| 1 |
747 |
jeremybenn |
// Copyright 2009 The Go Authors. All rights reserved.
|
| 2 |
|
|
// Use of this source code is governed by a BSD-style
|
| 3 |
|
|
// license that can be found in the LICENSE file.
|
| 4 |
|
|
|
| 5 |
|
|
// Package image implements a basic 2-D image library.
|
| 6 |
|
|
//
|
| 7 |
|
|
// The fundamental interface is called Image. An Image contains colors, which
|
| 8 |
|
|
// are described in the image/color package.
|
| 9 |
|
|
//
|
| 10 |
|
|
// Values of the Image interface are created either by calling functions such
|
| 11 |
|
|
// as NewRGBA and NewPaletted, or by calling Decode on an io.Reader containing
|
| 12 |
|
|
// image data in a format such as GIF, JPEG or PNG. Decoding any particular
|
| 13 |
|
|
// image format requires the prior registration of a decoder function.
|
| 14 |
|
|
// Registration is typically automatic as a side effect of initializing that
|
| 15 |
|
|
// format's package so that, to decode a PNG image, it suffices to have
|
| 16 |
|
|
// import _ "image/png"
|
| 17 |
|
|
// in a program's main package. The _ means to import a package purely for its
|
| 18 |
|
|
// initialization side effects.
|
| 19 |
|
|
//
|
| 20 |
|
|
// See "The Go image package" for more details:
|
| 21 |
|
|
// http://blog.golang.org/2011/09/go-image-package.html
|
| 22 |
|
|
package image
|
| 23 |
|
|
|
| 24 |
|
|
import (
|
| 25 |
|
|
"image/color"
|
| 26 |
|
|
)
|
| 27 |
|
|
|
| 28 |
|
|
// Config holds an image's color model and dimensions.
|
| 29 |
|
|
type Config struct {
|
| 30 |
|
|
ColorModel color.Model
|
| 31 |
|
|
Width, Height int
|
| 32 |
|
|
}
|
| 33 |
|
|
|
| 34 |
|
|
// Image is a finite rectangular grid of color.Color values taken from a color
|
| 35 |
|
|
// model.
|
| 36 |
|
|
type Image interface {
|
| 37 |
|
|
// ColorModel returns the Image's color model.
|
| 38 |
|
|
ColorModel() color.Model
|
| 39 |
|
|
// Bounds returns the domain for which At can return non-zero color.
|
| 40 |
|
|
// The bounds do not necessarily contain the point (0, 0).
|
| 41 |
|
|
Bounds() Rectangle
|
| 42 |
|
|
// At returns the color of the pixel at (x, y).
|
| 43 |
|
|
// At(Bounds().Min.X, Bounds().Min.Y) returns the upper-left pixel of the grid.
|
| 44 |
|
|
// At(Bounds().Max.X-1, Bounds().Max.Y-1) returns the lower-right one.
|
| 45 |
|
|
At(x, y int) color.Color
|
| 46 |
|
|
}
|
| 47 |
|
|
|
| 48 |
|
|
// PalettedImage is an image whose colors may come from a limited palette.
|
| 49 |
|
|
// If m is a PalettedImage and m.ColorModel() returns a PalettedColorModel p,
|
| 50 |
|
|
// then m.At(x, y) should be equivalent to p[m.ColorIndexAt(x, y)]. If m's
|
| 51 |
|
|
// color model is not a PalettedColorModel, then ColorIndexAt's behavior is
|
| 52 |
|
|
// undefined.
|
| 53 |
|
|
type PalettedImage interface {
|
| 54 |
|
|
// ColorIndexAt returns the palette index of the pixel at (x, y).
|
| 55 |
|
|
ColorIndexAt(x, y int) uint8
|
| 56 |
|
|
Image
|
| 57 |
|
|
}
|
| 58 |
|
|
|
| 59 |
|
|
// RGBA is an in-memory image whose At method returns color.RGBA values.
|
| 60 |
|
|
type RGBA struct {
|
| 61 |
|
|
// Pix holds the image's pixels, in R, G, B, A order. The pixel at
|
| 62 |
|
|
// (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*4].
|
| 63 |
|
|
Pix []uint8
|
| 64 |
|
|
// Stride is the Pix stride (in bytes) between vertically adjacent pixels.
|
| 65 |
|
|
Stride int
|
| 66 |
|
|
// Rect is the image's bounds.
|
| 67 |
|
|
Rect Rectangle
|
| 68 |
|
|
}
|
| 69 |
|
|
|
| 70 |
|
|
func (p *RGBA) ColorModel() color.Model { return color.RGBAModel }
|
| 71 |
|
|
|
| 72 |
|
|
func (p *RGBA) Bounds() Rectangle { return p.Rect }
|
| 73 |
|
|
|
| 74 |
|
|
func (p *RGBA) At(x, y int) color.Color {
|
| 75 |
|
|
if !(Point{x, y}.In(p.Rect)) {
|
| 76 |
|
|
return color.RGBA{}
|
| 77 |
|
|
}
|
| 78 |
|
|
i := p.PixOffset(x, y)
|
| 79 |
|
|
return color.RGBA{p.Pix[i+0], p.Pix[i+1], p.Pix[i+2], p.Pix[i+3]}
|
| 80 |
|
|
}
|
| 81 |
|
|
|
| 82 |
|
|
// PixOffset returns the index of the first element of Pix that corresponds to
|
| 83 |
|
|
// the pixel at (x, y).
|
| 84 |
|
|
func (p *RGBA) PixOffset(x, y int) int {
|
| 85 |
|
|
return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*4
|
| 86 |
|
|
}
|
| 87 |
|
|
|
| 88 |
|
|
func (p *RGBA) Set(x, y int, c color.Color) {
|
| 89 |
|
|
if !(Point{x, y}.In(p.Rect)) {
|
| 90 |
|
|
return
|
| 91 |
|
|
}
|
| 92 |
|
|
i := p.PixOffset(x, y)
|
| 93 |
|
|
c1 := color.RGBAModel.Convert(c).(color.RGBA)
|
| 94 |
|
|
p.Pix[i+0] = c1.R
|
| 95 |
|
|
p.Pix[i+1] = c1.G
|
| 96 |
|
|
p.Pix[i+2] = c1.B
|
| 97 |
|
|
p.Pix[i+3] = c1.A
|
| 98 |
|
|
}
|
| 99 |
|
|
|
| 100 |
|
|
func (p *RGBA) SetRGBA(x, y int, c color.RGBA) {
|
| 101 |
|
|
if !(Point{x, y}.In(p.Rect)) {
|
| 102 |
|
|
return
|
| 103 |
|
|
}
|
| 104 |
|
|
i := p.PixOffset(x, y)
|
| 105 |
|
|
p.Pix[i+0] = c.R
|
| 106 |
|
|
p.Pix[i+1] = c.G
|
| 107 |
|
|
p.Pix[i+2] = c.B
|
| 108 |
|
|
p.Pix[i+3] = c.A
|
| 109 |
|
|
}
|
| 110 |
|
|
|
| 111 |
|
|
// SubImage returns an image representing the portion of the image p visible
|
| 112 |
|
|
// through r. The returned value shares pixels with the original image.
