return val.Int() == 0
489
        case reflect.Float32, reflect.Float64:
490
                return val.Float() == 0
491
        case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
492
                return val.Uint() == 0
493
        case reflect.Struct:
494
                for i := 0; i < val.NumField(); i++ {
495
                        if !isZero(val.Field(i)) {
496
                                return false
497
                        }
498
                }
499
                return true
500
        }
501
        panic("unknown type in isZero " + val.Type().String())
502
}
503
 
504
// encGobEncoder encodes a value that implements the GobEncoder interface.
505
// The data is sent as a byte array.
506
func (enc *Encoder) encodeGobEncoder(b *bytes.Buffer, v reflect.Value) {
507
        // TODO: should we catch panics from the called method?
508
        // We know it's a GobEncoder, so just call the method directly.
509
        data, err := v.Interface().(GobEncoder).GobEncode()
510
        if err != nil {
511
                error_(err)
512
        }
513
        state := enc.newEncoderState(b)
514
        state.fieldnum = -1
515
        state.encodeUint(uint64(len(data)))
516
        state.b.Write(data)
517
        enc.freeEncoderState(state)
518
}
519
 
520
var encOpTable = [...]encOp{
521
        reflect.Bool:       encBool,
522
        reflect.Int:        encInt,
523
        reflect.Int8:       encInt8,
524
        reflect.Int16:      encInt16,
525
        reflect.Int32:      encInt32,
526
        reflect.Int64:      encInt64,
527
        reflect.Uint:       encUint,
528
        reflect.Uint8:      encUint8,
529
        reflect.Uint16:     encUint16,
530
        reflect.Uint32:     encUint32,
531
        reflect.Uint64:     encUint64,
532
        reflect.Uintptr:    encUintptr,
533
        reflect.Float32:    encFloat32,
534
        reflect.Float64:    encFloat64,
535
        reflect.Complex64:  encComplex64,
536
        reflect.Complex128: encComplex128,
537
        reflect.String:     encString,
538
}
539
 
540
// encOpFor returns (a pointer to) the encoding op for the base type under rt and
541
// the indirection count to reach it.
542
func (enc *Encoder) encOpFor(rt reflect.Type, inProgress map[reflect.Type]*encOp) (*encOp, int) {
543
        ut := userType(rt)
544
        // If the type implements GobEncoder, we handle it without further processing.
545
        if ut.isGobEncoder {
546
                return enc.gobEncodeOpFor(ut)
547
        }
548
        // If this type is already in progress, it's a recursive type (e.g. map[string]*T).
549
        // Return the pointer to the op we're already building.
550
        if opPtr := inProgress[rt]; opPtr != nil {
551
                return opPtr, ut.indir
552
        }
553
        typ := ut.base
554
        indir := ut.indir
555
        k := typ.Kind()
556
        var op encOp
557
        if int(k) < len(encOpTable) {
558
                op = encOpTable[k]
559
        }
560
        if op == nil {
561
                inProgress[rt] = &op
562
                // Special cases
563
                switch t := typ; t.Kind() {
564
                case reflect.Slice:
565
                        if t.Elem().Kind() == reflect.Uint8 {
566
                                op = encUint8Array
567
                                break
568
                        }
569
                        // Slices have a header; we decode it to find the underlying array.
570
                        elemOp, indir := enc.encOpFor(t.Elem(), inProgress)
571
                        op = func(i *encInstr, state *encoderState, p unsafe.Pointer) {
572
                                slice := (*reflect.SliceHeader)(p)
573
                                if !state.sendZero && slice.Len == 0 {
574
                                        return
575
                                }
576
                                state.update(i)
577
                                state.enc.encodeArray(state.b, slice.Data, *elemOp, t.Elem().Size(), indir, int(slice.Len))
578
                        }
579
                case reflect.Array:
580
                        // True arrays have size in the type.
581
                        elemOp, indir := enc.encOpFor(t.Elem(), inProgress)
582
                        op = func(i *encInstr, state *encoderState, p unsafe.Pointer) {
583
                                state.update(i)
584
                                state.enc.encodeArray(state.b, uintptr(p), *elemOp, t.Elem().Size(), indir, t.Len())
585
                        }
586
                case reflect.Map:
587
                        keyOp, keyIndir := enc.encOpFor(t.Key(), inProgress)
588
                        elemOp, elemIndir := enc.encOpFor(t.Elem(), inProgress)
589
                        op = func(i *encInstr, state *encoderState, p unsafe.Pointer) {
590
                                // Maps cannot be accessed by moving addresses around the way
591
                                // that slices etc. can.  We must recover a full reflection value for
592
                                // the iteration.
593
                                v := reflect.ValueOf(unsafe.Unreflect(t, unsafe.Pointer(p)))
594
                                mv := reflect.Indirect(v)
595
                                // We send zero-length (but non-nil) maps because the
596
                                // receiver might want to use the map.  (Maps don't use append.)
597
                                if !state.sendZero && mv.IsNil() {
598
                                        return
599
                                }
600
                                state.update(i)
601
                                state.enc.encodeMap(state.b, mv, *keyOp, *elemOp, keyIndir, elemIndir)
602
                        }
603
                case reflect.Struct:
604
                        // Generate a closure that calls out to the engine for the nested type.
605
                        enc.getEncEngine(userType(typ))
606
                        info := mustGetTypeInfo(typ)
607
                        op = func(i *encInstr, state *encoderState, p unsafe.Pointer) {
608
                                state.update(i)
609
                                // indirect through info to delay evaluation for recursive structs
610
                                state.enc.encodeStruct(state.b, info.encoder, uintptr(p))
611
                        }
612
                case reflect.Interface:
613
                        op = func(i *encInstr, state *encoderState, p unsafe.Pointer) {
614
                                // Interfaces transmit the name and contents of the concrete
615
                                // value they contain.
616
                                v := reflect.ValueOf(unsafe.Unreflect(t, unsafe.Pointer(p)))
617
                                iv := reflect.Indirect(v)
618
                                if !state.sendZero && (!iv.IsValid() || iv.IsNil()) {
619
                                        return
620
                                }
621
                                state.update(i)
622
                                state.enc.encodeInterface(state.b, iv)
623
                        }
624
                }
625
        }
626
        if op == nil {
627
                errorf("can't happen: encode type %s", rt)
628
        }
629
        return &op, indir
630
}
631
 
