| 1 |
747 |
jeremybenn |
// Copyright 2009 The Go Authors. All rights reserved.
|
| 2 |
|
|
// Use of this source code is governed by a BSD-style
|
| 3 |
|
|
// license that can be found in the LICENSE file.
|
| 4 |
|
|
|
| 5 |
|
|
// This file implements signed multi-precision integers.
|
| 6 |
|
|
|
| 7 |
|
|
package big
|
| 8 |
|
|
|
| 9 |
|
|
import (
|
| 10 |
|
|
"errors"
|
| 11 |
|
|
"fmt"
|
| 12 |
|
|
"io"
|
| 13 |
|
|
"math/rand"
|
| 14 |
|
|
"strings"
|
| 15 |
|
|
)
|
| 16 |
|
|
|
| 17 |
|
|
// An Int represents a signed multi-precision integer.
|
| 18 |
|
|
// The zero value for an Int represents the value 0.
|
| 19 |
|
|
type Int struct {
|
| 20 |
|
|
neg bool // sign
|
| 21 |
|
|
abs nat // absolute value of the integer
|
| 22 |
|
|
}
|
| 23 |
|
|
|
| 24 |
|
|
var intOne = &Int{false, natOne}
|
| 25 |
|
|
|
| 26 |
|
|
// Sign returns:
|
| 27 |
|
|
//
|
| 28 |
|
|
// -1 if x < 0
|
| 29 |
|
|
// 0 if x == 0
|
| 30 |
|
|
// +1 if x > 0
|
| 31 |
|
|
//
|
| 32 |
|
|
func (x *Int) Sign() int {
|
| 33 |
|
|
if len(x.abs) == 0 {
|
| 34 |
|
|
return 0
|
| 35 |
|
|
}
|
| 36 |
|
|
if x.neg {
|
| 37 |
|
|
return -1
|
| 38 |
|
|
}
|
| 39 |
|
|
return 1
|
| 40 |
|
|
}
|
| 41 |
|
|
|
| 42 |
|
|
// SetInt64 sets z to x and returns z.
|
| 43 |
|
|
func (z *Int) SetInt64(x int64) *Int {
|
| 44 |
|
|
neg := false
|
| 45 |
|
|
if x < 0 {
|
| 46 |
|
|
neg = true
|
| 47 |
|
|
x = -x
|
| 48 |
|
|
}
|
| 49 |
|
|
z.abs = z.abs.setUint64(uint64(x))
|
| 50 |
|
|
z.neg = neg
|
| 51 |
|
|
return z
|
| 52 |
|
|
}
|
| 53 |
|
|
|
| 54 |
|
|
// NewInt allocates and returns a new Int set to x.
|
| 55 |
|
|
func NewInt(x int64) *Int {
|
| 56 |
|
|
return new(Int).SetInt64(x)
|
| 57 |
|
|
}
|
| 58 |
|
|
|
| 59 |
|
|
// Set sets z to x and returns z.
|
| 60 |
|
|
func (z *Int) Set(x *Int) *Int {
|
| 61 |
|
|
if z != x {
|
| 62 |
|
|
z.abs = z.abs.set(x.abs)
|
| 63 |
|
|
z.neg = x.neg
|
| 64 |
|
|
}
|
| 65 |
|
|
return z
|
| 66 |
|
|
}
|
| 67 |
|
|
|
| 68 |
|
|
// Bits provides raw (unchecked but fast) access to x by returning its
|
| 69 |
|
|
// absolute value as a little-endian Word slice. The result and x share
|
| 70 |
|
|
// the same underlying array.
|
| 71 |
|
|
// Bits is intended to support implementation of missing low-level Int
|
| 72 |
|
|
// functionality outside this package; it should be avoided otherwise.
|
| 73 |
|
|
func (x *Int) Bits() []Word {
|
| 74 |
|
|
return x.abs
|
| 75 |
|
|
}
|
| 76 |
|
|
|
| 77 |
|
|
// SetBits provides raw (unchecked but fast) access to z by setting its
|
| 78 |
|
|
// value to abs, interpreted as a little-endian Word slice, and returning
|
| 79 |
|
|
// z. The result and abs share the same underlying array.
|
| 80 |
|
|
// SetBits is intended to support implementation of missing low-level Int
|
| 81 |
|
|
// functionality outside this package; it should be avoided otherwise.
|
| 82 |
|
|
func (z *Int) SetBits(abs []Word) *Int {
|
| 83 |
|
|
z.abs = nat(abs).norm()
|
| 84 |
|
|
z.neg = false
|
| 85 |
|
|
return z
|
| 86 |
|
|
}
|
| 87 |
|
|
|
| 88 |
|
|
// Abs sets z to |x| (the absolute value of x) and returns z.
|
| 89 |
|
|
func (z *Int) Abs(x *Int) *Int {
|
| 90 |
|
|
z.Set(x)
|
| 91 |
|
|
z.neg = false
|
| 92 |
|
|
return z
|
| 93 |
|
|
}
|
| 94 |
|
|
|
| 95 |
|
|
// Neg sets z to -x and returns z.
|
| 96 |
|
|
func (z *Int) Neg(x *Int) *Int {
|
| 97 |
|
|
z.Set(x)
|
| 98 |
|
|
z.neg = len(z.abs) > 0 && !z.neg // 0 has no sign
|
| 99 |
|
|
return z
|
| 100 |
|
|
}
|
| 101 |
|
|
|
| 102 |
|
|
// Add sets z to the sum x+y and returns z.
|
| 103 |
|
|
func (z *Int) Add(x, y *Int) *Int {
|
| 104 |
|
|
neg := x.neg
|
| 105 |
|
|
if x.neg == y.neg {
|
| 106 |
|
|
// x + y == x + y
|
| 107 |
|
|
// (-x) + (-y) == -(x + y)
|
| 108 |
|
|
z.abs = z.abs.add(x.abs, y.abs)
|
| 109 |
|
|
} else {
|
| 110 |
|
|
// x + (-y) == x - y == -(y - x)
|
| 111 |
|
|
// (-x) + y == y - x == -(x - y)
|
| 112 |
|
|
if x.abs.cmp(y.abs) >= 0 {
|
| 113 |
|
|
z.abs = z.abs.sub(x.abs, y.abs)
|
| 114 |
|
|
} else {
|
| 115 |
|
|
neg = !neg
|
| 116 |
|
|
z.abs = z.abs.sub(y.abs, x.abs)
|
| 117 |
|
|
}
|
| 118 |
|
|
}
|
| 119 |
|
|
z.neg = len(z.abs) > 0 && neg // 0 has no sign
|
| 120 |
|
|
return z
|
| 121 |
|
|
}
|
| 122 |
|
|
|
| 123 |
|
|
// Sub sets z to the difference x-y and returns z.