|
| 113 |
|
|
func (p *RGBA) SubImage(r Rectangle) Image {
|
| 114 |
|
|
r = r.Intersect(p.Rect)
|
| 115 |
|
|
// If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside
|
| 116 |
|
|
// either r1 or r2 if the intersection is empty. Without explicitly checking for
|
| 117 |
|
|
// this, the Pix[i:] expression below can panic.
|
| 118 |
|
|
if r.Empty() {
|
| 119 |
|
|
return &RGBA{}
|
| 120 |
|
|
}
|
| 121 |
|
|
i := p.PixOffset(r.Min.X, r.Min.Y)
|
| 122 |
|
|
return &RGBA{
|
| 123 |
|
|
Pix: p.Pix[i:],
|
| 124 |
|
|
Stride: p.Stride,
|
| 125 |
|
|
Rect: r,
|
| 126 |
|
|
}
|
| 127 |
|
|
}
|
| 128 |
|
|
|
| 129 |
|
|
// Opaque scans the entire image and returns whether or not it is fully opaque.
|
| 130 |
|
|
func (p *RGBA) Opaque() bool {
|
| 131 |
|
|
if p.Rect.Empty() {
|
| 132 |
|
|
return true
|
| 133 |
|
|
}
|
| 134 |
|
|
i0, i1 := 3, p.Rect.Dx()*4
|
| 135 |
|
|
for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ {
|
| 136 |
|
|
for i := i0; i < i1; i += 4 {
|
| 137 |
|
|
if p.Pix[i] != 0xff {
|
| 138 |
|
|
return false
|
| 139 |
|
|
}
|
| 140 |
|
|
}
|
| 141 |
|
|
i0 += p.Stride
|
| 142 |
|
|
i1 += p.Stride
|
| 143 |
|
|
}
|
| 144 |
|
|
return true
|
| 145 |
|
|
}
|
| 146 |
|
|
|
| 147 |
|
|
// NewRGBA returns a new RGBA with the given bounds.
|
| 148 |
|
|
func NewRGBA(r Rectangle) *RGBA {
|
| 149 |
|
|
w, h := r.Dx(), r.Dy()
|
| 150 |
|
|
buf := make([]uint8, 4*w*h)
|
| 151 |
|
|
return &RGBA{buf, 4 * w, r}
|
| 152 |
|
|
}
|
| 153 |
|
|
|
| 154 |
|
|
// RGBA64 is an in-memory image whose At method returns color.RGBA64 values.
|
| 155 |
|
|
type RGBA64 struct {
|
| 156 |
|
|
// Pix holds the image's pixels, in R, G, B, A order and big-endian format. The pixel at
|
| 157 |
|
|
// (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*8].
|
| 158 |
|
|
Pix []uint8
|
| 159 |
|
|
// Stride is the Pix stride (in bytes) between vertically adjacent pixels.
|
| 160 |
|
|
Stride int
|
| 161 |
|
|
// Rect is the image's bounds.
|
| 162 |
|
|
Rect Rectangle
|
| 163 |
|
|
}
|
| 164 |
|
|
|
| 165 |
|
|
func (p *RGBA64) ColorModel() color.Model { return color.RGBA64Model }
|
| 166 |
|
|
|
| 167 |
|
|
func (p *RGBA64) Bounds() Rectangle { return p.Rect }
|
| 168 |
|
|
|
| 169 |
|
|
func (p *RGBA64) At(x, y int) color.Color {
|
| 170 |
|
|
if !(Point{x, y}.In(p.Rect)) {
|
| 171 |
|
|
return color.RGBA64{}
|
| 172 |
|
|
}
|
| 173 |
|
|
i := p.PixOffset(x, y)
|
| 174 |
|
|
return color.RGBA64{
|
| 175 |
|
|
uint16(p.Pix[i+0])<<8 | uint16(p.Pix[i+1]),
|
| 176 |
|
|
uint16(p.Pix[i+2])<<8 | uint16(p.Pix[i+3]),
|
| 177 |
|
|
uint16(p.Pix[i+4])<<8 | uint16(p.Pix[i+5]),
|
| 178 |
|
|
uint16(p.Pix[i+6])<<8 | uint16(p.Pix[i+7]),
|
| 179 |
|
|
}
|
| 180 |
|
|
}
|
| 181 |
|
|
|
| 182 |
|
|
// PixOffset returns the index of the first element of Pix that corresponds to
|
| 183 |
|
|
// the pixel at (x, y).
|
| 184 |
|
|
func (p *RGBA64) PixOffset(x, y int) int {
|
| 185 |
|
|
return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*8
|
| 186 |
|
|
}
|
| 187 |
|
|
|
| 188 |
|
|
func (p *RGBA64) Set(x, y int, c color.Color) {
|
| 189 |
|
|
if !(Point{x, y}.In(p.Rect)) {
|
| 190 |
|
|
return
|
| 191 |
|
|
}
|
| 192 |
|
|
i := p.PixOffset(x, y)
|
| 193 |
|
|
c1 := color.RGBA64Model.Convert(c).(color.RGBA64)
|
| 194 |
|
|
p.Pix[i+0] = uint8(c1.R >> 8)
|
| 195 |
|
|
p.Pix[i+1] = uint8(c1.R)
|
| 196 |
|
|
p.Pix[i+2] = uint8(c1.G >> 8)
|
| 197 |
|
|
p.Pix[i+3] = uint8(c1.G)
|
| 198 |
|
|
p.Pix[i+4] = uint8(c1.B >> 8)
|
| 199 |
|
|
p.Pix[i+5] = uint8(c1.B)
|
| 200 |
|
|
p.Pix[i+6] = uint8(c1.A >> 8)
|
| 201 |
|
|
p.Pix[i+7] = uint8(c1.A)
|
| 202 |
|
|
}
|
| 203 |
|
|
|
| 204 |
|
|
func (p *RGBA64) SetRGBA64(x, y int, c color.RGBA64) {
|
| 205 |
|
|
if !(Point{x, y}.In(p.Rect)) {
|
| 206 |
|
|
return
|
| 207 |
|
|
}
|
| 208 |
|
|
i := p.PixOffset(x, y)
|
| 209 |
|
|
p.Pix[i+0] = uint8(c.R >> 8)
|
| 210 |
|
|
p.Pix[i+1] = uint8(c.R)
|
| 211 |
|
|
p.Pix[i+2] = uint8(c.G >> 8)
|
| 212 |
|
|
p.Pix[i+3] = uint8(c.G)
|
| 213 |
|
|
p.Pix[i+4] = uint8(c.B >> 8)
|
| 214 |
|
|
p.Pix[i+5] = uint8(c.B)
|
| 215 |
|
|
p.Pix[i+6] = uint8(c.A >> 8)
|
| 216 |
|
|
p.Pix[i+7] = uint8(c.A)
|
| 217 |
|
|
}
|
| 218 |
|
|
|
| 219 |
|
|
// SubImage returns an image representing the portion of the image p visible
|
| 220 |
|
|
// through r. The returned value shares pixels with the original image.
