OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libgo/] [go/] [math/] [cmplx/] [log.go] - Blame information for rev 867

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 747 jeremybenn
// Copyright 2010 The Go Authors. All rights reserved.
2
// Use of this source code is governed by a BSD-style
3
// license that can be found in the LICENSE file.
4
 
5
package cmplx
6
 
7
import "math"
8
 
9
// The original C code, the long comment, and the constants
10
// below are from http://netlib.sandia.gov/cephes/c9x-complex/clog.c.
11
// The go code is a simplified version of the original C.
12
//
13
// Cephes Math Library Release 2.8:  June, 2000
14
// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
15
//
16
// The readme file at http://netlib.sandia.gov/cephes/ says:
17
//    Some software in this archive may be from the book _Methods and
18
// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster
19
// International, 1989) or from the Cephes Mathematical Library, a
20
// commercial product. In either event, it is copyrighted by the author.
21
// What you see here may be used freely but it comes with no support or
22
// guarantee.
23
//
24
//   The two known misprints in the book are repaired here in the
25
// source listings for the gamma function and the incomplete beta
26
// integral.
27
//
28
//   Stephen L. Moshier
29
//   moshier@na-net.ornl.gov
30
 
31
// Complex natural logarithm
32
//
33
// DESCRIPTION:
34
//
35
// Returns complex logarithm to the base e (2.718...) of
36
// the complex argument z.
37
//
38
// If
39
//       z = x + iy, r = sqrt( x**2 + y**2 ),
40
// then
41
//       w = log(r) + i arctan(y/x).
42
//
43
// The arctangent ranges from -PI to +PI.
44
//
45
// ACCURACY:
46
//
47
//                      Relative error:
48
// arithmetic   domain     # trials      peak         rms
49
//    DEC       -10,+10      7000       8.5e-17     1.9e-17
50
//    IEEE      -10,+10     30000       5.0e-15     1.1e-16
51
//
52
// Larger relative error can be observed for z near 1 +i0.
53
// In IEEE arithmetic the peak absolute error is 5.2e-16, rms
54
// absolute error 1.0e-16.
55
 
56
// Log returns the natural logarithm of x.
57
func Log(x complex128) complex128 {
58
        return complex(math.Log(Abs(x)), Phase(x))
59
}
60
 
61
// Log10 returns the decimal logarithm of x.
62
func Log10(x complex128) complex128 {
63
        return math.Log10E * Log(x)
64
}

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.