1 |
747 |
jeremybenn |
// Copyright 2009 The Go Authors. All rights reserved.
|
2 |
|
|
// Use of this source code is governed by a BSD-style
|
3 |
|
|
// license that can be found in the LICENSE file.
|
4 |
|
|
|
5 |
|
|
// Package image implements a basic 2-D image library.
|
6 |
|
|
//
|
7 |
|
|
// The fundamental interface is called Image. An Image contains colors, which
|
8 |
|
|
// are described in the image/color package.
|
9 |
|
|
//
|
10 |
|
|
// Values of the Image interface are created either by calling functions such
|
11 |
|
|
// as NewRGBA and NewPaletted, or by calling Decode on an io.Reader containing
|
12 |
|
|
// image data in a format such as GIF, JPEG or PNG. Decoding any particular
|
13 |
|
|
// image format requires the prior registration of a decoder function.
|
14 |
|
|
// Registration is typically automatic as a side effect of initializing that
|
15 |
|
|
// format's package so that, to decode a PNG image, it suffices to have
|
16 |
|
|
// import _ "image/png"
|
17 |
|
|
// in a program's main package. The _ means to import a package purely for its
|
18 |
|
|
// initialization side effects.
|
19 |
|
|
//
|
20 |
|
|
// See "The Go image package" for more details:
|
21 |
|
|
// http://blog.golang.org/2011/09/go-image-package.html
|
22 |
|
|
package image
|
23 |
|
|
|
24 |
|
|
import (
|
25 |
|
|
"image/color"
|
26 |
|
|
)
|
27 |
|
|
|
28 |
|
|
// Config holds an image's color model and dimensions.
|
29 |
|
|
type Config struct {
|
30 |
|
|
ColorModel color.Model
|
31 |
|
|
Width, Height int
|
32 |
|
|
}
|
33 |
|
|
|
34 |
|
|
// Image is a finite rectangular grid of color.Color values taken from a color
|
35 |
|
|
// model.
|
36 |
|
|
type Image interface {
|
37 |
|
|
// ColorModel returns the Image's color model.
|
38 |
|
|
ColorModel() color.Model
|
39 |
|
|
// Bounds returns the domain for which At can return non-zero color.
|
40 |
|
|
// The bounds do not necessarily contain the point (0, 0).
|
41 |
|
|
Bounds() Rectangle
|
42 |
|
|
// At returns the color of the pixel at (x, y).
|
43 |
|
|
// At(Bounds().Min.X, Bounds().Min.Y) returns the upper-left pixel of the grid.
|
44 |
|
|
// At(Bounds().Max.X-1, Bounds().Max.Y-1) returns the lower-right one.
|
45 |
|
|
At(x, y int) color.Color
|
46 |
|
|
}
|
47 |
|
|
|
48 |
|
|
// PalettedImage is an image whose colors may come from a limited palette.
|
49 |
|
|
// If m is a PalettedImage and m.ColorModel() returns a PalettedColorModel p,
|
50 |
|
|
// then m.At(x, y) should be equivalent to p[m.ColorIndexAt(x, y)]. If m's
|
51 |
|
|
// color model is not a PalettedColorModel, then ColorIndexAt's behavior is
|
52 |
|
|
// undefined.
|
53 |
|
|
type PalettedImage interface {
|
54 |
|
|
// ColorIndexAt returns the palette index of the pixel at (x, y).
|
55 |
|
|
ColorIndexAt(x, y int) uint8
|
56 |
|
|
Image
|
57 |
|
|
}
|
58 |
|
|
|
59 |
|
|
// RGBA is an in-memory image whose At method returns color.RGBA values.
|
60 |
|
|
type RGBA struct {
|
61 |
|
|
// Pix holds the image's pixels, in R, G, B, A order. The pixel at
|
62 |
|
|
// (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*4].
|
63 |
|
|
Pix []uint8
|
64 |
|
|
// Stride is the Pix stride (in bytes) between vertically adjacent pixels.
|
65 |
|
|
Stride int
|
66 |
|
|
// Rect is the image's bounds.
|
67 |
|
|
Rect Rectangle
|
68 |
|
|
}
|
69 |
|
|
|
70 |
|
|
func (p *RGBA) ColorModel() color.Model { return color.RGBAModel }
|
71 |
|
|
|
72 |
|
|
func (p *RGBA) Bounds() Rectangle { return p.Rect }
|
73 |
|
|
|
74 |
|
|
func (p *RGBA) At(x, y int) color.Color {
|
75 |
|
|
if !(Point{x, y}.In(p.Rect)) {
|
76 |
|
|
return color.RGBA{}
|
77 |
|
|
}
|
78 |
|
|
i := p.PixOffset(x, y)
|
79 |
|
|
return color.RGBA{p.Pix[i+0], p.Pix[i+1], p.Pix[i+2], p.Pix[i+3]}
|
80 |
|
|
}
|
81 |
|
|
|
82 |
|
|
// PixOffset returns the index of the first element of Pix that corresponds to
|
83 |
|
|
// the pixel at (x, y).
|
84 |
|
|
func (p *RGBA) PixOffset(x, y int) int {
|
85 |
|
|
return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*4
|
86 |
|
|
}
|
87 |
|
|
|
88 |
|
|
func (p *RGBA) Set(x, y int, c color.Color) {
|
89 |
|
|
if !(Point{x, y}.In(p.Rect)) {
|
90 |
|
|
return
|
91 |
|
|
}
|
92 |
|
|
i := p.PixOffset(x, y)
|
93 |
|
|
c1 := color.RGBAModel.Convert(c).(color.RGBA)
|
94 |
|
|
p.Pix[i+0] = c1.R
|
95 |
|
|
p.Pix[i+1] = c1.G
|
96 |
|
|
p.Pix[i+2] = c1.B
|
97 |
|
|
p.Pix[i+3] = c1.A
|
98 |
|
|
}
|
99 |
|
|
|
100 |
|
|
func (p *RGBA) SetRGBA(x, y int, c color.RGBA) {
|
101 |
|
|
if !(Point{x, y}.In(p.Rect)) {
|
102 |
|
|
return
|
103 |
|
|
}
|
104 |
|
|
i := p.PixOffset(x, y)
|
105 |
|
|
p.Pix[i+0] = c.R
|
106 |
|
|
p.Pix[i+1] = c.G
|
107 |
|
|
p.Pix[i+2] = c.B
|
108 |
|
|
p.Pix[i+3] = c.A
|
109 |
|
|
}
|
110 |
|
|
|
111 |
|
|
// SubImage returns an image representing the portion of the image p visible
|
112 |
|
|
// through r. The returned value shares pixels with the original image.