|
| 221 |
|
|
func (p *RGBA64) SubImage(r Rectangle) Image {
|
| 222 |
|
|
r = r.Intersect(p.Rect)
|
| 223 |
|
|
// If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside
|
| 224 |
|
|
// either r1 or r2 if the intersection is empty. Without explicitly checking for
|
| 225 |
|
|
// this, the Pix[i:] expression below can panic.
|
| 226 |
|
|
if r.Empty() {
|
| 227 |
|
|
return &RGBA64{}
|
| 228 |
|
|
}
|
| 229 |
|
|
i := p.PixOffset(r.Min.X, r.Min.Y)
|
| 230 |
|
|
return &RGBA64{
|
| 231 |
|
|
Pix: p.Pix[i:],
|
| 232 |
|
|
Stride: p.Stride,
|
| 233 |
|
|
Rect: r,
|
| 234 |
|
|
}
|
| 235 |
|
|
}
|
| 236 |
|
|
|
| 237 |
|
|
// Opaque scans the entire image and returns whether or not it is fully opaque.
|
| 238 |
|
|
func (p *RGBA64) Opaque() bool {
|
| 239 |
|
|
if p.Rect.Empty() {
|
| 240 |
|
|
return true
|
| 241 |
|
|
}
|
| 242 |
|
|
i0, i1 := 6, p.Rect.Dx()*8
|
| 243 |
|
|
for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ {
|
| 244 |
|
|
for i := i0; i < i1; i += 8 {
|
| 245 |
|
|
if p.Pix[i+0] != 0xff || p.Pix[i+1] != 0xff {
|
| 246 |
|
|
return false
|
| 247 |
|
|
}
|
| 248 |
|
|
}
|
| 249 |
|
|
i0 += p.Stride
|
| 250 |
|
|
i1 += p.Stride
|
| 251 |
|
|
}
|
| 252 |
|
|
return true
|
| 253 |
|
|
}
|
| 254 |
|
|
|
| 255 |
|
|
// NewRGBA64 returns a new RGBA64 with the given bounds.
|
| 256 |
|
|
func NewRGBA64(r Rectangle) *RGBA64 {
|
| 257 |
|
|
w, h := r.Dx(), r.Dy()
|
| 258 |
|
|
pix := make([]uint8, 8*w*h)
|
| 259 |
|
|
return &RGBA64{pix, 8 * w, r}
|
| 260 |
|
|
}
|
| 261 |
|
|
|
| 262 |
|
|
// NRGBA is an in-memory image whose At method returns color.NRGBA values.
|
| 263 |
|
|
type NRGBA struct {
|
| 264 |
|
|
// Pix holds the image's pixels, in R, G, B, A order. The pixel at
|
| 265 |
|
|
// (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*4].
|
| 266 |
|
|
Pix []uint8
|
| 267 |
|
|
// Stride is the Pix stride (in bytes) between vertically adjacent pixels.
|
| 268 |
|
|
Stride int
|
| 269 |
|
|
// Rect is the image's bounds.
|
| 270 |
|
|
Rect Rectangle
|
| 271 |
|
|
}
|
| 272 |
|
|
|
| 273 |
|
|
func (p *NRGBA) ColorModel() color.Model { return color.NRGBAModel }
|
| 274 |
|
|
|
| 275 |
|
|
func (p *NRGBA) Bounds() Rectangle { return p.Rect }
|
| 276 |
|
|
|
| 277 |
|
|
func (p *NRGBA) At(x, y int) color.Color {
|
| 278 |
|
|
if !(Point{x, y}.In(p.Rect)) {
|
| 279 |
|
|
return color.NRGBA{}
|
| 280 |
|
|
}
|
| 281 |
|
|
i := p.PixOffset(x, y)
|
| 282 |
|
|
return color.NRGBA{p.Pix[i+0], p.Pix[i+1], p.Pix[i+2], p.Pix[i+3]}
|
| 283 |
|
|
}
|
| 284 |
|
|
|
| 285 |
|
|
// PixOffset returns the index of the first element of Pix that corresponds to
|
| 286 |
|
|
// the pixel at (x, y).
|
| 287 |
|
|
func (p *NRGBA) PixOffset(x, y int) int {
|
| 288 |
|
|
return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*4
|
| 289 |
|
|
}
|
| 290 |
|
|
|
| 291 |
|
|
func (p *NRGBA) Set(x, y int, c color.Color) {
|
| 292 |
|
|
if !(Point{x, y}.In(p.Rect)) {
|
| 293 |
|
|
return
|
| 294 |
|
|
}
|
| 295 |
|
|
i := p.PixOffset(x, y)
|
| 296 |
|
|
c1 := color.NRGBAModel.Convert(c).(color.NRGBA)
|
| 297 |
|
|
p.Pix[i+0] = c1.R
|
| 298 |
|
|
p.Pix[i+1] = c1.G
|
| 299 |
|
|
p.Pix[i+2] = c1.B
|
| 300 |
|
|
p.Pix[i+3] = c1.A
|
| 301 |
|
|
}
|
| 302 |
|
|
|
| 303 |
|
|
func (p *NRGBA) SetNRGBA(x, y int, c color.NRGBA) {
|
| 304 |
|
|
if !(Point{x, y}.In(p.Rect)) {
|
| 305 |
|
|
return
|
| 306 |
|
|
}
|
| 307 |
|
|
i := p.PixOffset(x, y)
|
| 308 |
|
|
p.Pix[i+0] = c.R
|
| 309 |
|
|
p.Pix[i+1] = c.G
|
| 310 |
|
|
p.Pix[i+2] = c.B
|
| 311 |
|
|
p.Pix[i+3] = c.A
|
| 312 |
|
|
}
|
| 313 |
|
|
|
| 314 |
|
|
// SubImage returns an image representing the portion of the image p visible
|
| 315 |
|
|
// through r. The returned value shares pixels with the original image.
|
| 316 |
|
|
func (p *NRGBA) SubImage(r Rectangle) Image {
|
| 317 |
|
|
r = r.Intersect(p.Rect)
|
| 318 |
|
|
// If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside
|
| 319 |
|
|
// either r1 or r2 if the intersection is empty. Without explicitly checking for
|
| 320 |
|
|
// this, the Pix[i:] expression below can panic.
|
| 321 |
|
|
if r.Empty() {
|
| 322 |
|
|
return &NRGBA{}
|
| 323 |
|
|
}
|
| 324 |
|
|
i := p.PixOffset(r.Min.X, r.Min.Y)
|
| 325 |
|
|
return &NRGBA{
|
| 326 |
|
|
Pix: p.Pix[i:],
|
| 327 |
|
|
Stride: p.Stride,
|
| 328 |
|
|
Rect: r,
|
| 329 |
|
|
}
|
| 330 |
|
|
}
|
| 331 |
|
|
|
| 332 |
|
|
// Opaque scans the entire image and returns whether or not it is fully opaque.