|
| 124 |
|
|
func (z *Int) Sub(x, y *Int) *Int {
|
| 125 |
|
|
neg := x.neg
|
| 126 |
|
|
if x.neg != y.neg {
|
| 127 |
|
|
// x - (-y) == x + y
|
| 128 |
|
|
// (-x) - y == -(x + y)
|
| 129 |
|
|
z.abs = z.abs.add(x.abs, y.abs)
|
| 130 |
|
|
} else {
|
| 131 |
|
|
// x - y == x - y == -(y - x)
|
| 132 |
|
|
// (-x) - (-y) == y - x == -(x - y)
|
| 133 |
|
|
if x.abs.cmp(y.abs) >= 0 {
|
| 134 |
|
|
z.abs = z.abs.sub(x.abs, y.abs)
|
| 135 |
|
|
} else {
|
| 136 |
|
|
neg = !neg
|
| 137 |
|
|
z.abs = z.abs.sub(y.abs, x.abs)
|
| 138 |
|
|
}
|
| 139 |
|
|
}
|
| 140 |
|
|
z.neg = len(z.abs) > 0 && neg // 0 has no sign
|
| 141 |
|
|
return z
|
| 142 |
|
|
}
|
| 143 |
|
|
|
| 144 |
|
|
// Mul sets z to the product x*y and returns z.
|
| 145 |
|
|
func (z *Int) Mul(x, y *Int) *Int {
|
| 146 |
|
|
// x * y == x * y
|
| 147 |
|
|
// x * (-y) == -(x * y)
|
| 148 |
|
|
// (-x) * y == -(x * y)
|
| 149 |
|
|
// (-x) * (-y) == x * y
|
| 150 |
|
|
z.abs = z.abs.mul(x.abs, y.abs)
|
| 151 |
|
|
z.neg = len(z.abs) > 0 && x.neg != y.neg // 0 has no sign
|
| 152 |
|
|
return z
|
| 153 |
|
|
}
|
| 154 |
|
|
|
| 155 |
|
|
// MulRange sets z to the product of all integers
|
| 156 |
|
|
// in the range [a, b] inclusively and returns z.
|
| 157 |
|
|
// If a > b (empty range), the result is 1.
|
| 158 |
|
|
func (z *Int) MulRange(a, b int64) *Int {
|
| 159 |
|
|
switch {
|
| 160 |
|
|
case a > b:
|
| 161 |
|
|
return z.SetInt64(1) // empty range
|
| 162 |
|
|
case a <= 0 && b >= 0:
|
| 163 |
|
|
return z.SetInt64(0) // range includes 0
|
| 164 |
|
|
}
|
| 165 |
|
|
// a <= b && (b < 0 || a > 0)
|
| 166 |
|
|
|
| 167 |
|
|
neg := false
|
| 168 |
|
|
if a < 0 {
|
| 169 |
|
|
neg = (b-a)&1 == 0
|
| 170 |
|
|
a, b = -b, -a
|
| 171 |
|
|
}
|
| 172 |
|
|
|
| 173 |
|
|
z.abs = z.abs.mulRange(uint64(a), uint64(b))
|
| 174 |
|
|
z.neg = neg
|
| 175 |
|
|
return z
|
| 176 |
|
|
}
|
| 177 |
|
|
|
| 178 |
|
|
// Binomial sets z to the binomial coefficient of (n, k) and returns z.
|
| 179 |
|
|
func (z *Int) Binomial(n, k int64) *Int {
|
| 180 |
|
|
var a, b Int
|
| 181 |
|
|
a.MulRange(n-k+1, n)
|
| 182 |
|
|
b.MulRange(1, k)
|
| 183 |
|
|
return z.Quo(&a, &b)
|
| 184 |
|
|
}
|
| 185 |
|
|
|
| 186 |
|
|
// Quo sets z to the quotient x/y for y != 0 and returns z.
|
| 187 |
|
|
// If y == 0, a division-by-zero run-time panic occurs.
|
| 188 |
|
|
// Quo implements truncated division (like Go); see QuoRem for more details.
|
| 189 |
|
|
func (z *Int) Quo(x, y *Int) *Int {
|
| 190 |
|
|
z.abs, _ = z.abs.div(nil, x.abs, y.abs)
|
| 191 |
|
|
z.neg = len(z.abs) > 0 && x.neg != y.neg // 0 has no sign
|
| 192 |
|
|
return z
|
| 193 |
|
|
}
|
| 194 |
|
|
|
| 195 |
|
|
// Rem sets z to the remainder x%y for y != 0 and returns z.
|
| 196 |
|
|
// If y == 0, a division-by-zero run-time panic occurs.
|
| 197 |
|
|
// Rem implements truncated modulus (like Go); see QuoRem for more details.
|
| 198 |
|
|
func (z *Int) Rem(x, y *Int) *Int {
|
| 199 |
|
|
_, z.abs = nat(nil).div(z.abs, x.abs, y.abs)
|
| 200 |
|
|
z.neg = len(z.abs) > 0 && x.neg // 0 has no sign
|
| 201 |
|
|
return z
|
| 202 |
|
|
}
|
| 203 |
|
|
|
| 204 |
|
|
// QuoRem sets z to the quotient x/y and r to the remainder x%y
|
| 205 |
|
|
// and returns the pair (z, r) for y != 0.
|
| 206 |
|
|
// If y == 0, a division-by-zero run-time panic occurs.
|
| 207 |
|
|
//
|
| 208 |
|
|
// QuoRem implements T-division and modulus (like Go):
|
| 209 |
|
|
//
|
| 210 |
|
|
// q = x/y with the result truncated to zero
|
| 211 |
|
|
// r = x - y*q
|
| 212 |
|
|
//
|
| 213 |
|
|
// (See Daan Leijen, ``Division and Modulus for Computer Scientists''.)
|
| 214 |
|
|
// See DivMod for Euclidean division and modulus (unlike Go).
|
| 215 |
|
|
//
|
| 216 |
|
|
func (z *Int) QuoRem(x, y, r *Int) (*Int, *Int) {
|
| 217 |
|
|
z.abs, r.abs = z.abs.div(r.abs, x.abs, y.abs)
|
| 218 |
|
|
z.neg, r.neg = len(z.abs) > 0 && x.neg != y.neg, len(r.abs) > 0 && x.neg // 0 has no sign
|
| 219 |
|
|
return z, r
|
| 220 |
|
|
}
|
| 221 |
|
|
|
| 222 |
|
|
// Div sets z to the quotient x/y for y != 0 and returns z.
|
| 223 |
|
|
// If y == 0, a division-by-zero run-time panic occurs.