|
113 |
|
|
func (p *RGBA) SubImage(r Rectangle) Image {
|
114 |
|
|
r = r.Intersect(p.Rect)
|
115 |
|
|
// If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside
|
116 |
|
|
// either r1 or r2 if the intersection is empty. Without explicitly checking for
|
117 |
|
|
// this, the Pix[i:] expression below can panic.
|
118 |
|
|
if r.Empty() {
|
119 |
|
|
return &RGBA{}
|
120 |
|
|
}
|
121 |
|
|
i := p.PixOffset(r.Min.X, r.Min.Y)
|
122 |
|
|
return &RGBA{
|
123 |
|
|
Pix: p.Pix[i:],
|
124 |
|
|
Stride: p.Stride,
|
125 |
|
|
Rect: r,
|
126 |
|
|
}
|
127 |
|
|
}
|
128 |
|
|
|
129 |
|
|
// Opaque scans the entire image and returns whether or not it is fully opaque.
|
130 |
|
|
func (p *RGBA) Opaque() bool {
|
131 |
|
|
if p.Rect.Empty() {
|
132 |
|
|
return true
|
133 |
|
|
}
|
134 |
|
|
i0, i1 := 3, p.Rect.Dx()*4
|
135 |
|
|
for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ {
|
136 |
|
|
for i := i0; i < i1; i += 4 {
|
137 |
|
|
if p.Pix[i] != 0xff {
|
138 |
|
|
return false
|
139 |
|
|
}
|
140 |
|
|
}
|
141 |
|
|
i0 += p.Stride
|
142 |
|
|
i1 += p.Stride
|
143 |
|
|
}
|
144 |
|
|
return true
|
145 |
|
|
}
|
146 |
|
|
|
147 |
|
|
// NewRGBA returns a new RGBA with the given bounds.
|
148 |
|
|
func NewRGBA(r Rectangle) *RGBA {
|
149 |
|
|
w, h := r.Dx(), r.Dy()
|
150 |
|
|
buf := make([]uint8, 4*w*h)
|
151 |
|
|
return &RGBA{buf, 4 * w, r}
|
152 |
|
|
}
|
153 |
|
|
|
154 |
|
|
// RGBA64 is an in-memory image whose At method returns color.RGBA64 values.
|
155 |
|
|
type RGBA64 struct {
|
156 |
|
|
// Pix holds the image's pixels, in R, G, B, A order and big-endian format. The pixel at
|
157 |
|
|
// (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*8].
|
158 |
|
|
Pix []uint8
|
159 |
|
|
// Stride is the Pix stride (in bytes) between vertically adjacent pixels.
|
160 |
|
|
Stride int
|
161 |
|
|
// Rect is the image's bounds.
|
162 |
|
|
Rect Rectangle
|
163 |
|
|
}
|
164 |
|
|
|
165 |
|
|
func (p *RGBA64) ColorModel() color.Model { return color.RGBA64Model }
|
166 |
|
|
|
167 |
|
|
func (p *RGBA64) Bounds() Rectangle { return p.Rect }
|
168 |
|
|
|
169 |
|
|
func (p *RGBA64) At(x, y int) color.Color {
|
170 |
|
|
if !(Point{x, y}.In(p.Rect)) {
|
171 |
|
|
return color.RGBA64{}
|
172 |
|
|
}
|
173 |
|
|
i := p.PixOffset(x, y)
|
174 |
|
|
return color.RGBA64{
|
175 |
|
|
uint16(p.Pix[i+0])<<8 | uint16(p.Pix[i+1]),
|
176 |
|
|
uint16(p.Pix[i+2])<<8 | uint16(p.Pix[i+3]),
|
177 |
|
|
uint16(p.Pix[i+4])<<8 | uint16(p.Pix[i+5]),
|
178 |
|
|
uint16(p.Pix[i+6])<<8 | uint16(p.Pix[i+7]),
|
179 |
|
|
}
|
180 |
|
|
}
|
181 |
|
|
|
182 |
|
|
// PixOffset returns the index of the first element of Pix that corresponds to
|
183 |
|
|
// the pixel at (x, y).
|
184 |
|
|
func (p *RGBA64) PixOffset(x, y int) int {
|
185 |
|
|
return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*8
|
186 |
|
|
}
|
187 |
|
|
|
188 |
|
|
func (p *RGBA64) Set(x, y int, c color.Color) {
|
189 |
|
|
if !(Point{x, y}.In(p.Rect)) {
|
190 |
|
|
return
|
191 |
|
|
}
|
192 |
|
|
i := p.PixOffset(x, y)
|
193 |
|
|
c1 := color.RGBA64Model.Convert(c).(color.RGBA64)
|
194 |
|
|
p.Pix[i+0] = uint8(c1.R >> 8)
|
195 |
|
|
p.Pix[i+1] = uint8(c1.R)
|
196 |
|
|
p.Pix[i+2] = uint8(c1.G >> 8)
|
197 |
|
|
p.Pix[i+3] = uint8(c1.G)
|
198 |
|
|
p.Pix[i+4] = uint8(c1.B >> 8)
|
199 |
|
|
p.Pix[i+5] = uint8(c1.B)
|
200 |
|
|
p.Pix[i+6] = uint8(c1.A >> 8)
|
201 |
|
|
p.Pix[i+7] = uint8(c1.A)
|
202 |
|
|
}
|
203 |
|
|
|
204 |
|
|
func (p *RGBA64) SetRGBA64(x, y int, c color.RGBA64) {
|
205 |
|
|
if !(Point{x, y}.In(p.Rect)) {
|
206 |
|
|
return
|
207 |
|
|
}
|
208 |
|
|
i := p.PixOffset(x, y)
|
209 |
|
|
p.Pix[i+0] = uint8(c.R >> 8)
|
210 |
|
|
p.Pix[i+1] = uint8(c.R)
|
211 |
|
|
p.Pix[i+2] = uint8(c.G >> 8)
|
212 |
|
|
p.Pix[i+3] = uint8(c.G)
|
213 |
|
|
p.Pix[i+4] = uint8(c.B >> 8)
|
214 |
|
|
p.Pix[i+5] = uint8(c.B)
|
215 |
|
|
p.Pix[i+6] = uint8(c.A >> 8)
|
216 |
|
|
p.Pix[i+7] = uint8(c.A)
|
217 |
|
|
}
|
218 |
|
|
|
219 |
|
|
// SubImage returns an image representing the portion of the image p visible
|
220 |
|
|
// through r. The returned value shares pixels with the original image.