|
| 333 |
|
|
func (p *NRGBA) Opaque() bool {
|
| 334 |
|
|
if p.Rect.Empty() {
|
| 335 |
|
|
return true
|
| 336 |
|
|
}
|
| 337 |
|
|
i0, i1 := 3, p.Rect.Dx()*4
|
| 338 |
|
|
for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ {
|
| 339 |
|
|
for i := i0; i < i1; i += 4 {
|
| 340 |
|
|
if p.Pix[i] != 0xff {
|
| 341 |
|
|
return false
|
| 342 |
|
|
}
|
| 343 |
|
|
}
|
| 344 |
|
|
i0 += p.Stride
|
| 345 |
|
|
i1 += p.Stride
|
| 346 |
|
|
}
|
| 347 |
|
|
return true
|
| 348 |
|
|
}
|
| 349 |
|
|
|
| 350 |
|
|
// NewNRGBA returns a new NRGBA with the given bounds.
|
| 351 |
|
|
func NewNRGBA(r Rectangle) *NRGBA {
|
| 352 |
|
|
w, h := r.Dx(), r.Dy()
|
| 353 |
|
|
pix := make([]uint8, 4*w*h)
|
| 354 |
|
|
return &NRGBA{pix, 4 * w, r}
|
| 355 |
|
|
}
|
| 356 |
|
|
|
| 357 |
|
|
// NRGBA64 is an in-memory image whose At method returns color.NRGBA64 values.
|
| 358 |
|
|
type NRGBA64 struct {
|
| 359 |
|
|
// Pix holds the image's pixels, in R, G, B, A order and big-endian format. The pixel at
|
| 360 |
|
|
// (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*8].
|
| 361 |
|
|
Pix []uint8
|
| 362 |
|
|
// Stride is the Pix stride (in bytes) between vertically adjacent pixels.
|
| 363 |
|
|
Stride int
|
| 364 |
|
|
// Rect is the image's bounds.
|
| 365 |
|
|
Rect Rectangle
|
| 366 |
|
|
}
|
| 367 |
|
|
|
| 368 |
|
|
func (p *NRGBA64) ColorModel() color.Model { return color.NRGBA64Model }
|
| 369 |
|
|
|
| 370 |
|
|
func (p *NRGBA64) Bounds() Rectangle { return p.Rect }
|
| 371 |
|
|
|
| 372 |
|
|
func (p *NRGBA64) At(x, y int) color.Color {
|
| 373 |
|
|
if !(Point{x, y}.In(p.Rect)) {
|
| 374 |
|
|
return color.NRGBA64{}
|
| 375 |
|
|
}
|
| 376 |
|
|
i := p.PixOffset(x, y)
|
| 377 |
|
|
return color.NRGBA64{
|
| 378 |
|
|
uint16(p.Pix[i+0])<<8 | uint16(p.Pix[i+1]),
|
| 379 |
|
|
uint16(p.Pix[i+2])<<8 | uint16(p.Pix[i+3]),
|
| 380 |
|
|
uint16(p.Pix[i+4])<<8 | uint16(p.Pix[i+5]),
|
| 381 |
|
|
uint16(p.Pix[i+6])<<8 | uint16(p.Pix[i+7]),
|
| 382 |
|
|
}
|
| 383 |
|
|
}
|
| 384 |
|
|
|
| 385 |
|
|
// PixOffset returns the index of the first element of Pix that corresponds to
|
| 386 |
|
|
// the pixel at (x, y).
|
| 387 |
|
|
func (p *NRGBA64) PixOffset(x, y int) int {
|
| 388 |
|
|
return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*8
|
| 389 |
|
|
}
|
| 390 |
|
|
|
| 391 |
|
|
func (p *NRGBA64) Set(x, y int, c color.Color) {
|
| 392 |
|
|
if !(Point{x, y}.In(p.Rect)) {
|
| 393 |
|
|
return
|
| 394 |
|
|
}
|
| 395 |
|
|
i := p.PixOffset(x, y)
|
| 396 |
|
|
c1 := color.NRGBA64Model.Convert(c).(color.NRGBA64)
|
| 397 |
|
|
p.Pix[i+0] = uint8(c1.R >> 8)
|
| 398 |
|
|
p.Pix[i+1] = uint8(c1.R)
|
| 399 |
|
|
p.Pix[i+2] = uint8(c1.G >> 8)
|
| 400 |
|
|
p.Pix[i+3] = uint8(c1.G)
|
| 401 |
|
|
p.Pix[i+4] = uint8(c1.B >> 8)
|
| 402 |
|
|
p.Pix[i+5] = uint8(c1.B)
|
| 403 |
|
|
p.Pix[i+6] = uint8(c1.A >> 8)
|
| 404 |
|
|
p.Pix[i+7] = uint8(c1.A)
|
| 405 |
|
|
}
|
| 406 |
|
|
|
| 407 |
|
|
func (p *NRGBA64) SetNRGBA64(x, y int, c color.NRGBA64) {
|
| 408 |
|
|
if !(Point{x, y}.In(p.Rect)) {
|
| 409 |
|
|
return
|
| 410 |
|
|
}
|
| 411 |
|
|
i := p.PixOffset(x, y)
|
| 412 |
|
|
p.Pix[i+0] = uint8(c.R >> 8)
|
| 413 |
|
|
p.Pix[i+1] = uint8(c.R)
|
| 414 |
|
|
p.Pix[i+2] = uint8(c.G >> 8)
|
| 415 |
|
|
p.Pix[i+3] = uint8(c.G)
|
| 416 |
|
|
p.Pix[i+4] = uint8(c.B >> 8)
|
| 417 |
|
|
p.Pix[i+5] = uint8(c.B)
|
| 418 |
|
|
p.Pix[i+6] = uint8(c.A >> 8)
|
| 419 |
|
|
p.Pix[i+7] = uint8(c.A)
|
| 420 |
|
|
}
|
| 421 |
|
|
|
| 422 |
|
|
// SubImage returns an image representing the portion of the image p visible
|
| 423 |
|
|
// through r. The returned value shares pixels with the original image.
|
| 424 |
|
|
func (p *NRGBA64) SubImage(r Rectangle) Image {
|
| 425 |
|
|
r = r.Intersect(p.Rect)
|
| 426 |
|
|
// If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside
|
| 427 |
|
|
// either r1 or r2 if the intersection is empty. Without explicitly checking for
|
| 428 |
|
|
// this, the Pix[i:] expression below can panic.
|
| 429 |
|
|
if r.Empty() {
|
| 430 |
|
|
return &NRGBA64{}
|
| 431 |
|
|
}
|
| 432 |
|
|
i := p.PixOffset(r.Min.X, r.Min.Y)
|
| 433 |
|
|
return &NRGBA64{
|
| 434 |
|
|
Pix: p.Pix[i:],
|
| 435 |
|
|
Stride: p.Stride,
|
| 436 |
|
|
Rect: r,
|
| 437 |
|
|
}
|
| 438 |
|
|
}
|
| 439 |
|
|
|
| 440 |
|
|
// Opaque scans the entire image and returns whether or not it is fully opaque.
