OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libgo/] [go/] [image/] [jpeg/] [idct.go] - Blame information for rev 858

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 747 jeremybenn
// Copyright 2009 The Go Authors. All rights reserved.
2
// Use of this source code is governed by a BSD-style
3
// license that can be found in the LICENSE file.
4
 
5
package jpeg
6
 
7
// This is a Go translation of idct.c from
8
//
9
// http://standards.iso.org/ittf/PubliclyAvailableStandards/ISO_IEC_13818-4_2004_Conformance_Testing/Video/verifier/mpeg2decode_960109.tar.gz
10
//
11
// which carries the following notice:
12
 
13
/* Copyright (C) 1996, MPEG Software Simulation Group. All Rights Reserved. */
14
 
15
/*
16
 * Disclaimer of Warranty
17
 *
18
 * These software programs are available to the user without any license fee or
19
 * royalty on an "as is" basis.  The MPEG Software Simulation Group disclaims
20
 * any and all warranties, whether express, implied, or statuary, including any
21
 * implied warranties or merchantability or of fitness for a particular
22
 * purpose.  In no event shall the copyright-holder be liable for any
23
 * incidental, punitive, or consequential damages of any kind whatsoever
24
 * arising from the use of these programs.
25
 *
26
 * This disclaimer of warranty extends to the user of these programs and user's
27
 * customers, employees, agents, transferees, successors, and assigns.
28
 *
29
 * The MPEG Software Simulation Group does not represent or warrant that the
30
 * programs furnished hereunder are free of infringement of any third-party
31
 * patents.
32
 *
33
 * Commercial implementations of MPEG-1 and MPEG-2 video, including shareware,
34
 * are subject to royalty fees to patent holders.  Many of these patents are
35
 * general enough such that they are unavoidable regardless of implementation
36
 * design.
37
 *
38
 */
39
 
40
const (
41
        w1 = 2841 // 2048*sqrt(2)*cos(1*pi/16)
42
        w2 = 2676 // 2048*sqrt(2)*cos(2*pi/16)
43
        w3 = 2408 // 2048*sqrt(2)*cos(3*pi/16)
44
        w5 = 1609 // 2048*sqrt(2)*cos(5*pi/16)
45
        w6 = 1108 // 2048*sqrt(2)*cos(6*pi/16)
46
        w7 = 565  // 2048*sqrt(2)*cos(7*pi/16)
47
 
48
        w1pw7 = w1 + w7
49
        w1mw7 = w1 - w7
50
        w2pw6 = w2 + w6
51
        w2mw6 = w2 - w6
52
        w3pw5 = w3 + w5
53
        w3mw5 = w3 - w5
54
 
55
        r2 = 181 // 256/sqrt(2)
56
)
57
 
58
// idct performs a 2-D Inverse Discrete Cosine Transformation, followed by a
59
// +128 level shift and a clip to [0, 255], writing the results to dst.
60
// stride is the number of elements between successive rows of dst.
61
//
62
// The input coefficients should already have been multiplied by the
63
// appropriate quantization table. We use fixed-point computation, with the
64
// number of bits for the fractional component varying over the intermediate
65
// stages.
66
//
67
// For more on the actual algorithm, see Z. Wang, "Fast algorithms for the
68
// discrete W transform and for the discrete Fourier transform", IEEE Trans. on
69
// ASSP, Vol. ASSP- 32, pp. 803-816, Aug. 1984.
70
func idct(dst []byte, stride int, src *block) {
71
        // Horizontal 1-D IDCT.
72
        for y := 0; y < 8; y++ {
73
                // If all the AC components are zero, then the IDCT is trivial.
74
                if src[y*8+1] == 0 && src[y*8+2] == 0 && src[y*8+3] == 0 &&
75
                        src[y*8+4] == 0 && src[y*8+5] == 0 && src[y*8+6] == 0 && src[y*8+7] == 0 {
76
                        dc := src[y*8+0] << 3
77
                        src[y*8+0] = dc
78
                        src[y*8+1] = dc
79
                        src[y*8+2] = dc
80
                        src[y*8+3] = dc
81
                        src[y*8+4] = dc
82
                        src[y*8+5] = dc
83
                        src[y*8+6] = dc
84
                        src[y*8+7] = dc
85
                        continue
86
                }
87
 
88
                // Prescale.
89
                x0 := (src[y*8+0] << 11) + 128
90
                x1 := src[y*8+4] << 11
91
                x2 := src[y*8+6]
92
                x3 := src[y*8+2]
93
                x4 := src[y*8+1]
94
                x5 := src[y*8+7]
95
                x6 := src[y*8+5]
96
                x7 := src[y*8+3]
97
 