|
221 |
|
|
func (p *RGBA64) SubImage(r Rectangle) Image {
|
222 |
|
|
r = r.Intersect(p.Rect)
|
223 |
|
|
// If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside
|
224 |
|
|
// either r1 or r2 if the intersection is empty. Without explicitly checking for
|
225 |
|
|
// this, the Pix[i:] expression below can panic.
|
226 |
|
|
if r.Empty() {
|
227 |
|
|
return &RGBA64{}
|
228 |
|
|
}
|
229 |
|
|
i := p.PixOffset(r.Min.X, r.Min.Y)
|
230 |
|
|
return &RGBA64{
|
231 |
|
|
Pix: p.Pix[i:],
|
232 |
|
|
Stride: p.Stride,
|
233 |
|
|
Rect: r,
|
234 |
|
|
}
|
235 |
|
|
}
|
236 |
|
|
|
237 |
|
|
// Opaque scans the entire image and returns whether or not it is fully opaque.
|
238 |
|
|
func (p *RGBA64) Opaque() bool {
|
239 |
|
|
if p.Rect.Empty() {
|
240 |
|
|
return true
|
241 |
|
|
}
|
242 |
|
|
i0, i1 := 6, p.Rect.Dx()*8
|
243 |
|
|
for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ {
|
244 |
|
|
for i := i0; i < i1; i += 8 {
|
245 |
|
|
if p.Pix[i+0] != 0xff || p.Pix[i+1] != 0xff {
|
246 |
|
|
return false
|
247 |
|
|
}
|
248 |
|
|
}
|
249 |
|
|
i0 += p.Stride
|
250 |
|
|
i1 += p.Stride
|
251 |
|
|
}
|
252 |
|
|
return true
|
253 |
|
|
}
|
254 |
|
|
|
255 |
|
|
// NewRGBA64 returns a new RGBA64 with the given bounds.
|
256 |
|
|
func NewRGBA64(r Rectangle) *RGBA64 {
|
257 |
|
|
w, h := r.Dx(), r.Dy()
|
258 |
|
|
pix := make([]uint8, 8*w*h)
|
259 |
|
|
return &RGBA64{pix, 8 * w, r}
|
260 |
|
|
}
|
261 |
|
|
|
262 |
|
|
// NRGBA is an in-memory image whose At method returns color.NRGBA values.
|
263 |
|
|
type NRGBA struct {
|
264 |
|
|
// Pix holds the image's pixels, in R, G, B, A order. The pixel at
|
265 |
|
|
// (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*4].
|
266 |
|
|
Pix []uint8
|
267 |
|
|
// Stride is the Pix stride (in bytes) between vertically adjacent pixels.
|
268 |
|
|
Stride int
|
269 |
|
|
// Rect is the image's bounds.
|
270 |
|
|
Rect Rectangle
|
271 |
|
|
}
|
272 |
|
|
|
273 |
|
|
func (p *NRGBA) ColorModel() color.Model { return color.NRGBAModel }
|
274 |
|
|
|
275 |
|
|
func (p *NRGBA) Bounds() Rectangle { return p.Rect }
|
276 |
|
|
|
277 |
|
|
func (p *NRGBA) At(x, y int) color.Color {
|
278 |
|
|
if !(Point{x, y}.In(p.Rect)) {
|
279 |
|
|
return color.NRGBA{}
|
280 |
|
|
}
|
281 |
|
|
i := p.PixOffset(x, y)
|
282 |
|
|
return color.NRGBA{p.Pix[i+0], p.Pix[i+1], p.Pix[i+2], p.Pix[i+3]}
|
283 |
|
|
}
|
284 |
|
|
|
285 |
|
|
// PixOffset returns the index of the first element of Pix that corresponds to
|
286 |
|
|
// the pixel at (x, y).
|
287 |
|
|
func (p *NRGBA) PixOffset(x, y int) int {
|
288 |
|
|
return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*4
|
289 |
|
|
}
|
290 |
|
|
|
291 |
|
|
func (p *NRGBA) Set(x, y int, c color.Color) {
|
292 |
|
|
if !(Point{x, y}.In(p.Rect)) {
|
293 |
|
|
return
|
294 |
|
|
}
|
295 |
|
|
i := p.PixOffset(x, y)
|
296 |
|
|
c1 := color.NRGBAModel.Convert(c).(color.NRGBA)
|
297 |
|
|
p.Pix[i+0] = c1.R
|
298 |
|
|
p.Pix[i+1] = c1.G
|
299 |
|
|
p.Pix[i+2] = c1.B
|
300 |
|
|
p.Pix[i+3] = c1.A
|
301 |
|
|
}
|
302 |
|
|
|
303 |
|
|
func (p *NRGBA) SetNRGBA(x, y int, c color.NRGBA) {
|
304 |
|
|
if !(Point{x, y}.In(p.Rect)) {
|
305 |
|
|
return
|
306 |
|
|
}
|
307 |
|
|
i := p.PixOffset(x, y)
|
308 |
|
|
p.Pix[i+0] = c.R
|
309 |
|
|
p.Pix[i+1] = c.G
|
310 |
|
|
p.Pix[i+2] = c.B
|
311 |
|
|
p.Pix[i+3] = c.A
|
312 |
|
|
}
|
313 |
|
|
|
314 |
|
|
// SubImage returns an image representing the portion of the image p visible
|
315 |
|
|
// through r. The returned value shares pixels with the original image.
|
316 |
|
|
func (p *NRGBA) SubImage(r Rectangle) Image {
|
317 |
|
|
r = r.Intersect(p.Rect)
|
318 |
|
|
// If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside
|
319 |
|
|
// either r1 or r2 if the intersection is empty. Without explicitly checking for
|
320 |
|
|
// this, the Pix[i:] expression below can panic.
|
321 |
|
|
if r.Empty() {
|
322 |
|
|
return &NRGBA{}
|
323 |
|
|
}
|
324 |
|
|
i := p.PixOffset(r.Min.X, r.Min.Y)
|
325 |
|
|
return &NRGBA{
|
326 |
|
|
Pix: p.Pix[i:],
|
327 |
|
|
Stride: p.Stride,
|
328 |
|
|
Rect: r,
|
329 |
|
|
}
|
330 |
|
|
}
|
331 |
|
|
|
332 |
|
|
// Opaque scans the entire image and returns whether or not it is fully opaque.