|
| 441 |
|
|
func (p *NRGBA64) Opaque() bool {
|
| 442 |
|
|
if p.Rect.Empty() {
|
| 443 |
|
|
return true
|
| 444 |
|
|
}
|
| 445 |
|
|
i0, i1 := 6, p.Rect.Dx()*8
|
| 446 |
|
|
for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ {
|
| 447 |
|
|
for i := i0; i < i1; i += 8 {
|
| 448 |
|
|
if p.Pix[i+0] != 0xff || p.Pix[i+1] != 0xff {
|
| 449 |
|
|
return false
|
| 450 |
|
|
}
|
| 451 |
|
|
}
|
| 452 |
|
|
i0 += p.Stride
|
| 453 |
|
|
i1 += p.Stride
|
| 454 |
|
|
}
|
| 455 |
|
|
return true
|
| 456 |
|
|
}
|
| 457 |
|
|
|
| 458 |
|
|
// NewNRGBA64 returns a new NRGBA64 with the given bounds.
|
| 459 |
|
|
func NewNRGBA64(r Rectangle) *NRGBA64 {
|
| 460 |
|
|
w, h := r.Dx(), r.Dy()
|
| 461 |
|
|
pix := make([]uint8, 8*w*h)
|
| 462 |
|
|
return &NRGBA64{pix, 8 * w, r}
|
| 463 |
|
|
}
|
| 464 |
|
|
|
| 465 |
|
|
// Alpha is an in-memory image whose At method returns color.Alpha values.
|
| 466 |
|
|
type Alpha struct {
|
| 467 |
|
|
// Pix holds the image's pixels, as alpha values. The pixel at
|
| 468 |
|
|
// (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*1].
|
| 469 |
|
|
Pix []uint8
|
| 470 |
|
|
// Stride is the Pix stride (in bytes) between vertically adjacent pixels.
|
| 471 |
|
|
Stride int
|
| 472 |
|
|
// Rect is the image's bounds.
|
| 473 |
|
|
Rect Rectangle
|
| 474 |
|
|
}
|
| 475 |
|
|
|
| 476 |
|
|
func (p *Alpha) ColorModel() color.Model { return color.AlphaModel }
|
| 477 |
|
|
|
| 478 |
|
|
func (p *Alpha) Bounds() Rectangle { return p.Rect }
|
| 479 |
|
|
|
| 480 |
|
|
func (p *Alpha) At(x, y int) color.Color {
|
| 481 |
|
|
if !(Point{x, y}.In(p.Rect)) {
|
| 482 |
|
|
return color.Alpha{}
|
| 483 |
|
|
}
|
| 484 |
|
|
i := p.PixOffset(x, y)
|
| 485 |
|
|
return color.Alpha{p.Pix[i]}
|
| 486 |
|
|
}
|
| 487 |
|
|
|
| 488 |
|
|
// PixOffset returns the index of the first element of Pix that corresponds to
|
| 489 |
|
|
// the pixel at (x, y).
|
| 490 |
|
|
func (p *Alpha) PixOffset(x, y int) int {
|
| 491 |
|
|
return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*1
|
| 492 |
|
|
}
|
| 493 |
|
|
|
| 494 |
|
|
func (p *Alpha) Set(x, y int, c color.Color) {
|
| 495 |
|
|
if !(Point{x, y}.In(p.Rect)) {
|
| 496 |
|
|
return
|
| 497 |
|
|
}
|
| 498 |
|
|
i := p.PixOffset(x, y)
|
| 499 |
|
|
p.Pix[i] = color.AlphaModel.Convert(c).(color.Alpha).A
|
| 500 |
|
|
}
|
| 501 |
|
|
|
| 502 |
|
|
func (p *Alpha) SetAlpha(x, y int, c color.Alpha) {
|
| 503 |
|
|
if !(Point{x, y}.In(p.Rect)) {
|
| 504 |
|
|
return
|
| 505 |
|
|
}
|
| 506 |
|
|
i := p.PixOffset(x, y)
|
| 507 |
|
|
p.Pix[i] = c.A
|
| 508 |
|
|
}
|
| 509 |
|
|
|
| 510 |
|
|
// SubImage returns an image representing the portion of the image p visible
|
| 511 |
|
|
// through r. The returned value shares pixels with the original image.
|
| 512 |
|
|
func (p *Alpha) SubImage(r Rectangle) Image {
|
| 513 |
|
|
r = r.Intersect(p.Rect)
|
| 514 |
|
|
// If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside
|
| 515 |
|
|
// either r1 or r2 if the intersection is empty. Without explicitly checking for
|
| 516 |
|
|
// this, the Pix[i:] expression below can panic.
|
| 517 |
|
|
if r.Empty() {
|
| 518 |
|
|
return &Alpha{}
|
| 519 |
|
|
}
|
| 520 |
|
|
i := p.PixOffset(r.Min.X, r.Min.Y)
|
| 521 |
|
|
return &Alpha{
|
| 522 |
|
|
Pix: p.Pix[i:],
|
| 523 |
|
|
Stride: p.Stride,
|
| 524 |
|
|
Rect: r,
|
| 525 |
|
|
}
|
| 526 |
|
|
}
|
| 527 |
|
|
|
| 528 |
|
|
// Opaque scans the entire image and returns whether or not it is fully opaque.
|
| 529 |
|
|
func (p *Alpha) Opaque() bool {
|
| 530 |
|
|
if p.Rect.Empty() {
|
| 531 |
|
|
return true
|
| 532 |
|
|
}
|
| 533 |
|
|
i0, i1 := 0, p.Rect.Dx()
|
| 534 |
|
|
for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ {
|
| 535 |
|
|
for i := i0; i < i1; i++ {
|
| 536 |
|
|
if p.Pix[i] != 0xff {
|
| 537 |
|
|
return false
|
| 538 |
|
|
}
|
| 539 |
|
|
}
|
| 540 |
|
|
i0 += p.Stride
|
| 541 |
|
|
i1 += p.Stride
|
| 542 |
|
|
}
|
| 543 |
|
|
return true
|
| 544 |
|
|
}
|
| 545 |
|
|
|
| 546 |
|
|
// NewAlpha returns a new Alpha with the given bounds.
|
| 547 |
|
|
func NewAlpha(r Rectangle) *Alpha {
|
| 548 |
|
|
w, h := r.Dx(), r.Dy()
|
| 549 |
|
|
pix := make([]uint8, 1*w*h)
|
| 550 |
|
|
return &Alpha{pix, 1 * w, r}
|
| 551 |
|
|
}
|
| 552 |
|
|
|
| 553 |
|
|
// Alpha16 is an in-memory image whose At method returns color.Alpha64 values.
|
| 554 |
|
|
type Alpha16 struct {
|
| 555 |
|
|
// Pix holds the image's pixels, as alpha values in big-endian format. The pixel at
|
| 556 |
|
|
// (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*2].