|
| 224 |
|
|
// Div implements Euclidean division (unlike Go); see DivMod for more details.
|
| 225 |
|
|
func (z *Int) Div(x, y *Int) *Int {
|
| 226 |
|
|
y_neg := y.neg // z may be an alias for y
|
| 227 |
|
|
var r Int
|
| 228 |
|
|
z.QuoRem(x, y, &r)
|
| 229 |
|
|
if r.neg {
|
| 230 |
|
|
if y_neg {
|
| 231 |
|
|
z.Add(z, intOne)
|
| 232 |
|
|
} else {
|
| 233 |
|
|
z.Sub(z, intOne)
|
| 234 |
|
|
}
|
| 235 |
|
|
}
|
| 236 |
|
|
return z
|
| 237 |
|
|
}
|
| 238 |
|
|
|
| 239 |
|
|
// Mod sets z to the modulus x%y for y != 0 and returns z.
|
| 240 |
|
|
// If y == 0, a division-by-zero run-time panic occurs.
|
| 241 |
|
|
// Mod implements Euclidean modulus (unlike Go); see DivMod for more details.
|
| 242 |
|
|
func (z *Int) Mod(x, y *Int) *Int {
|
| 243 |
|
|
y0 := y // save y
|
| 244 |
|
|
if z == y || alias(z.abs, y.abs) {
|
| 245 |
|
|
y0 = new(Int).Set(y)
|
| 246 |
|
|
}
|
| 247 |
|
|
var q Int
|
| 248 |
|
|
q.QuoRem(x, y, z)
|
| 249 |
|
|
if z.neg {
|
| 250 |
|
|
if y0.neg {
|
| 251 |
|
|
z.Sub(z, y0)
|
| 252 |
|
|
} else {
|
| 253 |
|
|
z.Add(z, y0)
|
| 254 |
|
|
}
|
| 255 |
|
|
}
|
| 256 |
|
|
return z
|
| 257 |
|
|
}
|
| 258 |
|
|
|
| 259 |
|
|
// DivMod sets z to the quotient x div y and m to the modulus x mod y
|
| 260 |
|
|
// and returns the pair (z, m) for y != 0.
|
| 261 |
|
|
// If y == 0, a division-by-zero run-time panic occurs.
|
| 262 |
|
|
//
|
| 263 |
|
|
// DivMod implements Euclidean division and modulus (unlike Go):
|
| 264 |
|
|
//
|
| 265 |
|
|
// q = x div y such that
|
| 266 |
|
|
// m = x - y*q with 0 <= m < |q|
|
| 267 |
|
|
//
|
| 268 |
|
|
// (See Raymond T. Boute, ``The Euclidean definition of the functions
|
| 269 |
|
|
// div and mod''. ACM Transactions on Programming Languages and
|
| 270 |
|
|
// Systems (TOPLAS), 14(2):127-144, New York, NY, USA, 4/1992.
|
| 271 |
|
|
// ACM press.)
|
| 272 |
|
|
// See QuoRem for T-division and modulus (like Go).
|
| 273 |
|
|
//
|
| 274 |
|
|
func (z *Int) DivMod(x, y, m *Int) (*Int, *Int) {
|
| 275 |
|
|
y0 := y // save y
|
| 276 |
|
|
if z == y || alias(z.abs, y.abs) {
|
| 277 |
|
|
y0 = new(Int).Set(y)
|
| 278 |
|
|
}
|
| 279 |
|
|
z.QuoRem(x, y, m)
|
| 280 |
|
|
if m.neg {
|
| 281 |
|
|
if y0.neg {
|
| 282 |
|
|
z.Add(z, intOne)
|
| 283 |
|
|
m.Sub(m, y0)
|
| 284 |
|
|
} else {
|
| 285 |
|
|
z.Sub(z, intOne)
|
| 286 |
|
|
m.Add(m, y0)
|
| 287 |
|
|
}
|
| 288 |
|
|
}
|
| 289 |
|
|
return z, m
|
| 290 |
|
|
}
|
| 291 |
|
|
|
| 292 |
|
|
// Cmp compares x and y and returns:
|
| 293 |
|
|
//
|
| 294 |
|
|
// -1 if x < y
|
| 295 |
|
|
// 0 if x == y
|
| 296 |
|
|
// +1 if x > y
|
| 297 |
|
|
//
|
| 298 |
|
|
func (x *Int) Cmp(y *Int) (r int) {
|
| 299 |
|
|
// x cmp y == x cmp y
|
| 300 |
|
|
// x cmp (-y) == x
|
| 301 |
|
|
// (-x) cmp y == y
|
| 302 |
|
|
// (-x) cmp (-y) == -(x cmp y)
|
| 303 |
|
|
switch {
|
| 304 |
|
|
case x.neg == y.neg:
|
| 305 |
|
|
r = x.abs.cmp(y.abs)
|
| 306 |
|
|
if x.neg {
|
| 307 |
|
|
r = -r
|
| 308 |
|
|
}
|
| 309 |
|
|
case x.neg:
|
| 310 |
|
|
r = -1
|
| 311 |
|
|
default:
|
| 312 |
|
|
r = 1
|
| 313 |
|
|
}
|
| 314 |
|
|
return
|
| 315 |
|
|
}
|
| 316 |
|
|
|
| 317 |
|
|
func (x *Int) String() string {
|
| 318 |
|
|
switch {
|
| 319 |
|
|
case x == nil:
|
| 320 |
|
|
return ""
|
| 321 |
|
|
case x.neg:
|
| 322 |
|
|
return "-" + x.abs.decimalString()
|
| 323 |
|
|
}
|
| 324 |
|
|
return x.abs.decimalString()
|
| 325 |
|
|
}
|
| 326 |
|
|
|
| 327 |
|
|
func charset(ch rune) string {
|
| 328 |
|
|
switch ch {
|
| 329 |
|
|
case 'b':
|
| 330 |
|
|
return lowercaseDigits[0:2]
|
| 331 |
|
|
case 'o':
|
| 332 |
|
|
return lowercaseDigits[0:8]
|
| 333 |
|
|
case 'd', 's', 'v':
|
| 334 |
|
|
return lowercaseDigits[0:10]
|
| 335 |
|
|
case 'x':
|
| 336 |
|
|
return lowercaseDigits[0:16]
|
| 337 |
|
|
case 'X':
|
| 338 |
|
|
return uppercaseDigits[0:16]
|
| 339 |
|
|
}
|
| 340 |
|
|
return "" // unknown format
|
| 341 |
|
|
}
|
| 342 |
|
|
|
| 343 |
|
|
// write count copies of text to s
|
| 344 |
|
|
func writeMultiple(s fmt.State, text string, count int) {
|
| 345 |
|
|
if len(text) > 0 {
|
| 346 |
|
|
b := []byte(text)
|
| 347 |
|
|
for ; count > 0; count-- {
|
| 348 |
|
|
s.Write(b)
|
| 349 |
|
|
}
|
| 350 |
|
|
}
|
| 351 |
|
|
}
|
| 352 |
|
|
|
| 353 |
|
|
// Format is a support routine for fmt.Formatter. It accepts
|
| 354 |
|
|
// the formats 'b' (binary), 'o' (octal), 'd' (decimal), 'x'
|
| 355 |
|
|
// (lowercase hexadecimal), and 'X' (uppercase hexadecimal).
