OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libgo/] [go/] [math/] [expm1.go] - Blame information for rev 747

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 747 jeremybenn
// Copyright 2010 The Go Authors. All rights reserved.
2
// Use of this source code is governed by a BSD-style
3
// license that can be found in the LICENSE file.
4
 
5
package math
6
 
7
// The original C code, the long comment, and the constants
8
// below are from FreeBSD's /usr/src/lib/msun/src/s_expm1.c
9
// and came with this notice.  The go code is a simplified
10
// version of the original C.
11
//
12
// ====================================================
13
// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
14
//
15
// Developed at SunPro, a Sun Microsystems, Inc. business.
16
// Permission to use, copy, modify, and distribute this
17
// software is freely granted, provided that this notice
18
// is preserved.
19
// ====================================================
20
//
21
// expm1(x)
22
// Returns exp(x)-1, the exponential of x minus 1.
23
//
24
// Method
25
//   1. Argument reduction:
26
//      Given x, find r and integer k such that
27
//
28
//               x = k*ln2 + r,  |r| <= 0.5*ln2 ~ 0.34658
29
//
30
//      Here a correction term c will be computed to compensate
31
//      the error in r when rounded to a floating-point number.
32
//
33
//   2. Approximating expm1(r) by a special rational function on
34
//      the interval [0,0.34658]:
35
//      Since
36
//          r*(exp(r)+1)/(exp(r)-1) = 2+ r**2/6 - r**4/360 + ...
37
//      we define R1(r*r) by
38
//          r*(exp(r)+1)/(exp(r)-1) = 2+ r**2/6 * R1(r*r)
39
//      That is,
40
//          R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
41
//                   = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
42
//                   = 1 - r**2/60 + r**4/2520 - r**6/100800 + ...
43
//      We use a special Reme algorithm on [0,0.347] to generate
44
//      a polynomial of degree 5 in r*r to approximate R1. The
45
//      maximum error of this polynomial approximation is bounded
46
//      by 2**-61. In other words,
47
//          R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
48
//      where   Q1  =  -1.6666666666666567384E-2,
49
//              Q2  =   3.9682539681370365873E-4,
50
//              Q3  =  -9.9206344733435987357E-6,
51
//              Q4  =   2.5051361420808517002E-7,
52
//              Q5  =  -6.2843505682382617102E-9;
53
//      (where z=r*r, and the values of Q1 to Q5 are listed below)
54
//      with error bounded by
55
//          |                  5           |     -61
56
//          | 1.0+Q1*z+...+Q5*z   -  R1(z) | <= 2
57
//          |                              |
58
//
59
//      expm1(r) = exp(r)-1 is then computed by the following
60
//      specific way which minimize the accumulation rounding error:
61
//                             2     3
62
//                            r     r    [ 3 - (R1 + R1*r/2)  ]
63
//            expm1(r) = r + --- + --- * [--------------------]
64
//                            2     2    [ 6 - r*(3 - R1*r/2) ]
65
//
66
//      To compensate the error in the argument reduction, we use
67
//              expm1(r+c) = expm1(r) + c + expm1(r)*c
68
//                         ~ expm1(r) + c + r*c
69
//      Thus c+r*c will be added in as the correction terms for
70
//      expm1(r+c). Now rearrange the term to avoid optimization
71
//      screw up:
72
//                      (      2                                    2 )
73
//                      ({  ( r    [ R1 -  (3 - R1*r/2) ]  )  }    r  )
74
//       expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
75
//                      ({  ( 2    [ 6 - r*(3 - R1*r/2) ]  )  }    2  )
76
//                      (                                             )
77
//
78
//                 = r - E
79
//   3. Scale back to obtain expm1(x):
80
//      From step 1, we have
81
//         expm1(x) = either 2**k*[expm1(r)+1] - 1
82
//                  = or     2**k*[expm1(r) + (1-2**-k)]
83
//   4. Implementation notes:
84
//      (A). To save one multiplication, we scale the coefficient Qi
85
//           to Qi*2**i, and replace z by (x**2)/2.
86
//      (B). To achieve maximum accuracy, we compute expm1(x) by
87
//        (i)   if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
88
//        (ii)  if k=0, return r-E
89
//        (iii) if k=-1, return 0.5*(r-E)-0.5
90
//        (iv)  if k=1 if r < -0.25, return 2*((r+0.5)- E)
91
//                     else          return  1.0+2.0*(r-E);
92
//        (v)   if (k<-2||k>56) return 2**k(1-(E-r)) - 1 (or exp(x)-1)
93
//        (vi)  if k <= 20, return 2**k((1-2**-k)-(E-r)), else
94
//        (vii) return 2**k(1-((E+2**-k)-r))
95
//
96
// Special cases:
97
//      expm1(INF) is INF, expm1(NaN) is NaN;
98
//      expm1(-INF) is -1, and
99
//      for finite argument, only expm1(0)=0 is exact.
100
//
101
// Accuracy:
102
//      according to an error analysis, the error is always less than
103
//      1 ulp (unit in the last place).
104
//
105
// Misc. info.
106
//      For IEEE double
107
//          if x >  7.09782712893383973096e+02 then expm1(x) overflow
108
//
109
// Constants:
110
// The hexadecimal values are the intended ones for the following
111
// constants. The decimal values may be used, provided that the
112
// compiler will convert from decimal to binary accurately enough
113
// to produce the hexadecimal values shown.
114
//
115
 