|
| 557 |
|
|
Pix []uint8
|
| 558 |
|
|
// Stride is the Pix stride (in bytes) between vertically adjacent pixels.
|
| 559 |
|
|
Stride int
|
| 560 |
|
|
// Rect is the image's bounds.
|
| 561 |
|
|
Rect Rectangle
|
| 562 |
|
|
}
|
| 563 |
|
|
|
| 564 |
|
|
func (p *Alpha16) ColorModel() color.Model { return color.Alpha16Model }
|
| 565 |
|
|
|
| 566 |
|
|
func (p *Alpha16) Bounds() Rectangle { return p.Rect }
|
| 567 |
|
|
|
| 568 |
|
|
func (p *Alpha16) At(x, y int) color.Color {
|
| 569 |
|
|
if !(Point{x, y}.In(p.Rect)) {
|
| 570 |
|
|
return color.Alpha16{}
|
| 571 |
|
|
}
|
| 572 |
|
|
i := p.PixOffset(x, y)
|
| 573 |
|
|
return color.Alpha16{uint16(p.Pix[i+0])<<8 | uint16(p.Pix[i+1])}
|
| 574 |
|
|
}
|
| 575 |
|
|
|
| 576 |
|
|
// PixOffset returns the index of the first element of Pix that corresponds to
|
| 577 |
|
|
// the pixel at (x, y).
|
| 578 |
|
|
func (p *Alpha16) PixOffset(x, y int) int {
|
| 579 |
|
|
return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*2
|
| 580 |
|
|
}
|
| 581 |
|
|
|
| 582 |
|
|
func (p *Alpha16) Set(x, y int, c color.Color) {
|
| 583 |
|
|
if !(Point{x, y}.In(p.Rect)) {
|
| 584 |
|
|
return
|
| 585 |
|
|
}
|
| 586 |
|
|
i := p.PixOffset(x, y)
|
| 587 |
|
|
c1 := color.Alpha16Model.Convert(c).(color.Alpha16)
|
| 588 |
|
|
p.Pix[i+0] = uint8(c1.A >> 8)
|
| 589 |
|
|
p.Pix[i+1] = uint8(c1.A)
|
| 590 |
|
|
}
|
| 591 |
|
|
|
| 592 |
|
|
func (p *Alpha16) SetAlpha16(x, y int, c color.Alpha16) {
|
| 593 |
|
|
if !(Point{x, y}.In(p.Rect)) {
|
| 594 |
|
|
return
|
| 595 |
|
|
}
|
| 596 |
|
|
i := p.PixOffset(x, y)
|
| 597 |
|
|
p.Pix[i+0] = uint8(c.A >> 8)
|
| 598 |
|
|
p.Pix[i+1] = uint8(c.A)
|
| 599 |
|
|
}
|
| 600 |
|
|
|
| 601 |
|
|
// SubImage returns an image representing the portion of the image p visible
|
| 602 |
|
|
// through r. The returned value shares pixels with the original image.
|
| 603 |
|
|
func (p *Alpha16) SubImage(r Rectangle) Image {
|
| 604 |
|
|
r = r.Intersect(p.Rect)
|
| 605 |
|
|
// If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside
|
| 606 |
|
|
// either r1 or r2 if the intersection is empty. Without explicitly checking for
|
| 607 |
|
|
// this, the Pix[i:] expression below can panic.
|
| 608 |
|
|
if r.Empty() {
|
| 609 |
|
|
return &Alpha16{}
|
| 610 |
|
|
}
|
| 611 |
|
|
i := p.PixOffset(r.Min.X, r.Min.Y)
|
| 612 |
|
|
return &Alpha16{
|
| 613 |
|
|
Pix: p.Pix[i:],
|
| 614 |
|
|
Stride: p.Stride,
|
| 615 |
|
|
Rect: r,
|
| 616 |
|
|
}
|
| 617 |
|
|
}
|
| 618 |
|
|
|
| 619 |
|
|
// Opaque scans the entire image and returns whether or not it is fully opaque.
|
| 620 |
|
|
func (p *Alpha16) Opaque() bool {
|
| 621 |
|
|
if p.Rect.Empty() {
|
| 622 |
|
|
return true
|
| 623 |
|
|
}
|
| 624 |
|
|
i0, i1 := 0, p.Rect.Dx()*2
|
| 625 |
|
|
for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ {
|
| 626 |
|
|
for i := i0; i < i1; i += 2 {
|
| 627 |
|
|
if p.Pix[i+0] != 0xff || p.Pix[i+1] != 0xff {
|
| 628 |
|
|
return false
|
| 629 |
|
|
}
|
| 630 |
|
|
}
|
| 631 |
|
|
i0 += p.Stride
|
| 632 |
|
|
i1 += p.Stride
|
| 633 |
|
|
}
|
| 634 |
|
|
return true
|
| 635 |
|
|
}
|
| 636 |
|
|
|
| 637 |
|
|
// NewAlpha16 returns a new Alpha16 with the given bounds.
|
| 638 |
|
|
func NewAlpha16(r Rectangle) *Alpha16 {
|
| 639 |
|
|
w, h := r.Dx(), r.Dy()
|
| 640 |
|
|
pix := make([]uint8, 2*w*h)
|
| 641 |
|
|
return &Alpha16{pix, 2 * w, r}
|
| 642 |
|
|
}
|
| 643 |
|
|
|
| 644 |
|
|
// Gray is an in-memory image whose At method returns color.Gray values.
|
| 645 |
|
|
type Gray struct {
|
| 646 |
|
|
// Pix holds the image's pixels, as gray values. The pixel at
|
| 647 |
|
|
// (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*1].
|
| 648 |
|
|
Pix []uint8
|
| 649 |
|
|
// Stride is the Pix stride (in bytes) between vertically adjacent pixels.
|
| 650 |
|
|
Stride int
|
| 651 |
|
|
// Rect is the image's bounds.
|
| 652 |
|
|
Rect Rectangle
|
| 653 |
|
|
}
|
| 654 |
|
|
|
| 655 |
|
|
func (p *Gray) ColorModel() color.Model { return color.GrayModel }
|
| 656 |
|
|
|
| 657 |
|
|
func (p *Gray) Bounds() Rectangle { return p.Rect }
|
| 658 |
|
|
|
| 659 |
|
|
func (p *Gray) At(x, y int) color.Color {
|
| 660 |
|
|
if !(Point{x, y}.In(p.Rect)) {
|
| 661 |
|
|
return color.Gray{}
|
| 662 |
|
|
}
|
| 663 |
|
|
i := p.PixOffset(x, y)
|
| 664 |
|
|
return color.Gray{p.Pix[i]}
|
| 665 |
|
|
}
|
| 666 |
|
|
|
| 667 |
|
|
// PixOffset returns the index of the first element of Pix that corresponds to
|
| 668 |
|
|
// the pixel at (x, y).