|
| 356 |
|
|
// Also supported are the full suite of package fmt's format
|
| 357 |
|
|
// verbs for integral types, including '+', '-', and ' '
|
| 358 |
|
|
// for sign control, '#' for leading zero in octal and for
|
| 359 |
|
|
// hexadecimal, a leading "0x" or "0X" for "%#x" and "%#X"
|
| 360 |
|
|
// respectively, specification of minimum digits precision,
|
| 361 |
|
|
// output field width, space or zero padding, and left or
|
| 362 |
|
|
// right justification.
|
| 363 |
|
|
//
|
| 364 |
|
|
func (x *Int) Format(s fmt.State, ch rune) {
|
| 365 |
|
|
cs := charset(ch)
|
| 366 |
|
|
|
| 367 |
|
|
// special cases
|
| 368 |
|
|
switch {
|
| 369 |
|
|
case cs == "":
|
| 370 |
|
|
// unknown format
|
| 371 |
|
|
fmt.Fprintf(s, "%%!%c(big.Int=%s)", ch, x.String())
|
| 372 |
|
|
return
|
| 373 |
|
|
case x == nil:
|
| 374 |
|
|
fmt.Fprint(s, "")
|
| 375 |
|
|
return
|
| 376 |
|
|
}
|
| 377 |
|
|
|
| 378 |
|
|
// determine sign character
|
| 379 |
|
|
sign := ""
|
| 380 |
|
|
switch {
|
| 381 |
|
|
case x.neg:
|
| 382 |
|
|
sign = "-"
|
| 383 |
|
|
case s.Flag('+'): // supersedes ' ' when both specified
|
| 384 |
|
|
sign = "+"
|
| 385 |
|
|
case s.Flag(' '):
|
| 386 |
|
|
sign = " "
|
| 387 |
|
|
}
|
| 388 |
|
|
|
| 389 |
|
|
// determine prefix characters for indicating output base
|
| 390 |
|
|
prefix := ""
|
| 391 |
|
|
if s.Flag('#') {
|
| 392 |
|
|
switch ch {
|
| 393 |
|
|
case 'o': // octal
|
| 394 |
|
|
prefix = "0"
|
| 395 |
|
|
case 'x': // hexadecimal
|
| 396 |
|
|
prefix = "0x"
|
| 397 |
|
|
case 'X':
|
| 398 |
|
|
prefix = "0X"
|
| 399 |
|
|
}
|
| 400 |
|
|
}
|
| 401 |
|
|
|
| 402 |
|
|
// determine digits with base set by len(cs) and digit characters from cs
|
| 403 |
|
|
digits := x.abs.string(cs)
|
| 404 |
|
|
|
| 405 |
|
|
// number of characters for the three classes of number padding
|
| 406 |
|
|
var left int // space characters to left of digits for right justification ("%8d")
|
| 407 |
|
|
var zeroes int // zero characters (actually cs[0]) as left-most digits ("%.8d")
|
| 408 |
|
|
var right int // space characters to right of digits for left justification ("%-8d")
|
| 409 |
|
|
|
| 410 |
|
|
// determine number padding from precision: the least number of digits to output
|
| 411 |
|
|
precision, precisionSet := s.Precision()
|
| 412 |
|
|
if precisionSet {
|
| 413 |
|
|
switch {
|
| 414 |
|
|
case len(digits) < precision:
|
| 415 |
|
|
zeroes = precision - len(digits) // count of zero padding
|
| 416 |
|
|
case digits == "0" && precision == 0:
|
| 417 |
|
|
return // print nothing if zero value (x == 0) and zero precision ("." or ".0")
|
| 418 |
|
|
}
|
| 419 |
|
|
}
|
| 420 |
|
|
|
| 421 |
|
|
// determine field pad from width: the least number of characters to output
|
| 422 |
|
|
length := len(sign) + len(prefix) + zeroes + len(digits)
|
| 423 |
|
|
if width, widthSet := s.Width(); widthSet && length < width { // pad as specified
|
| 424 |
|
|
switch d := width - length; {
|
| 425 |
|
|
case s.Flag('-'):
|
| 426 |
|
|
// pad on the right with spaces; supersedes '0' when both specified
|
| 427 |
|
|
right = d
|
| 428 |
|
|
case s.Flag('0') && !precisionSet:
|
| 429 |
|
|
// pad with zeroes unless precision also specified
|
| 430 |
|
|
zeroes = d
|
| 431 |
|
|
default:
|
| 432 |
|
|
// pad on the left with spaces
|
| 433 |
|
|
left = d
|
| 434 |
|
|
}
|
| 435 |
|
|
}
|
| 436 |
|
|
|
| 437 |
|
|
// print number as [left pad][sign][prefix][zero pad][digits][right pad]
|
| 438 |
|
|
writeMultiple(s, " ", left)
|
| 439 |
|
|
writeMultiple(s, sign, 1)
|
| 440 |
|
|
writeMultiple(s, prefix, 1)
|
| 441 |
|
|
writeMultiple(s, "0", zeroes)
|
| 442 |
|
|
writeMultiple(s, digits, 1)
|
| 443 |
|
|
writeMultiple(s, " ", right)
|
| 444 |
|
|
}
|
| 445 |
|
|
|
| 446 |
|
|
// scan sets z to the integer value corresponding to the longest possible prefix
|
| 447 |
|
|
// read from r representing a signed integer number in a given conversion base.
|
| 448 |
|
|
// It returns z, the actual conversion base used, and an error, if any. In the
|
| 449 |
|
|
// error case, the value of z is undefined but the returned value is nil. The
|
| 450 |
|
|
// syntax follows the syntax of integer literals in Go.
|
| 451 |
|
|
//
|
| 452 |
|
|
// The base argument must be 0 or a value from 2 through MaxBase. If the base
|
| 453 |
|
|
// is 0, the string prefix determines the actual conversion base. A prefix of
|
| 454 |
|
|
// ``0x'' or ``0X'' selects base 16; the ``0'' prefix selects base 8, and a
|
| 455 |
|
|
// ``0b'' or ``0B'' prefix selects base 2. Otherwise the selected base is 10.
