OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libgo/] [go/] [math/] [erf.go] - Blame information for rev 747

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 747 jeremybenn
// Copyright 2010 The Go Authors. All rights reserved.
2
// Use of this source code is governed by a BSD-style
3
// license that can be found in the LICENSE file.
4
 
5
package math
6
 
7
/*
8
        Floating-point error function and complementary error function.
9
*/
10
 
11
// The original C code and the long comment below are
12
// from FreeBSD's /usr/src/lib/msun/src/s_erf.c and
13
// came with this notice.  The go code is a simplified
14
// version of the original C.
15
//
16
// ====================================================
17
// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
18
//
19
// Developed at SunPro, a Sun Microsystems, Inc. business.
20
// Permission to use, copy, modify, and distribute this
21
// software is freely granted, provided that this notice
22
// is preserved.
23
// ====================================================
24
//
25
//
26
// double erf(double x)
27
// double erfc(double x)
28
//                           x
29
//                    2      |\
30
//     erf(x)  =  ---------  | exp(-t*t)dt
31
//                 sqrt(pi) \|
32
//                           0
33
//
34
//     erfc(x) =  1-erf(x)
35
//  Note that
36
//              erf(-x) = -erf(x)
37
//              erfc(-x) = 2 - erfc(x)
38
//
39
// Method:
40
//      1. For |x| in [0, 0.84375]
41
//          erf(x)  = x + x*R(x**2)
42
//          erfc(x) = 1 - erf(x)           if x in [-.84375,0.25]
43
//                  = 0.5 + ((0.5-x)-x*R)  if x in [0.25,0.84375]
44
//         where R = P/Q where P is an odd poly of degree 8 and
45
//         Q is an odd poly of degree 10.
46
//                                               -57.90
47
//                      | R - (erf(x)-x)/x | <= 2
48
//
49
//
50
//         Remark. The formula is derived by noting
51
//          erf(x) = (2/sqrt(pi))*(x - x**3/3 + x**5/10 - x**7/42 + ....)
52
//         and that
53
//          2/sqrt(pi) = 1.128379167095512573896158903121545171688
54
//         is close to one. The interval is chosen because the fix
55
//         point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
56
//         near 0.6174), and by some experiment, 0.84375 is chosen to
57
//         guarantee the error is less than one ulp for erf.
58
//
59
//      2. For |x| in [0.84375,1.25], let s = |x| - 1, and
60
//         c = 0.84506291151 rounded to single (24 bits)
61
//              erf(x)  = sign(x) * (c  + P1(s)/Q1(s))
62
//              erfc(x) = (1-c)  - P1(s)/Q1(s) if x > 0
63
//                        1+(c+P1(s)/Q1(s))    if x < 0
64
//              |P1/Q1 - (erf(|x|)-c)| <= 2**-59.06
65
//         Remark: here we use the taylor series expansion at x=1.
66
//              erf(1+s) = erf(1) + s*Poly(s)
67
//                       = 0.845.. + P1(s)/Q1(s)
68
//         That is, we use rational approximation to approximate
69
//                      erf(1+s) - (c = (single)0.84506291151)
70
//         Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
71
//         where
72
//              P1(s) = degree 6 poly in s
73
//              Q1(s) = degree 6 poly in s
74
//
75
//      3. For x in [1.25,1/0.35(~2.857143)],
76
//              erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1)
77
//              erf(x)  = 1 - erfc(x)
78
//         where
79
//              R1(z) = degree 7 poly in z, (z=1/x**2)
80
//              S1(z) = degree 8 poly in z
81
//
82
//      4. For x in [1/0.35,28]
83
//              erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0
84
//                      = 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6
85
//                      = 2.0 - tiny            (if x <= -6)
86
//              erf(x)  = sign(x)*(1.0 - erfc(x)) if x < 6, else
87
//              erf(x)  = sign(x)*(1.0 - tiny)
88
//         where
89
//              R2(z) = degree 6 poly in z, (z=1/x**2)
90
//              S2(z) = degree 7 poly in z
91
//
92
//      Note1:
93
//         To compute exp(-x*x-0.5625+R/S), let s be a single
94
//         precision number and s := x; then
95
//              -x*x = -s*s + (s-x)*(s+x)
96
//              exp(-x*x-0.5626+R/S) =
97
//                      exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S);
98
//      Note2:
99
//         Here 4 and 5 make use of the asymptotic series
100
//                        exp(-x*x)
101
//              erfc(x) ~ ---------- * ( 1 + Poly(1/x**2) )
102
//                        x*sqrt(pi)
103
//         We use rational approximation to approximate
104
//              g(s)=f(1/x**2) = log(erfc(x)*x) - x*x + 0.5625
105
//         Here is the error bound for R1/S1 and R2/S2
106
//              |R1/S1 - f(x)|  < 2**(-62.57)
107
//              |R2/S2 - f(x)|  < 2**(-61.52)
108
//
109
//      5. For inf > x >= 28
110
//              erf(x)  = sign(x) *(1 - tiny)  (raise inexact)
111
//              erfc(x) = tiny*tiny (raise underflow) if x > 0
112
//                      = 2 - tiny if x<0
113
//
114
//      7. Special case:
115
//              erf(0)  = 0, erf(inf)  = 1, erf(-inf) = -1,
116
//              erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
117
//              erfc/erf(NaN) is NaN
118
 