632
// gobEncodeOpFor returns the op for a type that is known to implement
633
// GobEncoder.
634
func (enc *Encoder) gobEncodeOpFor(ut *userTypeInfo) (*encOp, int) {
635
        rt := ut.user
636
        if ut.encIndir == -1 {
637
                rt = reflect.PtrTo(rt)
638
        } else if ut.encIndir > 0 {
639
                for i := int8(0); i < ut.encIndir; i++ {
640
                        rt = rt.Elem()
641
                }
642
        }
643
        var op encOp
644
        op = func(i *encInstr, state *encoderState, p unsafe.Pointer) {
645
                var v reflect.Value
646
                if ut.encIndir == -1 {
647
                        // Need to climb up one level to turn value into pointer.
648
                        v = reflect.ValueOf(unsafe.Unreflect(rt, unsafe.Pointer(&p)))
649
                } else {
650
                        v = reflect.ValueOf(unsafe.Unreflect(rt, p))
651
                }
652
                if !state.sendZero && isZero(v) {
653
                        return
654
                }
655
                state.update(i)
656
                state.enc.encodeGobEncoder(state.b, v)
657
        }
658
        return &op, int(ut.encIndir) // encIndir: op will get called with p == address of receiver.
659
}
660
 
661
// compileEnc returns the engine to compile the type.
662
func (enc *Encoder) compileEnc(ut *userTypeInfo) *encEngine {
663
        srt := ut.base
664
        engine := new(encEngine)
665
        seen := make(map[reflect.Type]*encOp)
666
        rt := ut.base
667
        if ut.isGobEncoder {
668
                rt = ut.user
669
        }
670
        if !ut.isGobEncoder &&
671
                srt.Kind() == reflect.Struct {
672
                for fieldNum, wireFieldNum := 0, 0; fieldNum < srt.NumField(); fieldNum++ {
673
                        f := srt.Field(fieldNum)
674
                        if !isExported(f.Name) {
675
                                continue
676
                        }
677
                        op, indir := enc.encOpFor(f.Type, seen)
678
                        engine.instr = append(engine.instr, encInstr{*op, wireFieldNum, indir, uintptr(f.Offset)})
679
                        wireFieldNum++
680
                }
681
                if srt.NumField() > 0 && len(engine.instr) == 0 {
682
                        errorf("type %s has no exported fields", rt)
683
                }
684
                engine.instr = append(engine.instr, encInstr{encStructTerminator, 0, 0, 0})
685
        } else {
686
                engine.instr = make([]encInstr, 1)
687
                op, indir := enc.encOpFor(rt, seen)
688
                engine.instr[0] = encInstr{*op, singletonField, indir, 0} // offset is zero
689
        }
690
        return engine
691
}
692
 
693
// getEncEngine returns the engine to compile the type.
694
// typeLock must be held (or we're in initialization and guaranteed single-threaded).
695
func (enc *Encoder) getEncEngine(ut *userTypeInfo) *encEngine {
696
        info, err1 := getTypeInfo(ut)
697
        if err1 != nil {
698
                error_(err1)
699
        }
700
        if info.encoder == nil {
701
                // mark this engine as underway before compiling to handle recursive types.
702
                info.encoder = new(encEngine)
703
                info.encoder = enc.compileEnc(ut)
704
        }
705
        return info.encoder
706
}
707
 
708
// lockAndGetEncEngine is a function that locks and compiles.
709
// This lets us hold the lock only while compiling, not when encoding.
710
func (enc *Encoder) lockAndGetEncEngine(ut *userTypeInfo) *encEngine {
711
        typeLock.Lock()
712
        defer typeLock.Unlock()
713
        return enc.getEncEngine(ut)
714
}
715
 
716
func (enc *Encoder) encode(b *bytes.Buffer, value reflect.Value, ut *userTypeInfo) {
717
        defer catchError(&enc.err)
718
        engine := enc.lockAndGetEncEngine(ut)
719
        indir := ut.indir
720
        if ut.isGobEncoder {
721
                indir = int(ut.encIndir)
722
        }
723
        for i := 0; i < indir; i++ {
724
                value = reflect.Indirect(value)
725
        }
726
        if !ut.isGobEncoder && value.Type().Kind() == reflect.Struct {
727
                enc.encodeStruct(b, engine, unsafeAddr(value))
728
        } else {
729
                enc.encodeSingle(b, engine, unsafeAddr(value))
730
        }
731
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.