|
333 |
|
|
func (p *NRGBA) Opaque() bool {
|
334 |
|
|
if p.Rect.Empty() {
|
335 |
|
|
return true
|
336 |
|
|
}
|
337 |
|
|
i0, i1 := 3, p.Rect.Dx()*4
|
338 |
|
|
for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ {
|
339 |
|
|
for i := i0; i < i1; i += 4 {
|
340 |
|
|
if p.Pix[i] != 0xff {
|
341 |
|
|
return false
|
342 |
|
|
}
|
343 |
|
|
}
|
344 |
|
|
i0 += p.Stride
|
345 |
|
|
i1 += p.Stride
|
346 |
|
|
}
|
347 |
|
|
return true
|
348 |
|
|
}
|
349 |
|
|
|
350 |
|
|
// NewNRGBA returns a new NRGBA with the given bounds.
|
351 |
|
|
func NewNRGBA(r Rectangle) *NRGBA {
|
352 |
|
|
w, h := r.Dx(), r.Dy()
|
353 |
|
|
pix := make([]uint8, 4*w*h)
|
354 |
|
|
return &NRGBA{pix, 4 * w, r}
|
355 |
|
|
}
|
356 |
|
|
|
357 |
|
|
// NRGBA64 is an in-memory image whose At method returns color.NRGBA64 values.
|
358 |
|
|
type NRGBA64 struct {
|
359 |
|
|
// Pix holds the image's pixels, in R, G, B, A order and big-endian format. The pixel at
|
360 |
|
|
// (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*8].
|
361 |
|
|
Pix []uint8
|
362 |
|
|
// Stride is the Pix stride (in bytes) between vertically adjacent pixels.
|
363 |
|
|
Stride int
|
364 |
|
|
// Rect is the image's bounds.
|
365 |
|
|
Rect Rectangle
|
366 |
|
|
}
|
367 |
|
|
|
368 |
|
|
func (p *NRGBA64) ColorModel() color.Model { return color.NRGBA64Model }
|
369 |
|
|
|
370 |
|
|
func (p *NRGBA64) Bounds() Rectangle { return p.Rect }
|
371 |
|
|
|
372 |
|
|
func (p *NRGBA64) At(x, y int) color.Color {
|
373 |
|
|
if !(Point{x, y}.In(p.Rect)) {
|
374 |
|
|
return color.NRGBA64{}
|
375 |
|
|
}
|
376 |
|
|
i := p.PixOffset(x, y)
|
377 |
|
|
return color.NRGBA64{
|
378 |
|
|
uint16(p.Pix[i+0])<<8 | uint16(p.Pix[i+1]),
|
379 |
|
|
uint16(p.Pix[i+2])<<8 | uint16(p.Pix[i+3]),
|
380 |
|
|
uint16(p.Pix[i+4])<<8 | uint16(p.Pix[i+5]),
|
381 |
|
|
uint16(p.Pix[i+6])<<8 | uint16(p.Pix[i+7]),
|
382 |
|
|
}
|
383 |
|
|
}
|
384 |
|
|
|
385 |
|
|
// PixOffset returns the index of the first element of Pix that corresponds to
|
386 |
|
|
// the pixel at (x, y).
|
387 |
|
|
func (p *NRGBA64) PixOffset(x, y int) int {
|
388 |
|
|
return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*8
|
389 |
|
|
}
|
390 |
|
|
|
391 |
|
|
func (p *NRGBA64) Set(x, y int, c color.Color) {
|
392 |
|
|
if !(Point{x, y}.In(p.Rect)) {
|
393 |
|
|
return
|
394 |
|
|
}
|
395 |
|
|
i := p.PixOffset(x, y)
|
396 |
|
|
c1 := color.NRGBA64Model.Convert(c).(color.NRGBA64)
|
397 |
|
|
p.Pix[i+0] = uint8(c1.R >> 8)
|
398 |
|
|
p.Pix[i+1] = uint8(c1.R)
|
399 |
|
|
p.Pix[i+2] = uint8(c1.G >> 8)
|
400 |
|
|
p.Pix[i+3] = uint8(c1.G)
|
401 |
|
|
p.Pix[i+4] = uint8(c1.B >> 8)
|
402 |
|
|
p.Pix[i+5] = uint8(c1.B)
|
403 |
|
|
p.Pix[i+6] = uint8(c1.A >> 8)
|
404 |
|
|
p.Pix[i+7] = uint8(c1.A)
|
405 |
|
|
}
|
406 |
|
|
|
407 |
|
|
func (p *NRGBA64) SetNRGBA64(x, y int, c color.NRGBA64) {
|
408 |
|
|
if !(Point{x, y}.In(p.Rect)) {
|
409 |
|
|
return
|
410 |
|
|
}
|
411 |
|
|
i := p.PixOffset(x, y)
|
412 |
|
|
p.Pix[i+0] = uint8(c.R >> 8)
|
413 |
|
|
p.Pix[i+1] = uint8(c.R)
|
414 |
|
|
p.Pix[i+2] = uint8(c.G >> 8)
|
415 |
|
|
p.Pix[i+3] = uint8(c.G)
|
416 |
|
|
p.Pix[i+4] = uint8(c.B >> 8)
|
417 |
|
|
p.Pix[i+5] = uint8(c.B)
|
418 |
|
|
p.Pix[i+6] = uint8(c.A >> 8)
|
419 |
|
|
p.Pix[i+7] = uint8(c.A)
|
420 |
|
|
}
|
421 |
|
|
|
422 |
|
|
// SubImage returns an image representing the portion of the image p visible
|
423 |
|
|
// through r. The returned value shares pixels with the original image.
|
424 |
|
|
func (p *NRGBA64) SubImage(r Rectangle) Image {
|
425 |
|
|
r = r.Intersect(p.Rect)
|
426 |
|
|
// If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside
|
427 |
|
|
// either r1 or r2 if the intersection is empty. Without explicitly checking for
|
428 |
|
|
// this, the Pix[i:] expression below can panic.
|
429 |
|
|
if r.Empty() {
|
430 |
|
|
return &NRGBA64{}
|
431 |
|
|
}
|
432 |
|
|
i := p.PixOffset(r.Min.X, r.Min.Y)
|
433 |
|
|
return &NRGBA64{
|
434 |
|
|
Pix: p.Pix[i:],
|
435 |
|
|
Stride: p.Stride,
|
436 |
|
|
Rect: r,
|
437 |
|
|
}
|
438 |
|
|
}
|
439 |
|
|
|
440 |
|
|
// Opaque scans the entire image and returns whether or not it is fully opaque.