|
| 669 |
|
|
func (p *Gray) PixOffset(x, y int) int {
|
| 670 |
|
|
return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*1
|
| 671 |
|
|
}
|
| 672 |
|
|
|
| 673 |
|
|
func (p *Gray) Set(x, y int, c color.Color) {
|
| 674 |
|
|
if !(Point{x, y}.In(p.Rect)) {
|
| 675 |
|
|
return
|
| 676 |
|
|
}
|
| 677 |
|
|
i := p.PixOffset(x, y)
|
| 678 |
|
|
p.Pix[i] = color.GrayModel.Convert(c).(color.Gray).Y
|
| 679 |
|
|
}
|
| 680 |
|
|
|
| 681 |
|
|
func (p *Gray) SetGray(x, y int, c color.Gray) {
|
| 682 |
|
|
if !(Point{x, y}.In(p.Rect)) {
|
| 683 |
|
|
return
|
| 684 |
|
|
}
|
| 685 |
|
|
i := p.PixOffset(x, y)
|
| 686 |
|
|
p.Pix[i] = c.Y
|
| 687 |
|
|
}
|
| 688 |
|
|
|
| 689 |
|
|
// SubImage returns an image representing the portion of the image p visible
|
| 690 |
|
|
// through r. The returned value shares pixels with the original image.
|
| 691 |
|
|
func (p *Gray) SubImage(r Rectangle) Image {
|
| 692 |
|
|
r = r.Intersect(p.Rect)
|
| 693 |
|
|
// If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside
|
| 694 |
|
|
// either r1 or r2 if the intersection is empty. Without explicitly checking for
|
| 695 |
|
|
// this, the Pix[i:] expression below can panic.
|
| 696 |
|
|
if r.Empty() {
|
| 697 |
|
|
return &Gray{}
|
| 698 |
|
|
}
|
| 699 |
|
|
i := p.PixOffset(r.Min.X, r.Min.Y)
|
| 700 |
|
|
return &Gray{
|
| 701 |
|
|
Pix: p.Pix[i:],
|
| 702 |
|
|
Stride: p.Stride,
|
| 703 |
|
|
Rect: r,
|
| 704 |
|
|
}
|
| 705 |
|
|
}
|
| 706 |
|
|
|
| 707 |
|
|
// Opaque scans the entire image and returns whether or not it is fully opaque.
|
| 708 |
|
|
func (p *Gray) Opaque() bool {
|
| 709 |
|
|
return true
|
| 710 |
|
|
}
|
| 711 |
|
|
|
| 712 |
|
|
// NewGray returns a new Gray with the given bounds.
|
| 713 |
|
|
func NewGray(r Rectangle) *Gray {
|
| 714 |
|
|
w, h := r.Dx(), r.Dy()
|
| 715 |
|
|
pix := make([]uint8, 1*w*h)
|
| 716 |
|
|
return &Gray{pix, 1 * w, r}
|
| 717 |
|
|
}
|
| 718 |
|
|
|
| 719 |
|
|
// Gray16 is an in-memory image whose At method returns color.Gray16 values.
|
| 720 |
|
|
type Gray16 struct {
|
| 721 |
|
|
// Pix holds the image's pixels, as gray values in big-endian format. The pixel at
|
| 722 |
|
|
// (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*2].
|
| 723 |
|
|
Pix []uint8
|
| 724 |
|
|
// Stride is the Pix stride (in bytes) between vertically adjacent pixels.
|
| 725 |
|
|
Stride int
|
| 726 |
|
|
// Rect is the image's bounds.
|
| 727 |
|
|
Rect Rectangle
|
| 728 |
|
|
}
|
| 729 |
|
|
|
| 730 |
|
|
func (p *Gray16) ColorModel() color.Model { return color.Gray16Model }
|
| 731 |
|
|
|
| 732 |
|
|
func (p *Gray16) Bounds() Rectangle { return p.Rect }
|
| 733 |
|
|
|
| 734 |
|
|
func (p *Gray16) At(x, y int) color.Color {
|
| 735 |
|
|
if !(Point{x, y}.In(p.Rect)) {
|
| 736 |
|
|
return color.Gray16{}
|
| 737 |
|
|
}
|
| 738 |
|
|
i := p.PixOffset(x, y)
|
| 739 |
|
|
return color.Gray16{uint16(p.Pix[i+0])<<8 | uint16(p.Pix[i+1])}
|
| 740 |
|
|
}
|
| 741 |
|
|
|
| 742 |
|
|
// PixOffset returns the index of the first element of Pix that corresponds to
|
| 743 |
|
|
// the pixel at (x, y).
|
| 744 |
|
|
func (p *Gray16) PixOffset(x, y int) int {
|
| 745 |
|
|
return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*2
|
| 746 |
|
|
}
|
| 747 |
|
|
|
| 748 |
|
|
func (p *Gray16) Set(x, y int, c color.Color) {
|
| 749 |
|
|
if !(Point{x, y}.In(p.Rect)) {
|
| 750 |
|
|
return
|
| 751 |
|
|
}
|
| 752 |
|
|
i := p.PixOffset(x, y)
|
| 753 |
|
|
c1 := color.Gray16Model.Convert(c).(color.Gray16)
|
| 754 |
|
|
p.Pix[i+0] = uint8(c1.Y >> 8)
|
| 755 |
|
|
p.Pix[i+1] = uint8(c1.Y)
|
| 756 |
|
|
}
|
| 757 |
|
|
|
| 758 |
|
|
func (p *Gray16) SetGray16(x, y int, c color.Gray16) {
|
| 759 |
|
|
if !(Point{x, y}.In(p.Rect)) {
|
| 760 |
|
|
return
|
| 761 |
|
|
}
|
| 762 |
|
|
i := p.PixOffset(x, y)
|
| 763 |
|
|
p.Pix[i+0] = uint8(c.Y >> 8)
|
| 764 |
|
|
p.Pix[i+1] = uint8(c.Y)
|
| 765 |
|
|
}
|
| 766 |
|
|
|
| 767 |
|
|
// SubImage returns an image representing the portion of the image p visible
|
| 768 |
|
|
// through r. The returned value shares pixels with the original image.
|
| 769 |
|
|
func (p *Gray16) SubImage(r Rectangle) Image {
|
| 770 |
|
|
r = r.Intersect(p.Rect)
|
| 771 |
|
|
// If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside
|
| 772 |
|
|
// either r1 or r2 if the intersection is empty. Without explicitly checking for
|
| 773 |
|
|
// this, the Pix[i:] expression below can panic.
|
| 774 |
|
|
if r.Empty() {
|
| 775 |
|
|
return &Gray16{}
|
| 776 |
|
|
}
|
| 777 |
|
|
i := p.PixOffset(r.Min.X, r.Min.Y)
|
| 778 |
|
|
return &Gray16{
|
| 779 |
|
|
Pix: p.Pix[i:],
|
| 780 |
|
|
Stride: p.Stride,
|
| 781 |
|
|
Rect: r,
|
| 782 |
|
|
}
|
| 783 |
|
|
}
|
| 784 |
|
|
|
| 785 |
|
|
// Opaque scans the entire image and returns whether or not it is fully opaque.