|
| 456 |
|
|
//
|
| 457 |
|
|
func (z *Int) scan(r io.RuneScanner, base int) (*Int, int, error) {
|
| 458 |
|
|
// determine sign
|
| 459 |
|
|
ch, _, err := r.ReadRune()
|
| 460 |
|
|
if err != nil {
|
| 461 |
|
|
return nil, 0, err
|
| 462 |
|
|
}
|
| 463 |
|
|
neg := false
|
| 464 |
|
|
switch ch {
|
| 465 |
|
|
case '-':
|
| 466 |
|
|
neg = true
|
| 467 |
|
|
case '+': // nothing to do
|
| 468 |
|
|
default:
|
| 469 |
|
|
r.UnreadRune()
|
| 470 |
|
|
}
|
| 471 |
|
|
|
| 472 |
|
|
// determine mantissa
|
| 473 |
|
|
z.abs, base, err = z.abs.scan(r, base)
|
| 474 |
|
|
if err != nil {
|
| 475 |
|
|
return nil, base, err
|
| 476 |
|
|
}
|
| 477 |
|
|
z.neg = len(z.abs) > 0 && neg // 0 has no sign
|
| 478 |
|
|
|
| 479 |
|
|
return z, base, nil
|
| 480 |
|
|
}
|
| 481 |
|
|
|
| 482 |
|
|
// Scan is a support routine for fmt.Scanner; it sets z to the value of
|
| 483 |
|
|
// the scanned number. It accepts the formats 'b' (binary), 'o' (octal),
|
| 484 |
|
|
// 'd' (decimal), 'x' (lowercase hexadecimal), and 'X' (uppercase hexadecimal).
|
| 485 |
|
|
func (z *Int) Scan(s fmt.ScanState, ch rune) error {
|
| 486 |
|
|
s.SkipSpace() // skip leading space characters
|
| 487 |
|
|
base := 0
|
| 488 |
|
|
switch ch {
|
| 489 |
|
|
case 'b':
|
| 490 |
|
|
base = 2
|
| 491 |
|
|
case 'o':
|
| 492 |
|
|
base = 8
|
| 493 |
|
|
case 'd':
|
| 494 |
|
|
base = 10
|
| 495 |
|
|
case 'x', 'X':
|
| 496 |
|
|
base = 16
|
| 497 |
|
|
case 's', 'v':
|
| 498 |
|
|
// let scan determine the base
|
| 499 |
|
|
default:
|
| 500 |
|
|
return errors.New("Int.Scan: invalid verb")
|
| 501 |
|
|
}
|
| 502 |
|
|
_, _, err := z.scan(s, base)
|
| 503 |
|
|
return err
|
| 504 |
|
|
}
|
| 505 |
|
|
|
| 506 |
|
|
// Int64 returns the int64 representation of x.
|
| 507 |
|
|
// If x cannot be represented in an int64, the result is undefined.
|
| 508 |
|
|
func (x *Int) Int64() int64 {
|
| 509 |
|
|
if len(x.abs) == 0 {
|
| 510 |
|
|
return 0
|
| 511 |
|
|
}
|
| 512 |
|
|
v := int64(x.abs[0])
|
| 513 |
|
|
if _W == 32 && len(x.abs) > 1 {
|
| 514 |
|
|
v |= int64(x.abs[1]) << 32
|
| 515 |
|
|
}
|
| 516 |
|
|
if x.neg {
|
| 517 |
|
|
v = -v
|
| 518 |
|
|
}
|
| 519 |
|
|
return v
|
| 520 |
|
|
}
|
| 521 |
|
|
|
| 522 |
|
|
// SetString sets z to the value of s, interpreted in the given base,
|
| 523 |
|
|
// and returns z and a boolean indicating success. If SetString fails,
|
| 524 |
|
|
// the value of z is undefined but the returned value is nil.
|
| 525 |
|
|
//
|
| 526 |
|
|
// The base argument must be 0 or a value from 2 through MaxBase. If the base
|
| 527 |
|
|
// is 0, the string prefix determines the actual conversion base. A prefix of
|
| 528 |
|
|
// ``0x'' or ``0X'' selects base 16; the ``0'' prefix selects base 8, and a
|
| 529 |
|
|
// ``0b'' or ``0B'' prefix selects base 2. Otherwise the selected base is 10.
|
| 530 |
|
|
//
|
| 531 |
|
|
func (z *Int) SetString(s string, base int) (*Int, bool) {
|
| 532 |
|
|
r := strings.NewReader(s)
|
| 533 |
|
|
_, _, err := z.scan(r, base)
|
| 534 |
|
|
if err != nil {
|
| 535 |
|
|
return nil, false
|
| 536 |
|
|
}
|
| 537 |
|
|
_, _, err = r.ReadRune()
|
| 538 |
|
|
if err != io.EOF {
|
| 539 |
|
|
return nil, false
|
| 540 |
|
|
}
|
| 541 |
|
|
return z, true // err == io.EOF => scan consumed all of s
|
| 542 |
|
|
}
|
| 543 |
|
|
|
| 544 |
|
|
// SetBytes interprets buf as the bytes of a big-endian unsigned
|
| 545 |
|
|
// integer, sets z to that value, and returns z.
|
| 546 |
|
|
func (z *Int) SetBytes(buf []byte) *Int {
|
| 547 |
|
|
z.abs = z.abs.setBytes(buf)
|
| 548 |
|
|
z.neg = false
|
| 549 |
|
|
return z
|
| 550 |
|
|
}
|
| 551 |
|
|
|
| 552 |
|
|
// Bytes returns the absolute value of z as a big-endian byte slice.
|
| 553 |
|
|
func (x *Int) Bytes() []byte {
|
| 554 |
|
|
buf := make([]byte, len(x.abs)*_S)
|
| 555 |
|
|
return buf[x.abs.bytes(buf):]
|
| 556 |
|
|
}
|
| 557 |
|
|
|
| 558 |
|
|
// BitLen returns the length of the absolute value of z in bits.
|
| 559 |
|
|
// The bit length of 0 is 0.
|
| 560 |
|
|
func (x *Int) BitLen() int {
|
| 561 |
|
|
return x.abs.bitLen()
|
| 562 |
|
|
}
|
| 563 |
|
|
|
| 564 |
|
|
// Exp sets z = x**y mod m and returns z. If m is nil, z = x**y.
|
| 565 |
|
|
// See Knuth, volume 2, section 4.6.3.