|
441 |
|
|
func (p *NRGBA64) Opaque() bool {
|
442 |
|
|
if p.Rect.Empty() {
|
443 |
|
|
return true
|
444 |
|
|
}
|
445 |
|
|
i0, i1 := 6, p.Rect.Dx()*8
|
446 |
|
|
for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ {
|
447 |
|
|
for i := i0; i < i1; i += 8 {
|
448 |
|
|
if p.Pix[i+0] != 0xff || p.Pix[i+1] != 0xff {
|
449 |
|
|
return false
|
450 |
|
|
}
|
451 |
|
|
}
|
452 |
|
|
i0 += p.Stride
|
453 |
|
|
i1 += p.Stride
|
454 |
|
|
}
|
455 |
|
|
return true
|
456 |
|
|
}
|
457 |
|
|
|
458 |
|
|
// NewNRGBA64 returns a new NRGBA64 with the given bounds.
|
459 |
|
|
func NewNRGBA64(r Rectangle) *NRGBA64 {
|
460 |
|
|
w, h := r.Dx(), r.Dy()
|
461 |
|
|
pix := make([]uint8, 8*w*h)
|
462 |
|
|
return &NRGBA64{pix, 8 * w, r}
|
463 |
|
|
}
|
464 |
|
|
|
465 |
|
|
// Alpha is an in-memory image whose At method returns color.Alpha values.
|
466 |
|
|
type Alpha struct {
|
467 |
|
|
// Pix holds the image's pixels, as alpha values. The pixel at
|
468 |
|
|
// (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*1].
|
469 |
|
|
Pix []uint8
|
470 |
|
|
// Stride is the Pix stride (in bytes) between vertically adjacent pixels.
|
471 |
|
|
Stride int
|
472 |
|
|
// Rect is the image's bounds.
|
473 |
|
|
Rect Rectangle
|
474 |
|
|
}
|
475 |
|
|
|
476 |
|
|
func (p *Alpha) ColorModel() color.Model { return color.AlphaModel }
|
477 |
|
|
|
478 |
|
|
func (p *Alpha) Bounds() Rectangle { return p.Rect }
|
479 |
|
|
|
480 |
|
|
func (p *Alpha) At(x, y int) color.Color {
|
481 |
|
|
if !(Point{x, y}.In(p.Rect)) {
|
482 |
|
|
return color.Alpha{}
|
483 |
|
|
}
|
484 |
|
|
i := p.PixOffset(x, y)
|
485 |
|
|
return color.Alpha{p.Pix[i]}
|
486 |
|
|
}
|
487 |
|
|
|
488 |
|
|
// PixOffset returns the index of the first element of Pix that corresponds to
|
489 |
|
|
// the pixel at (x, y).
|
490 |
|
|
func (p *Alpha) PixOffset(x, y int) int {
|
491 |
|
|
return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*1
|
492 |
|
|
}
|
493 |
|
|
|
494 |
|
|
func (p *Alpha) Set(x, y int, c color.Color) {
|
495 |
|
|
if !(Point{x, y}.In(p.Rect)) {
|
496 |
|
|
return
|
497 |
|
|
}
|
498 |
|
|
i := p.PixOffset(x, y)
|
499 |
|
|
p.Pix[i] = color.AlphaModel.Convert(c).(color.Alpha).A
|
500 |
|
|
}
|
501 |
|
|
|
502 |
|
|
func (p *Alpha) SetAlpha(x, y int, c color.Alpha) {
|
503 |
|
|
if !(Point{x, y}.In(p.Rect)) {
|
504 |
|
|
return
|
505 |
|
|
}
|
506 |
|
|
i := p.PixOffset(x, y)
|
507 |
|
|
p.Pix[i] = c.A
|
508 |
|
|
}
|
509 |
|
|
|
510 |
|
|
// SubImage returns an image representing the portion of the image p visible
|
511 |
|
|
// through r. The returned value shares pixels with the original image.
|
512 |
|
|
func (p *Alpha) SubImage(r Rectangle) Image {
|
513 |
|
|
r = r.Intersect(p.Rect)
|
514 |
|
|
// If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside
|
515 |
|
|
// either r1 or r2 if the intersection is empty. Without explicitly checking for
|
516 |
|
|
// this, the Pix[i:] expression below can panic.
|
517 |
|
|
if r.Empty() {
|
518 |
|
|
return &Alpha{}
|
519 |
|
|
}
|
520 |
|
|
i := p.PixOffset(r.Min.X, r.Min.Y)
|
521 |
|
|
return &Alpha{
|
522 |
|
|
Pix: p.Pix[i:],
|
523 |
|
|
Stride: p.Stride,
|
524 |
|
|
Rect: r,
|
525 |
|
|
}
|
526 |
|
|
}
|
527 |
|
|
|
528 |
|
|
// Opaque scans the entire image and returns whether or not it is fully opaque.
|
529 |
|
|
func (p *Alpha) Opaque() bool {
|
530 |
|
|
if p.Rect.Empty() {
|
531 |
|
|
return true
|
532 |
|
|
}
|
533 |
|
|
i0, i1 := 0, p.Rect.Dx()
|
534 |
|
|
for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ {
|
535 |
|
|
for i := i0; i < i1; i++ {
|
536 |
|
|
if p.Pix[i] != 0xff {
|
537 |
|
|
return false
|
538 |
|
|
}
|
539 |
|
|
}
|
540 |
|
|
i0 += p.Stride
|
541 |
|
|
i1 += p.Stride
|
542 |
|
|
}
|
543 |
|
|
return true
|
544 |
|
|
}
|
545 |
|
|
|
546 |
|
|
// NewAlpha returns a new Alpha with the given bounds.
|
547 |
|
|
func NewAlpha(r Rectangle) *Alpha {
|
548 |
|
|
w, h := r.Dx(), r.Dy()
|
549 |
|
|
pix := make([]uint8, 1*w*h)
|
550 |
|
|
return &Alpha{pix, 1 * w, r}
|
551 |
|
|
}
|
552 |
|
|
|
553 |
|
|
// Alpha16 is an in-memory image whose At method returns color.Alpha64 values.