|
| 786 |
|
|
func (p *Gray16) Opaque() bool {
|
| 787 |
|
|
return true
|
| 788 |
|
|
}
|
| 789 |
|
|
|
| 790 |
|
|
// NewGray16 returns a new Gray16 with the given bounds.
|
| 791 |
|
|
func NewGray16(r Rectangle) *Gray16 {
|
| 792 |
|
|
w, h := r.Dx(), r.Dy()
|
| 793 |
|
|
pix := make([]uint8, 2*w*h)
|
| 794 |
|
|
return &Gray16{pix, 2 * w, r}
|
| 795 |
|
|
}
|
| 796 |
|
|
|
| 797 |
|
|
// Paletted is an in-memory image of uint8 indices into a given palette.
|
| 798 |
|
|
type Paletted struct {
|
| 799 |
|
|
// Pix holds the image's pixels, as palette indices. The pixel at
|
| 800 |
|
|
// (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*1].
|
| 801 |
|
|
Pix []uint8
|
| 802 |
|
|
// Stride is the Pix stride (in bytes) between vertically adjacent pixels.
|
| 803 |
|
|
Stride int
|
| 804 |
|
|
// Rect is the image's bounds.
|
| 805 |
|
|
Rect Rectangle
|
| 806 |
|
|
// Palette is the image's palette.
|
| 807 |
|
|
Palette color.Palette
|
| 808 |
|
|
}
|
| 809 |
|
|
|
| 810 |
|
|
func (p *Paletted) ColorModel() color.Model { return p.Palette }
|
| 811 |
|
|
|
| 812 |
|
|
func (p *Paletted) Bounds() Rectangle { return p.Rect }
|
| 813 |
|
|
|
| 814 |
|
|
func (p *Paletted) At(x, y int) color.Color {
|
| 815 |
|
|
if len(p.Palette) == 0 {
|
| 816 |
|
|
return nil
|
| 817 |
|
|
}
|
| 818 |
|
|
if !(Point{x, y}.In(p.Rect)) {
|
| 819 |
|
|
return p.Palette[0]
|
| 820 |
|
|
}
|
| 821 |
|
|
i := p.PixOffset(x, y)
|
| 822 |
|
|
return p.Palette[p.Pix[i]]
|
| 823 |
|
|
}
|
| 824 |
|
|
|
| 825 |
|
|
// PixOffset returns the index of the first element of Pix that corresponds to
|
| 826 |
|
|
// the pixel at (x, y).
|
| 827 |
|
|
func (p *Paletted) PixOffset(x, y int) int {
|
| 828 |
|
|
return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*1
|
| 829 |
|
|
}
|
| 830 |
|
|
|
| 831 |
|
|
func (p *Paletted) Set(x, y int, c color.Color) {
|
| 832 |
|
|
if !(Point{x, y}.In(p.Rect)) {
|
| 833 |
|
|
return
|
| 834 |
|
|
}
|
| 835 |
|
|
i := p.PixOffset(x, y)
|
| 836 |
|
|
p.Pix[i] = uint8(p.Palette.Index(c))
|
| 837 |
|
|
}
|
| 838 |
|
|
|
| 839 |
|
|
func (p *Paletted) ColorIndexAt(x, y int) uint8 {
|
| 840 |
|
|
if !(Point{x, y}.In(p.Rect)) {
|
| 841 |
|
|
return 0
|
| 842 |
|
|
}
|
| 843 |
|
|
i := p.PixOffset(x, y)
|
| 844 |
|
|
return p.Pix[i]
|
| 845 |
|
|
}
|
| 846 |
|
|
|
| 847 |
|
|
func (p *Paletted) SetColorIndex(x, y int, index uint8) {
|
| 848 |
|
|
if !(Point{x, y}.In(p.Rect)) {
|
| 849 |
|
|
return
|
| 850 |
|
|
}
|
| 851 |
|
|
i := p.PixOffset(x, y)
|
| 852 |
|
|
p.Pix[i] = index
|
| 853 |
|
|
}
|
| 854 |
|
|
|
| 855 |
|
|
// SubImage returns an image representing the portion of the image p visible
|
| 856 |
|
|
// through r. The returned value shares pixels with the original image.
|
| 857 |
|
|
func (p *Paletted) SubImage(r Rectangle) Image {
|
| 858 |
|
|
r = r.Intersect(p.Rect)
|
| 859 |
|
|
// If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside
|
| 860 |
|
|
// either r1 or r2 if the intersection is empty. Without explicitly checking for
|
| 861 |
|
|
// this, the Pix[i:] expression below can panic.
|
| 862 |
|
|
if r.Empty() {
|
| 863 |
|
|
return &Paletted{
|
| 864 |
|
|
Palette: p.Palette,
|
| 865 |
|
|
}
|
| 866 |
|
|
}
|
| 867 |
|
|
i := p.PixOffset(r.Min.X, r.Min.Y)
|
| 868 |
|
|
return &Paletted{
|
| 869 |
|
|
Pix: p.Pix[i:],
|
| 870 |
|
|
Stride: p.Stride,
|
| 871 |
|
|
Rect: p.Rect.Intersect(r),
|
| 872 |
|
|
Palette: p.Palette,
|
| 873 |
|
|
}
|
| 874 |
|
|
}
|
| 875 |
|
|
|
| 876 |
|
|
// Opaque scans the entire image and returns whether or not it is fully opaque.
|
| 877 |
|
|
func (p *Paletted) Opaque() bool {
|
| 878 |
|
|
var present [256]bool
|
| 879 |
|
|
i0, i1 := 0, p.Rect.Dx()
|
| 880 |
|
|
for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ {
|
| 881 |
|
|
for _, c := range p.Pix[i0:i1] {
|
| 882 |
|
|
present[c] = true
|
| 883 |
|
|
}
|
| 884 |
|
|
i0 += p.Stride
|
| 885 |
|
|
i1 += p.Stride
|
| 886 |
|
|
}
|
| 887 |
|
|
for i, c := range p.Palette {
|
| 888 |
|
|
if !present[i] {
|
| 889 |
|
|
continue
|
| 890 |
|
|
}
|
| 891 |
|
|
_, _, _, a := c.RGBA()
|
| 892 |
|
|
if a != 0xffff {
|
| 893 |
|
|
return false
|
| 894 |
|
|
}
|
| 895 |
|
|
}
|
| 896 |
|
|
return true
|
| 897 |
|
|
}
|
| 898 |
|
|
|
| 899 |
|
|
// NewPaletted returns a new Paletted with the given width, height and palette.
|
| 900 |
|
|
func NewPaletted(r Rectangle, p color.Palette) *Paletted {
|
| 901 |
|
|
w, h := r.Dx(), r.Dy()
|
| 902 |
|
|
pix := make([]uint8, 1*w*h)
|
| 903 |
|
|
return &Paletted{pix, 1 * w, r, p}
|
| 904 |
|
|
}
|