OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libgo/] [go/] [math/] [cmplx/] [sin.go] - Blame information for rev 801

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 747 jeremybenn
// Copyright 2010 The Go Authors. All rights reserved.
2
// Use of this source code is governed by a BSD-style
3
// license that can be found in the LICENSE file.
4
 
5
package cmplx
6
 
7
import "math"
8
 
9
// The original C code, the long comment, and the constants
10
// below are from http://netlib.sandia.gov/cephes/c9x-complex/clog.c.
11
// The go code is a simplified version of the original C.
12
//
13
// Cephes Math Library Release 2.8:  June, 2000
14
// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
15
//
16
// The readme file at http://netlib.sandia.gov/cephes/ says:
17
//    Some software in this archive may be from the book _Methods and
18
// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster
19
// International, 1989) or from the Cephes Mathematical Library, a
20
// commercial product. In either event, it is copyrighted by the author.
21
// What you see here may be used freely but it comes with no support or
22
// guarantee.
23
//
24
//   The two known misprints in the book are repaired here in the
25
// source listings for the gamma function and the incomplete beta
26
// integral.
27
//
28
//   Stephen L. Moshier
29
//   moshier@na-net.ornl.gov
30
 
31
// Complex circular sine
32
//
33
// DESCRIPTION:
34
//
35
// If
36
//     z = x + iy,
37
//
38
// then
39
//
40
//     w = sin x  cosh y  +  i cos x sinh y.
41
//
42
// csin(z) = -i csinh(iz).
43
//
44
// ACCURACY:
45
//
46
//                      Relative error:
47
// arithmetic   domain     # trials      peak         rms
48
//    DEC       -10,+10      8400       5.3e-17     1.3e-17
49
//    IEEE      -10,+10     30000       3.8e-16     1.0e-16
50
// Also tested by csin(casin(z)) = z.
51
 
52
// Sin returns the sine of x.
53
func Sin(x complex128) complex128 {
54
        s, c := math.Sincos(real(x))
55
        sh, ch := sinhcosh(imag(x))
56
        return complex(s*ch, c*sh)
57
}
58
 
59
// Complex hyperbolic sine
60
//
61
// DESCRIPTION:
62
//
63
// csinh z = (cexp(z) - cexp(-z))/2
64
//         = sinh x * cos y  +  i cosh x * sin y .
65
//
66
// ACCURACY:
67
//
68
//                      Relative error:
69
// arithmetic   domain     # trials      peak         rms
70
//    IEEE      -10,+10     30000       3.1e-16     8.2e-17
71
 
72
// Sinh returns the hyperbolic sine of x.
73
func Sinh(x complex128) complex128 {
74
        s, c := math.Sincos(imag(x))
75
        sh, ch := sinhcosh(real(x))
76
        return complex(c*sh, s*ch)
77
}
78
 
79
// Complex circular cosine
80
//
81
// DESCRIPTION:
82
//
83
// If
84
//     z = x + iy,
85
//
86
// then
87
//
88
//     w = cos x  cosh y  -  i sin x sinh y.
89
//
90
// ACCURACY:
91
//
92
//                      Relative error:
93
// arithmetic   domain     # trials      peak         rms
94
//    DEC       -10,+10      8400       4.5e-17     1.3e-17
95
//    IEEE      -10,+10     30000       3.8e-16     1.0e-16
96
 
97
// Cos returns the cosine of x.
98
func Cos(x complex128) complex128 {
99
        s, c := math.Sincos(real(x))
100
        sh, ch := sinhcosh(imag(x))
101
        return complex(c*ch, -s*sh)
102
}
103
 
104
// Complex hyperbolic cosine
105
//
106
// DESCRIPTION:
107
//
108
// ccosh(z) = cosh x  cos y + i sinh x sin y .
109
//
110
// ACCURACY:
111
//
112
//                      Relative error:
113
// arithmetic   domain     # trials      peak         rms
114
//    IEEE      -10,+10     30000       2.9e-16     8.1e-17
115
 
116
// Cosh returns the hyperbolic cosine of x.
117
func Cosh(x complex128) complex128 {
118
        s, c := math.Sincos(imag(x))
119
        sh, ch := sinhcosh(real(x))
120
        return complex(c*ch, s*sh)
121
}
122
 
123
// calculate sinh and cosh
124
func sinhcosh(x float64) (sh, ch float64) {
125
        if math.Abs(x) <= 0.5 {
126
                return math.Sinh(x), math.Cosh(x)
127
        }
128
        e := math.Exp(x)
129
        ei := 0.5 / e
130
        e *= 0.5
131
        return e - ei, e + ei
132
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.