OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libgo/] [go/] [math/] [cmplx/] [asin.go] - Blame information for rev 801

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 747 jeremybenn
// Copyright 2010 The Go Authors. All rights reserved.
2
// Use of this source code is governed by a BSD-style
3
// license that can be found in the LICENSE file.
4
 
5
package cmplx
6
 
7
import "math"
8
 
9
// The original C code, the long comment, and the constants
10
// below are from http://netlib.sandia.gov/cephes/c9x-complex/clog.c.
11
// The go code is a simplified version of the original C.
12
//
13
// Cephes Math Library Release 2.8:  June, 2000
14
// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
15
//
16
// The readme file at http://netlib.sandia.gov/cephes/ says:
17
//    Some software in this archive may be from the book _Methods and
18
// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster
19
// International, 1989) or from the Cephes Mathematical Library, a
20
// commercial product. In either event, it is copyrighted by the author.
21
// What you see here may be used freely but it comes with no support or
22
// guarantee.
23
//
24
//   The two known misprints in the book are repaired here in the
25
// source listings for the gamma function and the incomplete beta
26
// integral.
27
//
28
//   Stephen L. Moshier
29
//   moshier@na-net.ornl.gov
30
 
31
// Complex circular arc sine
32
//
33
// DESCRIPTION:
34
//
35
// Inverse complex sine:
36
//                               2
37
// w = -i clog( iz + csqrt( 1 - z ) ).
38
//
39
// casin(z) = -i casinh(iz)
40
//
41
// ACCURACY:
42
//
43
//                      Relative error:
44
// arithmetic   domain     # trials      peak         rms
45
//    DEC       -10,+10     10100       2.1e-15     3.4e-16
46
//    IEEE      -10,+10     30000       2.2e-14     2.7e-15
47
// Larger relative error can be observed for z near zero.
48
// Also tested by csin(casin(z)) = z.
49
 
50
// Asin returns the inverse sine of x.
51
func Asin(x complex128) complex128 {
52
        if imag(x) == 0 {
53
                if math.Abs(real(x)) > 1 {
54
                        return complex(math.Pi/2, 0) // DOMAIN error
55
                }
56
                return complex(math.Asin(real(x)), 0)
57
        }
58
        ct := complex(-imag(x), real(x)) // i * x
59
        xx := x * x
60
        x1 := complex(1-real(xx), -imag(xx)) // 1 - x*x
61
        x2 := Sqrt(x1)                       // x2 = sqrt(1 - x*x)
62
        w := Log(ct + x2)
63
        return complex(imag(w), -real(w)) // -i * w
64
}
65
 
66
// Asinh returns the inverse hyperbolic sine of x.
67
func Asinh(x complex128) complex128 {
68
        // TODO check range
69
        if imag(x) == 0 {
70
                if math.Abs(real(x)) > 1 {
71
                        return complex(math.Pi/2, 0) // DOMAIN error
72
                }
73
                return complex(math.Asinh(real(x)), 0)
74
        }
75
        xx := x * x
76
        x1 := complex(1+real(xx), imag(xx)) // 1 + x*x
77
        return Log(x + Sqrt(x1))            // log(x + sqrt(1 + x*x))
78
}
79
 
80
// Complex circular arc cosine
81
//
82
// DESCRIPTION:
83
//
84
// w = arccos z  =  PI/2 - arcsin z.
85
//
86
// ACCURACY:
87
//
88
//                      Relative error:
89
// arithmetic   domain     # trials      peak         rms
90
//    DEC       -10,+10      5200      1.6e-15      2.8e-16
91
//    IEEE      -10,+10     30000      1.8e-14      2.2e-15
92
 
93
// Acos returns the inverse cosine of x.
94
func Acos(x complex128) complex128 {
95
        w := Asin(x)
96
        return complex(math.Pi/2-real(w), -imag(w))
97
}
98
 
99
// Acosh returns the inverse hyperbolic cosine of x.
100
func Acosh(x complex128) complex128 {
101
        w := Acos(x)
102
        if imag(w) <= 0 {
103
                return complex(-imag(w), real(w)) // i * w
104
        }
105
        return complex(imag(w), -real(w)) // -i * w
106
}
107
 
108
// Complex circular arc tangent
109
//
110
// DESCRIPTION:
111
//
112
// If
113
//     z = x + iy,
114
//
115
// then
116
//          1       (    2x     )
117
// Re w  =  - arctan(-----------)  +  k PI
118
//          2       (     2    2)
119
//                  (1 - x  - y )
120
//
121
//               ( 2         2)
122
//          1    (x  +  (y+1) )
123
// Im w  =  - log(------------)
124
//          4    ( 2         2)
125
//               (x  +  (y-1) )
126
//
127
// Where k is an arbitrary integer.
128
//
129
// catan(z) = -i catanh(iz).
130
//
131
// ACCURACY:
132
//
133
//                      Relative error:
134
// arithmetic   domain     # trials      peak         rms
135
//    DEC       -10,+10      5900       1.3e-16     7.8e-18
136
//    IEEE      -10,+10     30000       2.3e-15     8.5e-17
137
// The check catan( ctan(z) )  =  z, with |x| and |y| < PI/2,
138
// had peak relative error 1.5e-16, rms relative error
139
// 2.9e-17.  See also clog().
140
 
141
// Atan returns the inverse tangent of x.
142
func Atan(x complex128) complex128 {
143
        if real(x) == 0 && imag(x) > 1 {
144
                return NaN()
145
        }
146
 
147
        x2 := real(x) * real(x)
148
        a := 1 - x2 - imag(x)*imag(x)
149
        if a == 0 {
150
                return NaN()
151
        }
152
        t := 0.5 * math.Atan2(2*real(x), a)
153
        w := reducePi(t)
154
 
155
        t = imag(x) - 1
156
        b := x2 + t*t
157
        if b == 0 {
158
                return NaN()
159
        }
160
        t = imag(x) + 1
161
        c := (x2 + t*t) / b
162
        return complex(w, 0.25*math.Log(c))
163
}
164
 
165
// Atanh returns the inverse hyperbolic tangent of x.
166
func Atanh(x complex128) complex128 {
167
        z := complex(-imag(x), real(x)) // z = i * x
168
        z = Atan(z)
169
        return complex(imag(z), -real(z)) // z = -i * z
170
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.