|
| 566 |
|
|
func (z *Int) Exp(x, y, m *Int) *Int {
|
| 567 |
|
|
if y.neg || len(y.abs) == 0 {
|
| 568 |
|
|
neg := x.neg
|
| 569 |
|
|
z.SetInt64(1)
|
| 570 |
|
|
z.neg = neg
|
| 571 |
|
|
return z
|
| 572 |
|
|
}
|
| 573 |
|
|
|
| 574 |
|
|
var mWords nat
|
| 575 |
|
|
if m != nil {
|
| 576 |
|
|
mWords = m.abs
|
| 577 |
|
|
}
|
| 578 |
|
|
|
| 579 |
|
|
z.abs = z.abs.expNN(x.abs, y.abs, mWords)
|
| 580 |
|
|
z.neg = len(z.abs) > 0 && x.neg && y.abs[0]&1 == 1 // 0 has no sign
|
| 581 |
|
|
return z
|
| 582 |
|
|
}
|
| 583 |
|
|
|
| 584 |
|
|
// GCD sets z to the greatest common divisor of a and b, which must be
|
| 585 |
|
|
// positive numbers, and returns z.
|
| 586 |
|
|
// If x and y are not nil, GCD sets x and y such that z = a*x + b*y.
|
| 587 |
|
|
// If either a or b is not positive, GCD sets z = x = y = 0.
|
| 588 |
|
|
func (z *Int) GCD(x, y, a, b *Int) *Int {
|
| 589 |
|
|
if a.neg || b.neg {
|
| 590 |
|
|
z.SetInt64(0)
|
| 591 |
|
|
if x != nil {
|
| 592 |
|
|
x.SetInt64(0)
|
| 593 |
|
|
}
|
| 594 |
|
|
if y != nil {
|
| 595 |
|
|
y.SetInt64(0)
|
| 596 |
|
|
}
|
| 597 |
|
|
return z
|
| 598 |
|
|
}
|
| 599 |
|
|
|
| 600 |
|
|
A := new(Int).Set(a)
|
| 601 |
|
|
B := new(Int).Set(b)
|
| 602 |
|
|
|
| 603 |
|
|
X := new(Int)
|
| 604 |
|
|
Y := new(Int).SetInt64(1)
|
| 605 |
|
|
|
| 606 |
|
|
lastX := new(Int).SetInt64(1)
|
| 607 |
|
|
lastY := new(Int)
|
| 608 |
|
|
|
| 609 |
|
|
q := new(Int)
|
| 610 |
|
|
temp := new(Int)
|
| 611 |
|
|
|
| 612 |
|
|
for len(B.abs) > 0 {
|
| 613 |
|
|
r := new(Int)
|
| 614 |
|
|
q, r = q.QuoRem(A, B, r)
|
| 615 |
|
|
|
| 616 |
|
|
A, B = B, r
|
| 617 |
|
|
|
| 618 |
|
|
temp.Set(X)
|
| 619 |
|
|
X.Mul(X, q)
|
| 620 |
|
|
X.neg = !X.neg
|
| 621 |
|
|
X.Add(X, lastX)
|
| 622 |
|
|
lastX.Set(temp)
|
| 623 |
|
|
|
| 624 |
|
|
temp.Set(Y)
|
| 625 |
|
|
Y.Mul(Y, q)
|
| 626 |
|
|
Y.neg = !Y.neg
|
| 627 |
|
|
Y.Add(Y, lastY)
|
| 628 |
|
|
lastY.Set(temp)
|
| 629 |
|
|
}
|
| 630 |
|
|
|
| 631 |
|
|
if x != nil {
|
| 632 |
|
|
*x = *lastX
|
| 633 |
|
|
}
|
| 634 |
|
|
|
| 635 |
|
|
if y != nil {
|
| 636 |
|
|
*y = *lastY
|
| 637 |
|
|
}
|
| 638 |
|
|
|
| 639 |
|
|
*z = *A
|
| 640 |
|
|
return z
|
| 641 |
|
|
}
|
| 642 |
|
|
|
| 643 |
|
|
// ProbablyPrime performs n Miller-Rabin tests to check whether x is prime.
|
| 644 |
|
|
// If it returns true, x is prime with probability 1 - 1/4^n.
|
| 645 |
|
|
// If it returns false, x is not prime.
|
| 646 |
|
|
func (x *Int) ProbablyPrime(n int) bool {
|
| 647 |
|
|
return !x.neg && x.abs.probablyPrime(n)
|
| 648 |
|
|
}
|
| 649 |
|
|
|
| 650 |
|
|
// Rand sets z to a pseudo-random number in [0, n) and returns z.
|
| 651 |
|
|
func (z *Int) Rand(rnd *rand.Rand, n *Int) *Int {
|
| 652 |
|
|
z.neg = false
|
| 653 |
|
|
if n.neg == true || len(n.abs) == 0 {
|
| 654 |
|
|
z.abs = nil
|
| 655 |
|
|
return z
|
| 656 |
|
|
}
|
| 657 |
|
|
z.abs = z.abs.random(rnd, n.abs, n.abs.bitLen())
|
| 658 |
|
|
return z
|
| 659 |
|
|
}
|
| 660 |
|
|
|
| 661 |
|
|
// ModInverse sets z to the multiplicative inverse of g in the group ℤ/pℤ (where
|
| 662 |
|
|
// p is a prime) and returns z.
|
| 663 |
|
|
func (z *Int) ModInverse(g, p *Int) *Int {
|
| 664 |
|
|
var d Int
|
| 665 |
|
|
d.GCD(z, nil, g, p)
|
| 666 |
|
|
// x and y are such that g*x + p*y = d. Since p is prime, d = 1. Taking
|
| 667 |
|
|
// that modulo p results in g*x = 1, therefore x is the inverse element.
|
| 668 |
|
|
if z.neg {
|
| 669 |
|
|
z.Add(z, p)
|
| 670 |
|
|
}
|
| 671 |
|
|
return z
|
| 672 |
|
|
}
|
| 673 |
|
|
|
| 674 |
|
|
// Lsh sets z = x << n and returns z.
|
| 675 |
|
|
func (z *Int) Lsh(x *Int, n uint) *Int {
|
| 676 |
|
|
z.abs = z.abs.shl(x.abs, n)
|
| 677 |
|
|
z.neg = x.neg
|
| 678 |
|
|
return z
|
| 679 |
|
|
}
|
| 680 |
|
|
|
| 681 |
|
|
// Rsh sets z = x >> n and returns z.
