OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libgo/] [go/] [math/] [exp.go] - Blame information for rev 801

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 747 jeremybenn
// Copyright 2009 The Go Authors. All rights reserved.
2
// Use of this source code is governed by a BSD-style
3
// license that can be found in the LICENSE file.
4
 
5
package math
6
 
7
// Exp returns e**x, the base-e exponential of x.
8
//
9
// Special cases are:
10
//      Exp(+Inf) = +Inf
11
//      Exp(NaN) = NaN
12
// Very large values overflow to 0 or +Inf.
13
// Very small values underflow to 1.
14
 
15
//extern exp
16
func libc_exp(float64) float64
17
 
18
func Exp(x float64) float64 {
19
        return libc_exp(x)
20
}
21
 
22
// The original C code, the long comment, and the constants
23
// below are from FreeBSD's /usr/src/lib/msun/src/e_exp.c
24
// and came with this notice.  The go code is a simplified
25
// version of the original C.
26
//
27
// ====================================================
28
// Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
29
//
30
// Permission to use, copy, modify, and distribute this
31
// software is freely granted, provided that this notice
32
// is preserved.
33
// ====================================================
34
//
35
//
36
// exp(x)
37
// Returns the exponential of x.
38
//
39
// Method
40
//   1. Argument reduction:
41
//      Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
42
//      Given x, find r and integer k such that
43
//
44
//               x = k*ln2 + r,  |r| <= 0.5*ln2.
45
//
46
//      Here r will be represented as r = hi-lo for better
47
//      accuracy.
48
//
49
//   2. Approximation of exp(r) by a special rational function on
50
//      the interval [0,0.34658]:
51
//      Write
52
//          R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
53
//      We use a special Remes algorithm on [0,0.34658] to generate
54
//      a polynomial of degree 5 to approximate R. The maximum error
55
//      of this polynomial approximation is bounded by 2**-59. In
56
//      other words,
57
//          R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
58
//      (where z=r*r, and the values of P1 to P5 are listed below)
59
//      and
60
//          |                  5          |     -59
61
//          | 2.0+P1*z+...+P5*z   -  R(z) | <= 2
62
//          |                             |
63
//      The computation of exp(r) thus becomes
64
//                             2*r
65
//              exp(r) = 1 + -------
66
//                            R - r
67
//                                 r*R1(r)
68
//                     = 1 + r + ----------- (for better accuracy)
69
//                                2 - R1(r)
70
//      where
71
//                               2       4             10
72
//              R1(r) = r - (P1*r  + P2*r  + ... + P5*r   ).
73
//
74
//   3. Scale back to obtain exp(x):
75
//      From step 1, we have
76
//         exp(x) = 2**k * exp(r)
77
//
78
// Special cases:
79
//      exp(INF) is INF, exp(NaN) is NaN;
80
//      exp(-INF) is 0, and
81
//      for finite argument, only exp(0)=1 is exact.
82
//
83
// Accuracy:
84
//      according to an error analysis, the error is always less than
85
//      1 ulp (unit in the last place).
86
//
87
// Misc. info.
88
//      For IEEE double
89
//          if x >  7.09782712893383973096e+02 then exp(x) overflow
90
//          if x < -7.45133219101941108420e+02 then exp(x) underflow
91
//
92
// Constants:
93
// The hexadecimal values are the intended ones for the following
94
// constants. The decimal values may be used, provided that the
95
// compiler will convert from decimal to binary accurately enough
96
// to produce the hexadecimal values shown.
97
 
98
func exp(x float64) float64 {
99
        const (
100
                Ln2Hi = 6.93147180369123816490e-01
101
                Ln2Lo = 1.90821492927058770002e-10
102
                Log2e = 1.44269504088896338700e+00
103
 
104
                Overflow  = 7.09782712893383973096e+02
105
                Underflow = -7.45133219101941108420e+02
106
                NearZero  = 1.0 / (1 << 28) // 2**-28
107
        )
108
 
109
        // special cases
110
        switch {
111
        case IsNaN(x) || IsInf(x, 1):
112
                return x
113
        case IsInf(x, -1):
114
                return 0
115
        case x > Overflow:
116
                return Inf(1)
117
        case x < Underflow:
118
                return 0
119
        case -NearZero < x && x < NearZero:
120
                return 1 + x
121
        }
122
 
123
        // reduce; computed as r = hi - lo for extra precision.
124
        var k int
125
        switch {
126
        case x < 0:
127
                k = int(Log2e*x - 0.5)
128
        case x > 0:
129
                k = int(Log2e*x + 0.5)
130
        }
131
        hi := x - float64(k)*Ln2Hi
132
        lo := float64(k) * Ln2Lo
133
 
134
        // compute
135
        return expmulti(hi, lo, k)
136
}
137
 
138
// Exp2 returns 2**x, the base-2 exponential of x.
139
//
140
// Special cases are the same as Exp.
141
func Exp2(x float64) float64 {
142
        return exp2(x)
143
}
144
 
145
func exp2(x float64) float64 {
146
        const (
147
                Ln2Hi = 6.93147180369123816490e-01
148
                Ln2Lo = 1.90821492927058770002e-10
149
 
150
                Overflow  = 1.0239999999999999e+03
151
                Underflow = -1.0740e+03
152
        )
153
 
154
        // special cases
155
        switch {
156
        case IsNaN(x) || IsInf(x, 1):
157
                return x
158
        case IsInf(x, -1):
159
                return 0
160
        case x > Overflow:
161
                return Inf(1)
162
        case x < Underflow:
163
                return 0
164
        }
165
 
166
        // argument reduction; x = r×lg(e) + k with |r| ≤ ln(2)/2.
167
        // computed as r = hi - lo for extra precision.
168
        var k int
169
        switch {
170
        case x > 0:
171
                k = int(x + 0.5)
172
        case x < 0:
173
                k = int(x - 0.5)
174
        }
175
        t := x - float64(k)
176
        hi := t * Ln2Hi
177
        lo := -t * Ln2Lo
178
 
179
        // compute
180
        return expmulti(hi, lo, k)
181
}
182
 
183
// exp1 returns e**r × 2**k where r = hi - lo and |r| ≤ ln(2)/2.
184
func expmulti(hi, lo float64, k int) float64 {
185
        const (
186
                P1 = 1.66666666666666019037e-01  /* 0x3FC55555; 0x5555553E */
187
                P2 = -2.77777777770155933842e-03 /* 0xBF66C16C; 0x16BEBD93 */
188
                P3 = 6.61375632143793436117e-05  /* 0x3F11566A; 0xAF25DE2C */
189
                P4 = -1.65339022054652515390e-06 /* 0xBEBBBD41; 0xC5D26BF1 */
190
                P5 = 4.13813679705723846039e-08  /* 0x3E663769; 0x72BEA4D0 */
191
        )
192
 
193
        r := hi - lo
194
        t := r * r
195
        c := r - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))))
196
        y := 1 - ((lo - (r*c)/(2-c)) - hi)
197
        // TODO(rsc): make sure Ldexp can handle boundary k
198
        return Ldexp(y, k)
199
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.