|
554 |
|
|
type Alpha16 struct {
|
555 |
|
|
// Pix holds the image's pixels, as alpha values in big-endian format. The pixel at
|
556 |
|
|
// (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*2].
|
557 |
|
|
Pix []uint8
|
558 |
|
|
// Stride is the Pix stride (in bytes) between vertically adjacent pixels.
|
559 |
|
|
Stride int
|
560 |
|
|
// Rect is the image's bounds.
|
561 |
|
|
Rect Rectangle
|
562 |
|
|
}
|
563 |
|
|
|
564 |
|
|
func (p *Alpha16) ColorModel() color.Model { return color.Alpha16Model }
|
565 |
|
|
|
566 |
|
|
func (p *Alpha16) Bounds() Rectangle { return p.Rect }
|
567 |
|
|
|
568 |
|
|
func (p *Alpha16) At(x, y int) color.Color {
|
569 |
|
|
if !(Point{x, y}.In(p.Rect)) {
|
570 |
|
|
return color.Alpha16{}
|
571 |
|
|
}
|
572 |
|
|
i := p.PixOffset(x, y)
|
573 |
|
|
return color.Alpha16{uint16(p.Pix[i+0])<<8 | uint16(p.Pix[i+1])}
|
574 |
|
|
}
|
575 |
|
|
|
576 |
|
|
// PixOffset returns the index of the first element of Pix that corresponds to
|
577 |
|
|
// the pixel at (x, y).
|
578 |
|
|
func (p *Alpha16) PixOffset(x, y int) int {
|
579 |
|
|
return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*2
|
580 |
|
|
}
|
581 |
|
|
|
582 |
|
|
func (p *Alpha16) Set(x, y int, c color.Color) {
|
583 |
|
|
if !(Point{x, y}.In(p.Rect)) {
|
584 |
|
|
return
|
585 |
|
|
}
|
586 |
|
|
i := p.PixOffset(x, y)
|
587 |
|
|
c1 := color.Alpha16Model.Convert(c).(color.Alpha16)
|
588 |
|
|
p.Pix[i+0] = uint8(c1.A >> 8)
|
589 |
|
|
p.Pix[i+1] = uint8(c1.A)
|
590 |
|
|
}
|
591 |
|
|
|
592 |
|
|
func (p *Alpha16) SetAlpha16(x, y int, c color.Alpha16) {
|
593 |
|
|
if !(Point{x, y}.In(p.Rect)) {
|
594 |
|
|
return
|
595 |
|
|
}
|
596 |
|
|
i := p.PixOffset(x, y)
|
597 |
|
|
p.Pix[i+0] = uint8(c.A >> 8)
|
598 |
|
|
p.Pix[i+1] = uint8(c.A)
|
599 |
|
|
}
|
600 |
|
|
|
601 |
|
|
// SubImage returns an image representing the portion of the image p visible
|
602 |
|
|
// through r. The returned value shares pixels with the original image.
|
603 |
|
|
func (p *Alpha16) SubImage(r Rectangle) Image {
|
604 |
|
|
r = r.Intersect(p.Rect)
|
605 |
|
|
// If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside
|
606 |
|
|
// either r1 or r2 if the intersection is empty. Without explicitly checking for
|
607 |
|
|
// this, the Pix[i:] expression below can panic.
|
608 |
|
|
if r.Empty() {
|
609 |
|
|
return &Alpha16{}
|
610 |
|
|
}
|
611 |
|
|
i := p.PixOffset(r.Min.X, r.Min.Y)
|
612 |
|
|
return &Alpha16{
|
613 |
|
|
Pix: p.Pix[i:],
|
614 |
|
|
Stride: p.Stride,
|
615 |
|
|
Rect: r,
|
616 |
|
|
}
|
617 |
|
|
}
|
618 |
|
|
|
619 |
|
|
// Opaque scans the entire image and returns whether or not it is fully opaque.
|
620 |
|
|
func (p *Alpha16) Opaque() bool {
|
621 |
|
|
if p.Rect.Empty() {
|
622 |
|
|
return true
|
623 |
|
|
}
|
624 |
|
|
i0, i1 := 0, p.Rect.Dx()*2
|
625 |
|
|
for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ {
|
626 |
|
|
for i := i0; i < i1; i += 2 {
|
627 |
|
|
if p.Pix[i+0] != 0xff || p.Pix[i+1] != 0xff {
|
628 |
|
|
return false
|
629 |
|
|
}
|
630 |
|
|
}
|
631 |
|
|
i0 += p.Stride
|
632 |
|
|
i1 += p.Stride
|
633 |
|
|
}
|
634 |
|
|
return true
|
635 |
|
|
}
|
636 |
|
|
|
637 |
|
|
// NewAlpha16 returns a new Alpha16 with the given bounds.
|
638 |
|
|
func NewAlpha16(r Rectangle) *Alpha16 {
|
639 |
|
|
w, h := r.Dx(), r.Dy()
|
640 |
|
|
pix := make([]uint8, 2*w*h)
|
641 |
|
|
return &Alpha16{pix, 2 * w, r}
|
642 |
|
|
}
|
643 |
|
|
|
644 |
|
|
// Gray is an in-memory image whose At method returns color.Gray values.
|
645 |
|
|
type Gray struct {
|
646 |
|
|
// Pix holds the image's pixels, as gray values. The pixel at
|
647 |
|
|
// (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*1].
|
648 |
|
|
Pix []uint8
|
649 |
|
|
// Stride is the Pix stride (in bytes) between vertically adjacent pixels.
|
650 |
|
|
Stride int
|
651 |
|
|
// Rect is the image's bounds.
|
652 |
|
|
Rect Rectangle
|
653 |
|
|
}
|
654 |
|
|
|
655 |
|
|
func (p *Gray) ColorModel() color.Model { return color.GrayModel }
|
656 |
|
|
|
657 |
|
|
func (p *Gray) Bounds() Rectangle { return p.Rect }
|
658 |
|
|
|
659 |
|
|
func (p *Gray) At(x, y int) color.Color {
|
660 |
|
|
if !(Point{x, y}.In(p.Rect)) {
|
661 |
|
|
return color.Gray{}
|
662 |
|
|
}
|
663 |
|
|
i := p.PixOffset(x, y)
|
664 |
|
|
return color.Gray{p.Pix[i]}
|
665 |
|
|
}
|
666 |
|
|
|
667 |
|
|
// PixOffset returns the index of the first element of Pix that corresponds to
|
668 |
|
|
// the pixel at (x, y).