|
| 682 |
|
|
func (z *Int) Rsh(x *Int, n uint) *Int {
|
| 683 |
|
|
if x.neg {
|
| 684 |
|
|
// (-x) >> s == ^(x-1) >> s == ^((x-1) >> s) == -(((x-1) >> s) + 1)
|
| 685 |
|
|
t := z.abs.sub(x.abs, natOne) // no underflow because |x| > 0
|
| 686 |
|
|
t = t.shr(t, n)
|
| 687 |
|
|
z.abs = t.add(t, natOne)
|
| 688 |
|
|
z.neg = true // z cannot be zero if x is negative
|
| 689 |
|
|
return z
|
| 690 |
|
|
}
|
| 691 |
|
|
|
| 692 |
|
|
z.abs = z.abs.shr(x.abs, n)
|
| 693 |
|
|
z.neg = false
|
| 694 |
|
|
return z
|
| 695 |
|
|
}
|
| 696 |
|
|
|
| 697 |
|
|
// Bit returns the value of the i'th bit of x. That is, it
|
| 698 |
|
|
// returns (x>>i)&1. The bit index i must be >= 0.
|
| 699 |
|
|
func (x *Int) Bit(i int) uint {
|
| 700 |
|
|
if i < 0 {
|
| 701 |
|
|
panic("negative bit index")
|
| 702 |
|
|
}
|
| 703 |
|
|
if x.neg {
|
| 704 |
|
|
t := nat(nil).sub(x.abs, natOne)
|
| 705 |
|
|
return t.bit(uint(i)) ^ 1
|
| 706 |
|
|
}
|
| 707 |
|
|
|
| 708 |
|
|
return x.abs.bit(uint(i))
|
| 709 |
|
|
}
|
| 710 |
|
|
|
| 711 |
|
|
// SetBit sets z to x, with x's i'th bit set to b (0 or 1).
|
| 712 |
|
|
// That is, if bit is 1 SetBit sets z = x | (1 << i);
|
| 713 |
|
|
// if bit is 0 it sets z = x &^ (1 << i). If bit is not 0 or 1,
|
| 714 |
|
|
// SetBit will panic.
|
| 715 |
|
|
func (z *Int) SetBit(x *Int, i int, b uint) *Int {
|
| 716 |
|
|
if i < 0 {
|
| 717 |
|
|
panic("negative bit index")
|
| 718 |
|
|
}
|
| 719 |
|
|
if x.neg {
|
| 720 |
|
|
t := z.abs.sub(x.abs, natOne)
|
| 721 |
|
|
t = t.setBit(t, uint(i), b^1)
|
| 722 |
|
|
z.abs = t.add(t, natOne)
|
| 723 |
|
|
z.neg = len(z.abs) > 0
|
| 724 |
|
|
return z
|
| 725 |
|
|
}
|
| 726 |
|
|
z.abs = z.abs.setBit(x.abs, uint(i), b)
|
| 727 |
|
|
z.neg = false
|
| 728 |
|
|
return z
|
| 729 |
|
|
}
|
| 730 |
|
|
|
| 731 |
|
|
// And sets z = x & y and returns z.
|
| 732 |
|
|
func (z *Int) And(x, y *Int) *Int {
|
| 733 |
|
|
if x.neg == y.neg {
|
| 734 |
|
|
if x.neg {
|
| 735 |
|
|
// (-x) & (-y) == ^(x-1) & ^(y-1) == ^((x-1) | (y-1)) == -(((x-1) | (y-1)) + 1)
|
| 736 |
|
|
x1 := nat(nil).sub(x.abs, natOne)
|
| 737 |
|
|
y1 := nat(nil).sub(y.abs, natOne)
|
| 738 |
|
|
z.abs = z.abs.add(z.abs.or(x1, y1), natOne)
|
| 739 |
|
|
z.neg = true // z cannot be zero if x and y are negative
|
| 740 |
|
|
return z
|
| 741 |
|
|
}
|
| 742 |
|
|
|
| 743 |
|
|
// x & y == x & y
|
| 744 |
|
|
z.abs = z.abs.and(x.abs, y.abs)
|
| 745 |
|
|
z.neg = false
|
| 746 |
|
|
return z
|
| 747 |
|
|
}
|
| 748 |
|
|
|
| 749 |
|
|
// x.neg != y.neg
|
| 750 |
|
|
if x.neg {
|
| 751 |
|
|
x, y = y, x // & is symmetric
|
| 752 |
|
|
}
|
| 753 |
|
|
|
| 754 |
|
|
// x & (-y) == x & ^(y-1) == x &^ (y-1)
|
| 755 |
|
|
y1 := nat(nil).sub(y.abs, natOne)
|
| 756 |
|
|
z.abs = z.abs.andNot(x.abs, y1)
|
| 757 |
|
|
z.neg = false
|
| 758 |
|
|
return z
|
| 759 |
|
|
}
|
| 760 |
|
|
|
| 761 |
|
|
// AndNot sets z = x &^ y and returns z.
|
| 762 |
|
|
func (z *Int) AndNot(x, y *Int) *Int {
|
| 763 |
|
|
if x.neg == y.neg {
|
| 764 |
|
|
if x.neg {
|
| 765 |
|
|
// (-x) &^ (-y) == ^(x-1) &^ ^(y-1) == ^(x-1) & (y-1) == (y-1) &^ (x-1)
|
| 766 |
|
|
x1 := nat(nil).sub(x.abs, natOne)
|
| 767 |
|
|
y1 := nat(nil).sub(y.abs, natOne)
|
| 768 |
|
|
z.abs = z.abs.andNot(y1, x1)
|
| 769 |
|
|
z.neg = false
|
| 770 |
|
|
return z
|
| 771 |
|
|
}
|
| 772 |
|
|
|
| 773 |
|
|
// x &^ y == x &^ y
|
| 774 |
|
|
z.abs = z.abs.andNot(x.abs, y.abs)
|
| 775 |
|
|
z.neg = false
|
| 776 |
|
|
return z
|
| 777 |
|
|
}
|
| 778 |
|
|
|
| 779 |
|
|
if x.neg {
|
| 780 |
|
|
// (-x) &^ y == ^(x-1) &^ y == ^(x-1) & ^y == ^((x-1) | y) == -(((x-1) | y) + 1)
|
| 781 |
|
|
x1 := nat(nil).sub(x.abs, natOne)
|
| 782 |
|
|
z.abs = z.abs.add(z.abs.or(x1, y.abs), natOne)
|
| 783 |
|
|
z.neg = true // z cannot be zero if x is negative and y is positive
|
| 784 |
|
|
return z
|
| 785 |
|
|
}
|
| 786 |
|
|
|
| 787 |
|
|
// x &^ (-y) == x &^ ^(y-1) == x & (y-1)
|
| 788 |
|
|
y1 := nat(nil).add(y.abs, natOne)
|
| 789 |
|
|
z.abs = z.abs.and(x.abs, y1)
|
| 790 |
|
|
z.neg = false
|
| 791 |
|
|
return z
|
| 792 |
|
|
}
|
| 793 |
|
|
|
| 794 |
|
|
// Or sets z = x | y and returns z.