119
const (
120
        erx = 8.45062911510467529297e-01 // 0x3FEB0AC160000000
121
        // Coefficients for approximation to  erf in [0, 0.84375]
122
        efx  = 1.28379167095512586316e-01  // 0x3FC06EBA8214DB69
123
        efx8 = 1.02703333676410069053e+00  // 0x3FF06EBA8214DB69
124
        pp0  = 1.28379167095512558561e-01  // 0x3FC06EBA8214DB68
125
        pp1  = -3.25042107247001499370e-01 // 0xBFD4CD7D691CB913
126
        pp2  = -2.84817495755985104766e-02 // 0xBF9D2A51DBD7194F
127
        pp3  = -5.77027029648944159157e-03 // 0xBF77A291236668E4
128
        pp4  = -2.37630166566501626084e-05 // 0xBEF8EAD6120016AC
129
        qq1  = 3.97917223959155352819e-01  // 0x3FD97779CDDADC09
130
        qq2  = 6.50222499887672944485e-02  // 0x3FB0A54C5536CEBA
131
        qq3  = 5.08130628187576562776e-03  // 0x3F74D022C4D36B0F
132
        qq4  = 1.32494738004321644526e-04  // 0x3F215DC9221C1A10
133
        qq5  = -3.96022827877536812320e-06 // 0xBED09C4342A26120
134
        // Coefficients for approximation to  erf  in [0.84375, 1.25]
135
        pa0 = -2.36211856075265944077e-03 // 0xBF6359B8BEF77538
136
        pa1 = 4.14856118683748331666e-01  // 0x3FDA8D00AD92B34D
137
        pa2 = -3.72207876035701323847e-01 // 0xBFD7D240FBB8C3F1
138
        pa3 = 3.18346619901161753674e-01  // 0x3FD45FCA805120E4
139
        pa4 = -1.10894694282396677476e-01 // 0xBFBC63983D3E28EC
140
        pa5 = 3.54783043256182359371e-02  // 0x3FA22A36599795EB
141
        pa6 = -2.16637559486879084300e-03 // 0xBF61BF380A96073F
142
        qa1 = 1.06420880400844228286e-01  // 0x3FBB3E6618EEE323
143
        qa2 = 5.40397917702171048937e-01  // 0x3FE14AF092EB6F33
144
        qa3 = 7.18286544141962662868e-02  // 0x3FB2635CD99FE9A7
145
        qa4 = 1.26171219808761642112e-01  // 0x3FC02660E763351F
146
        qa5 = 1.36370839120290507362e-02  // 0x3F8BEDC26B51DD1C
147
        qa6 = 1.19844998467991074170e-02  // 0x3F888B545735151D
148
        // Coefficients for approximation to  erfc in [1.25, 1/0.35]
149
        ra0 = -9.86494403484714822705e-03 // 0xBF843412600D6435
150
        ra1 = -6.93858572707181764372e-01 // 0xBFE63416E4BA7360
151
        ra2 = -1.05586262253232909814e+01 // 0xC0251E0441B0E726
152
        ra3 = -6.23753324503260060396e+01 // 0xC04F300AE4CBA38D
153
        ra4 = -1.62396669462573470355e+02 // 0xC0644CB184282266
154
        ra5 = -1.84605092906711035994e+02 // 0xC067135CEBCCABB2
155
        ra6 = -8.12874355063065934246e+01 // 0xC054526557E4D2F2
156
        ra7 = -9.81432934416914548592e+00 // 0xC023A0EFC69AC25C
157
        sa1 = 1.96512716674392571292e+01  // 0x4033A6B9BD707687
158
        sa2 = 1.37657754143519042600e+02  // 0x4061350C526AE721
159
        sa3 = 4.34565877475229228821e+02  // 0x407B290DD58A1A71
160
        sa4 = 6.45387271733267880336e+02  // 0x40842B1921EC2868
161
        sa5 = 4.29008140027567833386e+02  // 0x407AD02157700314
162
        sa6 = 1.08635005541779435134e+02  // 0x405B28A3EE48AE2C
163
        sa7 = 6.57024977031928170135e+00  // 0x401A47EF8E484A93
164
        sa8 = -6.04244152148580987438e-02 // 0xBFAEEFF2EE749A62
165
        // Coefficients for approximation to  erfc in [1/.35, 28]
166
        rb0 = -9.86494292470009928597e-03 // 0xBF84341239E86F4A
167
        rb1 = -7.99283237680523006574e-01 // 0xBFE993BA70C285DE
168
        rb2 = -1.77579549177547519889e+01 // 0xC031C209555F995A
169
        rb3 = -1.60636384855821916062e+02 // 0xC064145D43C5ED98
170
        rb4 = -6.37566443368389627722e+02 // 0xC083EC881375F228
171
        rb5 = -1.02509513161107724954e+03 // 0xC09004616A2E5992
172
        rb6 = -4.83519191608651397019e+02 // 0xC07E384E9BDC383F
173
        sb1 = 3.03380607434824582924e+01  // 0x403E568B261D5190
174
        sb2 = 3.25792512996573918826e+02  // 0x40745CAE221B9F0A
175
        sb3 = 1.53672958608443695994e+03  // 0x409802EB189D5118
176
        sb4 = 3.19985821950859553908e+03  // 0x40A8FFB7688C246A
177
        sb5 = 2.55305040643316442583e+03  // 0x40A3F219CEDF3BE6
178
        sb6 = 4.74528541206955367215e+02  // 0x407DA874E79FE763
179
        sb7 = -2.24409524465858183362e+01 // 0xC03670E242712D62
180
)
181
 
