OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libgo/] [go/] [math/] [cmplx/] [sqrt.go] - Blame information for rev 801

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 747 jeremybenn
// Copyright 2010 The Go Authors. All rights reserved.
2
// Use of this source code is governed by a BSD-style
3
// license that can be found in the LICENSE file.
4
 
5
package cmplx
6
 
7
import "math"
8
 
9
// The original C code, the long comment, and the constants
10
// below are from http://netlib.sandia.gov/cephes/c9x-complex/clog.c.
11
// The go code is a simplified version of the original C.
12
//
13
// Cephes Math Library Release 2.8:  June, 2000
14
// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
15
//
16
// The readme file at http://netlib.sandia.gov/cephes/ says:
17
//    Some software in this archive may be from the book _Methods and
18
// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster
19
// International, 1989) or from the Cephes Mathematical Library, a
20
// commercial product. In either event, it is copyrighted by the author.
21
// What you see here may be used freely but it comes with no support or
22
// guarantee.
23
//
24
//   The two known misprints in the book are repaired here in the
25
// source listings for the gamma function and the incomplete beta
26
// integral.
27
//
28
//   Stephen L. Moshier
29
//   moshier@na-net.ornl.gov
30
 
31
// Complex square root
32
//
33
// DESCRIPTION:
34
//
35
// If z = x + iy,  r = |z|, then
36
//
37
//                       1/2
38
// Re w  =  [ (r + x)/2 ]   ,
39
//
40
//                       1/2
41
// Im w  =  [ (r - x)/2 ]   .
42
//
43
// Cancellation error in r-x or r+x is avoided by using the
44
// identity  2 Re w Im w  =  y.
45
//
46
// Note that -w is also a square root of z.  The root chosen
47
// is always in the right half plane and Im w has the same sign as y.
48
//
49
// ACCURACY:
50
//
51
//                      Relative error:
52
// arithmetic   domain     # trials      peak         rms
53
//    DEC       -10,+10     25000       3.2e-17     9.6e-18
54
//    IEEE      -10,+10   1,000,000     2.9e-16     6.1e-17
55
 
56
// Sqrt returns the square root of x.
57
func Sqrt(x complex128) complex128 {
58
        if imag(x) == 0 {
59
                if real(x) == 0 {
60
                        return complex(0, 0)
61
                }
62
                if real(x) < 0 {
63
                        return complex(0, math.Sqrt(-real(x)))
64
                }
65
                return complex(math.Sqrt(real(x)), 0)
66
        }
67
        if real(x) == 0 {
68
                if imag(x) < 0 {
69
                        r := math.Sqrt(-0.5 * imag(x))
70
                        return complex(r, -r)
71
                }
72
                r := math.Sqrt(0.5 * imag(x))
73
                return complex(r, r)
74
        }
75
        a := real(x)
76
        b := imag(x)
77
        var scale float64
78
        // Rescale to avoid internal overflow or underflow.
79
        if math.Abs(a) > 4 || math.Abs(b) > 4 {
80
                a *= 0.25
81
                b *= 0.25
82
                scale = 2
83
        } else {
84
                a *= 1.8014398509481984e16 // 2**54
85
                b *= 1.8014398509481984e16
86
                scale = 7.450580596923828125e-9 // 2**-27
87
        }
88
        r := math.Hypot(a, b)
89
        var t float64
90
        if a > 0 {
91
                t = math.Sqrt(0.5*r + 0.5*a)
92
                r = scale * math.Abs((0.5*b)/t)
93
                t *= scale
94
        } else {
95
                r = math.Sqrt(0.5*r - 0.5*a)
96
                t = scale * math.Abs((0.5*b)/r)
97
                r *= scale
98
        }
99
        if b < 0 {
100
                return complex(t, -r)
101
        }
102
        return complex(t, r)
103
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.