|
| 795 |
|
|
func (z *Int) Or(x, y *Int) *Int {
|
| 796 |
|
|
if x.neg == y.neg {
|
| 797 |
|
|
if x.neg {
|
| 798 |
|
|
// (-x) | (-y) == ^(x-1) | ^(y-1) == ^((x-1) & (y-1)) == -(((x-1) & (y-1)) + 1)
|
| 799 |
|
|
x1 := nat(nil).sub(x.abs, natOne)
|
| 800 |
|
|
y1 := nat(nil).sub(y.abs, natOne)
|
| 801 |
|
|
z.abs = z.abs.add(z.abs.and(x1, y1), natOne)
|
| 802 |
|
|
z.neg = true // z cannot be zero if x and y are negative
|
| 803 |
|
|
return z
|
| 804 |
|
|
}
|
| 805 |
|
|
|
| 806 |
|
|
// x | y == x | y
|
| 807 |
|
|
z.abs = z.abs.or(x.abs, y.abs)
|
| 808 |
|
|
z.neg = false
|
| 809 |
|
|
return z
|
| 810 |
|
|
}
|
| 811 |
|
|
|
| 812 |
|
|
// x.neg != y.neg
|
| 813 |
|
|
if x.neg {
|
| 814 |
|
|
x, y = y, x // | is symmetric
|
| 815 |
|
|
}
|
| 816 |
|
|
|
| 817 |
|
|
// x | (-y) == x | ^(y-1) == ^((y-1) &^ x) == -(^((y-1) &^ x) + 1)
|
| 818 |
|
|
y1 := nat(nil).sub(y.abs, natOne)
|
| 819 |
|
|
z.abs = z.abs.add(z.abs.andNot(y1, x.abs), natOne)
|
| 820 |
|
|
z.neg = true // z cannot be zero if one of x or y is negative
|
| 821 |
|
|
return z
|
| 822 |
|
|
}
|
| 823 |
|
|
|
| 824 |
|
|
// Xor sets z = x ^ y and returns z.
|
| 825 |
|
|
func (z *Int) Xor(x, y *Int) *Int {
|
| 826 |
|
|
if x.neg == y.neg {
|
| 827 |
|
|
if x.neg {
|
| 828 |
|
|
// (-x) ^ (-y) == ^(x-1) ^ ^(y-1) == (x-1) ^ (y-1)
|
| 829 |
|
|
x1 := nat(nil).sub(x.abs, natOne)
|
| 830 |
|
|
y1 := nat(nil).sub(y.abs, natOne)
|
| 831 |
|
|
z.abs = z.abs.xor(x1, y1)
|
| 832 |
|
|
z.neg = false
|
| 833 |
|
|
return z
|
| 834 |
|
|
}
|
| 835 |
|
|
|
| 836 |
|
|
// x ^ y == x ^ y
|
| 837 |
|
|
z.abs = z.abs.xor(x.abs, y.abs)
|
| 838 |
|
|
z.neg = false
|
| 839 |
|
|
return z
|
| 840 |
|
|
}
|
| 841 |
|
|
|
| 842 |
|
|
// x.neg != y.neg
|
| 843 |
|
|
if x.neg {
|
| 844 |
|
|
x, y = y, x // ^ is symmetric
|
| 845 |
|
|
}
|
| 846 |
|
|
|
| 847 |
|
|
// x ^ (-y) == x ^ ^(y-1) == ^(x ^ (y-1)) == -((x ^ (y-1)) + 1)
|
| 848 |
|
|
y1 := nat(nil).sub(y.abs, natOne)
|
| 849 |
|
|
z.abs = z.abs.add(z.abs.xor(x.abs, y1), natOne)
|
| 850 |
|
|
z.neg = true // z cannot be zero if only one of x or y is negative
|
| 851 |
|
|
return z
|
| 852 |
|
|
}
|
| 853 |
|
|
|
| 854 |
|
|
// Not sets z = ^x and returns z.
|
| 855 |
|
|
func (z *Int) Not(x *Int) *Int {
|
| 856 |
|
|
if x.neg {
|
| 857 |
|
|
// ^(-x) == ^(^(x-1)) == x-1
|
| 858 |
|
|
z.abs = z.abs.sub(x.abs, natOne)
|
| 859 |
|
|
z.neg = false
|
| 860 |
|
|
return z
|
| 861 |
|
|
}
|
| 862 |
|
|
|
| 863 |
|
|
// ^x == -x-1 == -(x+1)
|
| 864 |
|
|
z.abs = z.abs.add(x.abs, natOne)
|
| 865 |
|
|
z.neg = true // z cannot be zero if x is positive
|
| 866 |
|
|
return z
|
| 867 |
|
|
}
|
| 868 |
|
|
|
| 869 |
|
|
// Gob codec version. Permits backward-compatible changes to the encoding.
|
| 870 |
|
|
const intGobVersion byte = 1
|
| 871 |
|
|
|
| 872 |
|
|
// GobEncode implements the gob.GobEncoder interface.
|
| 873 |
|
|
func (x *Int) GobEncode() ([]byte, error) {
|
| 874 |
|
|
buf := make([]byte, 1+len(x.abs)*_S) // extra byte for version and sign bit
|
| 875 |
|
|
i := x.abs.bytes(buf) - 1 // i >= 0
|
| 876 |
|
|
b := intGobVersion << 1 // make space for sign bit
|
| 877 |
|
|
if x.neg {
|
| 878 |
|
|
b |= 1
|
| 879 |
|
|
}
|
| 880 |
|
|
buf[i] = b
|
| 881 |
|
|
return buf[i:], nil
|
| 882 |
|
|
}
|
| 883 |
|
|
|
| 884 |
|
|
// GobDecode implements the gob.GobDecoder interface.
|
| 885 |
|
|
func (z *Int) GobDecode(buf []byte) error {
|
| 886 |
|
|
if len(buf) == 0 {
|
| 887 |
|
|
return errors.New("Int.GobDecode: no data")
|
| 888 |
|
|
}
|
| 889 |
|
|
b := buf[0]
|
| 890 |
|
|
if b>>1 != intGobVersion {
|
| 891 |
|
|
return errors.New(fmt.Sprintf("Int.GobDecode: encoding version %d not supported", b>>1))
|
| 892 |
|
|
}
|
| 893 |
|
|
z.neg = b&1 != 0
|
| 894 |
|
|
z.abs = z.abs.setBytes(buf[1:])
|
| 895 |
|
|
return nil
|
| 896 |
|
|
}
|