98
                // Stage 1.
99
                x8 := w7 * (x4 + x5)
100
                x4 = x8 + w1mw7*x4
101
                x5 = x8 - w1pw7*x5
102
                x8 = w3 * (x6 + x7)
103
                x6 = x8 - w3mw5*x6
104
                x7 = x8 - w3pw5*x7
105
 
106
                // Stage 2.
107
                x8 = x0 + x1
108
                x0 -= x1
109
                x1 = w6 * (x3 + x2)
110
                x2 = x1 - w2pw6*x2
111
                x3 = x1 + w2mw6*x3
112
                x1 = x4 + x6
113
                x4 -= x6
114
                x6 = x5 + x7
115
                x5 -= x7
116
 
117
                // Stage 3.
118
                x7 = x8 + x3
119
                x8 -= x3
120
                x3 = x0 + x2
121
                x0 -= x2
122
                x2 = (r2*(x4+x5) + 128) >> 8
123
                x4 = (r2*(x4-x5) + 128) >> 8
124
 
125
                // Stage 4.
126
                src[8*y+0] = (x7 + x1) >> 8
127
                src[8*y+1] = (x3 + x2) >> 8
128
                src[8*y+2] = (x0 + x4) >> 8
129
                src[8*y+3] = (x8 + x6) >> 8
130
                src[8*y+4] = (x8 - x6) >> 8
131
                src[8*y+5] = (x0 - x4) >> 8
132
                src[8*y+6] = (x3 - x2) >> 8
133
                src[8*y+7] = (x7 - x1) >> 8
134
        }
135
 
136
        // Vertical 1-D IDCT.
137
        for x := 0; x < 8; x++ {
138
                // Similar to the horizontal 1-D IDCT case, if all the AC components are zero, then the IDCT is trivial.
139
                // However, after performing the horizontal 1-D IDCT, there are typically non-zero AC components, so
140
                // we do not bother to check for the all-zero case.
141
 
142
                // Prescale.
143
                y0 := (src[8*0+x] << 8) + 8192
144
                y1 := src[8*4+x] << 8
145
                y2 := src[8*6+x]
146
                y3 := src[8*2+x]
147
                y4 := src[8*1+x]
148
                y5 := src[8*7+x]
149
                y6 := src[8*5+x]
150
                y7 := src[8*3+x]
151
 
152
                // Stage 1.
153
                y8 := w7*(y4+y5) + 4
154
                y4 = (y8 + w1mw7*y4) >> 3
155
                y5 = (y8 - w1pw7*y5) >> 3
156
                y8 = w3*(y6+y7) + 4
157
                y6 = (y8 - w3mw5*y6) >> 3
158
                y7 = (y8 - w3pw5*y7) >> 3
159
 
160
                // Stage 2.
161
                y8 = y0 + y1
162
                y0 -= y1
163
                y1 = w6*(y3+y2) + 4
164
                y2 = (y1 - w2pw6*y2) >> 3
165
                y3 = (y1 + w2mw6*y3) >> 3
166
                y1 = y4 + y6
167
                y4 -= y6
168
                y6 = y5 + y7
169
                y5 -= y7
170
 
171
                // Stage 3.
172
                y7 = y8 + y3
173
                y8 -= y3
174
                y3 = y0 + y2
175
                y0 -= y2
176
                y2 = (r2*(y4+y5) + 128) >> 8
177
                y4 = (r2*(y4-y5) + 128) >> 8
178
 
179
                // Stage 4.
180
                src[8*0+x] = (y7 + y1) >> 14
181
                src[8*1+x] = (y3 + y2) >> 14
182
                src[8*2+x] = (y0 + y4) >> 14
183
                src[8*3+x] = (y8 + y6) >> 14
184
                src[8*4+x] = (y8 - y6) >> 14
185
                src[8*5+x] = (y0 - y4) >> 14
186
                src[8*6+x] = (y3 - y2) >> 14
187
                src[8*7+x] = (y7 - y1) >> 14
188
        }
189
 
190
        // Level shift by +128, clip to [0, 255], and write to dst.
191
        for y := 0; y < 8; y++ {
192
                for x := 0; x < 8; x++ {
193
                        c := src[y*8+x]
194
                        if c < -128 {
195
                                c = 0
196
                        } else if c > 127 {
197
                                c = 255
198
                        } else {
199
                                c += 128
200
                        }
201
                        dst[y*stride+x] = uint8(c)
202
                }
203
        }
204
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.