OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libgo/] [go/] [math/] [cmplx/] [tan.go] - Blame information for rev 801

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 747 jeremybenn
// Copyright 2010 The Go Authors. All rights reserved.
2
// Use of this source code is governed by a BSD-style
3
// license that can be found in the LICENSE file.
4
 
5
package cmplx
6
 
7
import "math"
8
 
9
// The original C code, the long comment, and the constants
10
// below are from http://netlib.sandia.gov/cephes/c9x-complex/clog.c.
11
// The go code is a simplified version of the original C.
12
//
13
// Cephes Math Library Release 2.8:  June, 2000
14
// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
15
//
16
// The readme file at http://netlib.sandia.gov/cephes/ says:
17
//    Some software in this archive may be from the book _Methods and
18
// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster
19
// International, 1989) or from the Cephes Mathematical Library, a
20
// commercial product. In either event, it is copyrighted by the author.
21
// What you see here may be used freely but it comes with no support or
22
// guarantee.
23
//
24
//   The two known misprints in the book are repaired here in the
25
// source listings for the gamma function and the incomplete beta
26
// integral.
27
//
28
//   Stephen L. Moshier
29
//   moshier@na-net.ornl.gov
30
 
31
// Complex circular tangent
32
//
33
// DESCRIPTION:
34
//
35
// If
36
//     z = x + iy,
37
//
38
// then
39
//
40
//           sin 2x  +  i sinh 2y
41
//     w  =  --------------------.
42
//            cos 2x  +  cosh 2y
43
//
44
// On the real axis the denominator is zero at odd multiples
45
// of PI/2.  The denominator is evaluated by its Taylor
46
// series near these points.
47
//
48
// ctan(z) = -i ctanh(iz).
49
//
50
// ACCURACY:
51
//
52
//                      Relative error:
53
// arithmetic   domain     # trials      peak         rms
54
//    DEC       -10,+10      5200       7.1e-17     1.6e-17
55
//    IEEE      -10,+10     30000       7.2e-16     1.2e-16
56
// Also tested by ctan * ccot = 1 and catan(ctan(z))  =  z.
57
 
58
// Tan returns the tangent of x.
59
func Tan(x complex128) complex128 {
60
        d := math.Cos(2*real(x)) + math.Cosh(2*imag(x))
61
        if math.Abs(d) < 0.25 {
62
                d = tanSeries(x)
63
        }
64
        if d == 0 {
65
                return Inf()
66
        }
67
        return complex(math.Sin(2*real(x))/d, math.Sinh(2*imag(x))/d)
68
}
69
 
70
// Complex hyperbolic tangent
71
//
72
// DESCRIPTION:
73
//
74
// tanh z = (sinh 2x  +  i sin 2y) / (cosh 2x + cos 2y) .
75
//
76
// ACCURACY:
77
//
78
//                      Relative error:
79
// arithmetic   domain     # trials      peak         rms
80
//    IEEE      -10,+10     30000       1.7e-14     2.4e-16
81
 
82
// Tanh returns the hyperbolic tangent of x.
83
func Tanh(x complex128) complex128 {
84
        d := math.Cosh(2*real(x)) + math.Cos(2*imag(x))
85
        if d == 0 {
86
                return Inf()
87
        }
88
        return complex(math.Sinh(2*real(x))/d, math.Sin(2*imag(x))/d)
89
}
90
 
91
// Program to subtract nearest integer multiple of PI
92
func reducePi(x float64) float64 {
93
        const (
94
                // extended precision value of PI:
95
                DP1 = 3.14159265160560607910E0   // ?? 0x400921fb54000000
96
                DP2 = 1.98418714791870343106E-9  // ?? 0x3e210b4610000000
97
                DP3 = 1.14423774522196636802E-17 // ?? 0x3c6a62633145c06e
98
        )
99
        t := x / math.Pi
100
        if t >= 0 {
101
                t += 0.5
102
        } else {
103
                t -= 0.5
104
        }
105
        t = float64(int64(t)) // int64(t) = the multiple
106
        return ((x - t*DP1) - t*DP2) - t*DP3
107
}
108
 
109
// Taylor series expansion for cosh(2y) - cos(2x)
110
func tanSeries(z complex128) float64 {
111
        const MACHEP = 1.0 / (1 << 53)
112
        x := math.Abs(2 * real(z))
113
        y := math.Abs(2 * imag(z))
114
        x = reducePi(x)
115
        x = x * x
116
        y = y * y
117
        x2 := 1.0
118
        y2 := 1.0
119
        f := 1.0
120
        rn := 0.0
121
        d := 0.0
122
        for {
123
                rn += 1
124
                f *= rn
125
                rn += 1
126
                f *= rn
127
                x2 *= x
128
                y2 *= y
129
                t := y2 + x2
130
                t /= f
131
                d += t
132
 
133
                rn += 1
134
                f *= rn
135
                rn += 1
136
                f *= rn
137
                x2 *= x
138
                y2 *= y
139
                t = y2 - x2
140
                t /= f
141
                d += t
142
                if math.Abs(t/d) <= MACHEP {
143
                        break
144
                }
145
        }
146
        return d
147
}
148
 
149
// Complex circular cotangent
150
//
151
// DESCRIPTION:
152
//
153
// If
154
//     z = x + iy,
155
//
156
// then
157
//
158
//           sin 2x  -  i sinh 2y
159
//     w  =  --------------------.
160
//            cosh 2y  -  cos 2x
161
//
162
// On the real axis, the denominator has zeros at even
163
// multiples of PI/2.  Near these points it is evaluated
164
// by a Taylor series.
165
//
166
// ACCURACY:
167
//
168
//                      Relative error:
169
// arithmetic   domain     # trials      peak         rms
170
//    DEC       -10,+10      3000       6.5e-17     1.6e-17
171
//    IEEE      -10,+10     30000       9.2e-16     1.2e-16
172
// Also tested by ctan * ccot = 1 + i0.
173
 
174
// Cot returns the cotangent of x.
175
func Cot(x complex128) complex128 {
176
        d := math.Cosh(2*imag(x)) - math.Cos(2*real(x))
177
        if math.Abs(d) < 0.25 {
178
                d = tanSeries(x)
179
        }
180
        if d == 0 {
181
                return Inf()
182
        }
183
        return complex(math.Sin(2*real(x))/d, -math.Sinh(2*imag(x))/d)
184
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.