182
// Erf(x) returns the error function of x.
183
//
184
// Special cases are:
185
//      Erf(+Inf) = 1
186
//      Erf(-Inf) = -1
187
//      Erf(NaN) = NaN
188
func Erf(x float64) float64 {
189
        const (
190
                VeryTiny = 2.848094538889218e-306 // 0x0080000000000000
191
                Small    = 1.0 / (1 << 28)        // 2**-28
192
        )
193
        // special cases
194
        switch {
195
        case IsNaN(x):
196
                return NaN()
197
        case IsInf(x, 1):
198
                return 1
199
        case IsInf(x, -1):
200
                return -1
201
        }
202
        sign := false
203
        if x < 0 {
204
                x = -x
205
                sign = true
206
        }
207
        if x < 0.84375 { // |x| < 0.84375
208
                var temp float64
209
                if x < Small { // |x| < 2**-28
210
                        if x < VeryTiny {
211
                                temp = 0.125 * (8.0*x + efx8*x) // avoid underflow
212
                        } else {
213
                                temp = x + efx*x
214
                        }
215
                } else {
216
                        z := x * x
217
                        r := pp0 + z*(pp1+z*(pp2+z*(pp3+z*pp4)))
218
                        s := 1 + z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))))
219
                        y := r / s
220
                        temp = x + x*y
221
                }
222
                if sign {
223
                        return -temp
224
                }
225
                return temp
226
        }
227
        if x < 1.25 { // 0.84375 <= |x| < 1.25
228
                s := x - 1
229
                P := pa0 + s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))))
230
                Q := 1 + s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))))
231
                if sign {
232
                        return -erx - P/Q
233
                }
234
                return erx + P/Q
235
        }
236
        if x >= 6 { // inf > |x| >= 6
237
                if sign {
238
                        return -1
239
                }
240
                return 1
241
        }
242
        s := 1 / (x * x)
243
        var R, S float64
244
        if x < 1/0.35 { // |x| < 1 / 0.35  ~ 2.857143
245
                R = ra0 + s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(ra5+s*(ra6+s*ra7))))))
246
                S = 1 + s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(sa5+s*(sa6+s*(sa7+s*sa8)))))))
247
        } else { // |x| >= 1 / 0.35  ~ 2.857143
248
                R = rb0 + s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(rb5+s*rb6)))))
249
                S = 1 + s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(sb5+s*(sb6+s*sb7))))))
250
        }
251
        z := Float64frombits(Float64bits(x) & 0xffffffff00000000) // pseudo-single (20-bit) precison x
252
        r := Exp(-z*z-0.5625) * Exp((z-x)*(z+x)+R/S)
253
        if sign {
254
                return r/x - 1
255
        }
256
        return 1 - r/x
257
}
258
 