|
669 |
|
|
func (p *Gray) PixOffset(x, y int) int {
|
670 |
|
|
return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*1
|
671 |
|
|
}
|
672 |
|
|
|
673 |
|
|
func (p *Gray) Set(x, y int, c color.Color) {
|
674 |
|
|
if !(Point{x, y}.In(p.Rect)) {
|
675 |
|
|
return
|
676 |
|
|
}
|
677 |
|
|
i := p.PixOffset(x, y)
|
678 |
|
|
p.Pix[i] = color.GrayModel.Convert(c).(color.Gray).Y
|
679 |
|
|
}
|
680 |
|
|
|
681 |
|
|
func (p *Gray) SetGray(x, y int, c color.Gray) {
|
682 |
|
|
if !(Point{x, y}.In(p.Rect)) {
|
683 |
|
|
return
|
684 |
|
|
}
|
685 |
|
|
i := p.PixOffset(x, y)
|
686 |
|
|
p.Pix[i] = c.Y
|
687 |
|
|
}
|
688 |
|
|
|
689 |
|
|
// SubImage returns an image representing the portion of the image p visible
|
690 |
|
|
// through r. The returned value shares pixels with the original image.
|
691 |
|
|
func (p *Gray) SubImage(r Rectangle) Image {
|
692 |
|
|
r = r.Intersect(p.Rect)
|
693 |
|
|
// If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside
|
694 |
|
|
// either r1 or r2 if the intersection is empty. Without explicitly checking for
|
695 |
|
|
// this, the Pix[i:] expression below can panic.
|
696 |
|
|
if r.Empty() {
|
697 |
|
|
return &Gray{}
|
698 |
|
|
}
|
699 |
|
|
i := p.PixOffset(r.Min.X, r.Min.Y)
|
700 |
|
|
return &Gray{
|
701 |
|
|
Pix: p.Pix[i:],
|
702 |
|
|
Stride: p.Stride,
|
703 |
|
|
Rect: r,
|
704 |
|
|
}
|
705 |
|
|
}
|
706 |
|
|
|
707 |
|
|
// Opaque scans the entire image and returns whether or not it is fully opaque.
|
708 |
|
|
func (p *Gray) Opaque() bool {
|
709 |
|
|
return true
|
710 |
|
|
}
|
711 |
|
|
|
712 |
|
|
// NewGray returns a new Gray with the given bounds.
|
713 |
|
|
func NewGray(r Rectangle) *Gray {
|
714 |
|
|
w, h := r.Dx(), r.Dy()
|
715 |
|
|
pix := make([]uint8, 1*w*h)
|
716 |
|
|
return &Gray{pix, 1 * w, r}
|
717 |
|
|
}
|
718 |
|
|
|
719 |
|
|
// Gray16 is an in-memory image whose At method returns color.Gray16 values.
|
720 |
|
|
type Gray16 struct {
|
721 |
|
|
// Pix holds the image's pixels, as gray values in big-endian format. The pixel at
|
722 |
|
|
// (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*2].
|
723 |
|
|
Pix []uint8
|
724 |
|
|
// Stride is the Pix stride (in bytes) between vertically adjacent pixels.
|
725 |
|
|
Stride int
|
726 |
|
|
// Rect is the image's bounds.
|
727 |
|
|
Rect Rectangle
|
728 |
|
|
}
|
729 |
|
|
|
730 |
|
|
func (p *Gray16) ColorModel() color.Model { return color.Gray16Model }
|
731 |
|
|
|
732 |
|
|
func (p *Gray16) Bounds() Rectangle { return p.Rect }
|
733 |
|
|
|
734 |
|
|
func (p *Gray16) At(x, y int) color.Color {
|
735 |
|
|
if !(Point{x, y}.In(p.Rect)) {
|
736 |
|
|
return color.Gray16{}
|
737 |
|
|
}
|
738 |
|
|
i := p.PixOffset(x, y)
|
739 |
|
|
return color.Gray16{uint16(p.Pix[i+0])<<8 | uint16(p.Pix[i+1])}
|
740 |
|
|
}
|
741 |
|
|
|
742 |
|
|
// PixOffset returns the index of the first element of Pix that corresponds to
|
743 |
|
|
// the pixel at (x, y).
|
744 |
|
|
func (p *Gray16) PixOffset(x, y int) int {
|
745 |
|
|
return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*2
|
746 |
|
|
}
|
747 |
|
|
|
748 |
|
|
func (p *Gray16) Set(x, y int, c color.Color) {
|
749 |
|
|
if !(Point{x, y}.In(p.Rect)) {
|
750 |
|
|
return
|
751 |
|
|
}
|
752 |
|
|
i := p.PixOffset(x, y)
|
753 |
|
|
c1 := color.Gray16Model.Convert(c).(color.Gray16)
|
754 |
|
|
p.Pix[i+0] = uint8(c1.Y >> 8)
|
755 |
|
|
p.Pix[i+1] = uint8(c1.Y)
|
756 |
|
|
}
|
757 |
|
|
|
758 |
|
|
func (p *Gray16) SetGray16(x, y int, c color.Gray16) {
|
759 |
|
|
if !(Point{x, y}.In(p.Rect)) {
|
760 |
|
|
return
|
761 |
|
|
}
|
762 |
|
|
i := p.PixOffset(x, y)
|
763 |
|
|
p.Pix[i+0] = uint8(c.Y >> 8)
|
764 |
|
|
p.Pix[i+1] = uint8(c.Y)
|
765 |
|
|
}
|
766 |
|
|
|
767 |
|
|
// SubImage returns an image representing the portion of the image p visible
|
768 |
|
|
// through r. The returned value shares pixels with the original image.
|
769 |
|
|
func (p *Gray16) SubImage(r Rectangle) Image {
|
770 |
|
|
r = r.Intersect(p.Rect)
|
771 |
|
|
// If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside
|
772 |
|
|
// either r1 or r2 if the intersection is empty. Without explicitly checking for
|
773 |
|
|
// this, the Pix[i:] expression below can panic.
|
774 |
|
|
if r.Empty() {
|
775 |
|
|
return &Gray16{}
|
776 |
|
|
}
|
777 |
|
|
i := p.PixOffset(r.Min.X, r.Min.Y)
|
778 |
|
|
return &Gray16{
|
779 |
|
|
Pix: p.Pix[i:],
|
780 |
|
|
Stride: p.Stride,
|
781 |
|
|
Rect: r,
|
782 |
|
|
}
|
783 |
|
|
}
|
784 |
|
|
|
785 |
|
|
// Opaque scans the entire image and returns whether or not it is fully opaque.