259
// Erfc(x) returns the complementary error function of x.
260
//
261
// Special cases are:
262
//      Erfc(+Inf) = 0
263
//      Erfc(-Inf) = 2
264
//      Erfc(NaN) = NaN
265
func Erfc(x float64) float64 {
266
        const Tiny = 1.0 / (1 << 56) // 2**-56
267
        // special cases
268
        switch {
269
        case IsNaN(x):
270
                return NaN()
271
        case IsInf(x, 1):
272
                return 0
273
        case IsInf(x, -1):
274
                return 2
275
        }
276
        sign := false
277
        if x < 0 {
278
                x = -x
279
                sign = true
280
        }
281
        if x < 0.84375 { // |x| < 0.84375
282
                var temp float64
283
                if x < Tiny { // |x| < 2**-56
284
                        temp = x
285
                } else {
286
                        z := x * x
287
                        r := pp0 + z*(pp1+z*(pp2+z*(pp3+z*pp4)))
288
                        s := 1 + z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))))
289
                        y := r / s
290
                        if x < 0.25 { // |x| < 1/4
291
                                temp = x + x*y
292
                        } else {
293
                                temp = 0.5 + (x*y + (x - 0.5))
294
                        }
295
                }
296
                if sign {
297
                        return 1 + temp
298
                }
299
                return 1 - temp
300
        }
301
        if x < 1.25 { // 0.84375 <= |x| < 1.25
302
                s := x - 1
303
                P := pa0 + s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))))
304
                Q := 1 + s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))))
305
                if sign {
306
                        return 1 + erx + P/Q
307
                }
308
                return 1 - erx - P/Q
309
 
310
        }
311
        if x < 28 { // |x| < 28
312
                s := 1 / (x * x)
313
                var R, S float64
314
                if x < 1/0.35 { // |x| < 1 / 0.35 ~ 2.857143
315
                        R = ra0 + s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(ra5+s*(ra6+s*ra7))))))
316
                        S = 1 + s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(sa5+s*(sa6+s*(sa7+s*sa8)))))))
317
                } else { // |x| >= 1 / 0.35 ~ 2.857143
318
                        if sign && x > 6 {
319
                                return 2 // x < -6
320
                        }
321
                        R = rb0 + s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(rb5+s*rb6)))))
322
                        S = 1 + s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(sb5+s*(sb6+s*sb7))))))
323
                }
324
                z := Float64frombits(Float64bits(x) & 0xffffffff00000000) // pseudo-single (20-bit) precison x
325
                r := Exp(-z*z-0.5625) * Exp((z-x)*(z+x)+R/S)
326
                if sign {
327
                        return 2 - r/x
328
                }
329
                return r / x
330
        }
331
        if sign {
332
                return 2
333
        }
334
        return 0
335
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.