|
786 |
|
|
func (p *Gray16) Opaque() bool {
|
787 |
|
|
return true
|
788 |
|
|
}
|
789 |
|
|
|
790 |
|
|
// NewGray16 returns a new Gray16 with the given bounds.
|
791 |
|
|
func NewGray16(r Rectangle) *Gray16 {
|
792 |
|
|
w, h := r.Dx(), r.Dy()
|
793 |
|
|
pix := make([]uint8, 2*w*h)
|
794 |
|
|
return &Gray16{pix, 2 * w, r}
|
795 |
|
|
}
|
796 |
|
|
|
797 |
|
|
// Paletted is an in-memory image of uint8 indices into a given palette.
|
798 |
|
|
type Paletted struct {
|
799 |
|
|
// Pix holds the image's pixels, as palette indices. The pixel at
|
800 |
|
|
// (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*1].
|
801 |
|
|
Pix []uint8
|
802 |
|
|
// Stride is the Pix stride (in bytes) between vertically adjacent pixels.
|
803 |
|
|
Stride int
|
804 |
|
|
// Rect is the image's bounds.
|
805 |
|
|
Rect Rectangle
|
806 |
|
|
// Palette is the image's palette.
|
807 |
|
|
Palette color.Palette
|
808 |
|
|
}
|
809 |
|
|
|
810 |
|
|
func (p *Paletted) ColorModel() color.Model { return p.Palette }
|
811 |
|
|
|
812 |
|
|
func (p *Paletted) Bounds() Rectangle { return p.Rect }
|
813 |
|
|
|
814 |
|
|
func (p *Paletted) At(x, y int) color.Color {
|
815 |
|
|
if len(p.Palette) == 0 {
|
816 |
|
|
return nil
|
817 |
|
|
}
|
818 |
|
|
if !(Point{x, y}.In(p.Rect)) {
|
819 |
|
|
return p.Palette[0]
|
820 |
|
|
}
|
821 |
|
|
i := p.PixOffset(x, y)
|
822 |
|
|
return p.Palette[p.Pix[i]]
|
823 |
|
|
}
|
824 |
|
|
|
825 |
|
|
// PixOffset returns the index of the first element of Pix that corresponds to
|
826 |
|
|
// the pixel at (x, y).
|
827 |
|
|
func (p *Paletted) PixOffset(x, y int) int {
|
828 |
|
|
return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*1
|
829 |
|
|
}
|
830 |
|
|
|
831 |
|
|
func (p *Paletted) Set(x, y int, c color.Color) {
|
832 |
|
|
if !(Point{x, y}.In(p.Rect)) {
|
833 |
|
|
return
|
834 |
|
|
}
|
835 |
|
|
i := p.PixOffset(x, y)
|
836 |
|
|
p.Pix[i] = uint8(p.Palette.Index(c))
|
837 |
|
|
}
|
838 |
|
|
|
839 |
|
|
func (p *Paletted) ColorIndexAt(x, y int) uint8 {
|
840 |
|
|
if !(Point{x, y}.In(p.Rect)) {
|
841 |
|
|
return 0
|
842 |
|
|
}
|
843 |
|
|
i := p.PixOffset(x, y)
|
844 |
|
|
return p.Pix[i]
|
845 |
|
|
}
|
846 |
|
|
|
847 |
|
|
func (p *Paletted) SetColorIndex(x, y int, index uint8) {
|
848 |
|
|
if !(Point{x, y}.In(p.Rect)) {
|
849 |
|
|
return
|
850 |
|
|
}
|
851 |
|
|
i := p.PixOffset(x, y)
|
852 |
|
|
p.Pix[i] = index
|
853 |
|
|
}
|
854 |
|
|
|
855 |
|
|
// SubImage returns an image representing the portion of the image p visible
|
856 |
|
|
// through r. The returned value shares pixels with the original image.
|
857 |
|
|
func (p *Paletted) SubImage(r Rectangle) Image {
|
858 |
|
|
r = r.Intersect(p.Rect)
|
859 |
|
|
// If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside
|
860 |
|
|
// either r1 or r2 if the intersection is empty. Without explicitly checking for
|
861 |
|
|
// this, the Pix[i:] expression below can panic.
|
862 |
|
|
if r.Empty() {
|
863 |
|
|
return &Paletted{
|
864 |
|
|
Palette: p.Palette,
|
865 |
|
|
}
|
866 |
|
|
}
|
867 |
|
|
i := p.PixOffset(r.Min.X, r.Min.Y)
|
868 |
|
|
return &Paletted{
|
869 |
|
|
Pix: p.Pix[i:],
|
870 |
|
|
Stride: p.Stride,
|
871 |
|
|
Rect: p.Rect.Intersect(r),
|
872 |
|
|
Palette: p.Palette,
|
873 |
|
|
}
|
874 |
|
|
}
|
875 |
|
|
|
876 |
|
|
// Opaque scans the entire image and returns whether or not it is fully opaque.
|
877 |
|
|
func (p *Paletted) Opaque() bool {
|
878 |
|
|
var present [256]bool
|
879 |
|
|
i0, i1 := 0, p.Rect.Dx()
|
880 |
|
|
for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ {
|
881 |
|
|
for _, c := range p.Pix[i0:i1] {
|
882 |
|
|
present[c] = true
|
883 |
|
|
}
|
884 |
|
|
i0 += p.Stride
|
885 |
|
|
i1 += p.Stride
|
886 |
|
|
}
|
887 |
|
|
for i, c := range p.Palette {
|
888 |
|
|
if !present[i] {
|
889 |
|
|
continue
|
890 |
|
|
}
|
891 |
|
|
_, _, _, a := c.RGBA()
|
892 |
|
|
if a != 0xffff {
|
893 |
|
|
return false
|
894 |
|
|
}
|
895 |
|
|
}
|
896 |
|
|
return true
|
897 |
|
|
}
|
898 |
|
|
|
899 |
|
|
// NewPaletted returns a new Paletted with the given width, height and palette.
|
900 |
|
|
func NewPaletted(r Rectangle, p color.Palette) *Paletted {
|
901 |
|
|
w, h := r.Dx(), r.Dy()
|
902 |
|
|
pix := make([]uint8, 1*w*h)
|
903 |
|
|
return &Paletted{pix, 1 * w, r, p}
|
904 |
|
|
}
|