116
// Expm1 returns e**x - 1, the base-e exponential of x minus 1.
117
// It is more accurate than Exp(x) - 1 when x is near zero.
118
//
119
// Special cases are:
120
//      Expm1(+Inf) = +Inf
121
//      Expm1(-Inf) = -1
122
//      Expm1(NaN) = NaN
123
// Very large values overflow to -1 or +Inf.
124
 
125
//extern expm1
126
func libc_expm1(float64) float64
127
 
128
func Expm1(x float64) float64 {
129
        return libc_expm1(x)
130
}
131
 
132
func expm1(x float64) float64 {
133
        const (
134
                Othreshold = 7.09782712893383973096e+02 // 0x40862E42FEFA39EF
135
                Ln2X56     = 3.88162421113569373274e+01 // 0x4043687a9f1af2b1
136
                Ln2HalfX3  = 1.03972077083991796413e+00 // 0x3ff0a2b23f3bab73
137
                Ln2Half    = 3.46573590279972654709e-01 // 0x3fd62e42fefa39ef
138
                Ln2Hi      = 6.93147180369123816490e-01 // 0x3fe62e42fee00000
139
                Ln2Lo      = 1.90821492927058770002e-10 // 0x3dea39ef35793c76
140
                InvLn2     = 1.44269504088896338700e+00 // 0x3ff71547652b82fe
141
                Tiny       = 1.0 / (1 << 54)            // 2**-54 = 0x3c90000000000000
142
                // scaled coefficients related to expm1
143
                Q1 = -3.33333333333331316428e-02 // 0xBFA11111111110F4
144
                Q2 = 1.58730158725481460165e-03  // 0x3F5A01A019FE5585
145
                Q3 = -7.93650757867487942473e-05 // 0xBF14CE199EAADBB7
146
                Q4 = 4.00821782732936239552e-06  // 0x3ED0CFCA86E65239
147
                Q5 = -2.01099218183624371326e-07 // 0xBE8AFDB76E09C32D
148
        )
149
 
150
        // special cases
151
        switch {
152
        case IsInf(x, 1) || IsNaN(x):
153
                return x
154
        case IsInf(x, -1):
155
                return -1
156
        }
157
 
158
        absx := x
159
        sign := false
160
        if x < 0 {
161
                absx = -absx
162
                sign = true
163
        }
164
 
165
        // filter out huge argument
166
        if absx >= Ln2X56 { // if |x| >= 56 * ln2
167
                if absx >= Othreshold { // if |x| >= 709.78...
168
                        return Inf(1) // overflow
169
                }
170
                if sign {
171
                        return -1 // x < -56*ln2, return -1.0
172
                }
173
        }
174
 
175
        // argument reduction
176
        var c float64
177
        var k int
178
        if absx > Ln2Half { // if  |x| > 0.5 * ln2
179
                var hi, lo float64
180
                if absx < Ln2HalfX3 { // and |x| < 1.5 * ln2
181
                        if !sign {
182
                                hi = x - Ln2Hi
183
                                lo = Ln2Lo
184
                                k = 1
185
                        } else {
186
                                hi = x + Ln2Hi
187
                                lo = -Ln2Lo
188
                                k = -1
189
                        }
190
                } else {
191
                        if !sign {
192
                                k = int(InvLn2*x + 0.5)
193
                        } else {
194
                                k = int(InvLn2*x - 0.5)
195
                        }
196
                        t := float64(k)
197
                        hi = x - t*Ln2Hi // t * Ln2Hi is exact here
198
                        lo = t * Ln2Lo
199
                }
200
                x = hi - lo
201
                c = (hi - x) - lo
202
        } else if absx < Tiny { // when |x| < 2**-54, return x
203
                return x
204
        } else {
205
                k = 0
206
        }
207
 
208
        // x is now in primary range
209
        hfx := 0.5 * x
210
        hxs := x * hfx
211
        r1 := 1 + hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5))))
212
        t := 3 - r1*hfx
213
        e := hxs * ((r1 - t) / (6.0 - x*t))
214
        if k != 0 {
215
                e = (x*(e-c) - c)
216
                e -= hxs
217
                switch {
218
                case k == -1:
219
                        return 0.5*(x-e) - 0.5
220
                case k == 1:
221
                        if x < -0.25 {
222
                                return -2 * (e - (x + 0.5))
223
                        }
224
                        return 1 + 2*(x-e)
225
                case k <= -2 || k > 56: // suffice to return exp(x)-1
226
                        y := 1 - (e - x)
227
                        y = Float64frombits(Float64bits(y) + uint64(k)<<52) // add k to y's exponent
228
                        return y - 1
229
                }
230
                if k < 20 {
231
                        t := Float64frombits(0x3ff0000000000000 - (0x20000000000000 >> uint(k))) // t=1-2**-k
232
                        y := t - (e - x)
233
                        y = Float64frombits(Float64bits(y) + uint64(k)<<52) // add k to y's exponent
234
                        return y
235
                }
236
                t := Float64frombits(uint64((0x3ff - k) << 52)) // 2**-k
237
                y := x - (e + t)
238
                y += 1
239
                y = Float64frombits(Float64bits(y) + uint64(k)<<52) // add k to y's exponent
240
                return y
241
        }
242
        return x - (x*e - hxs) // c is 0
243
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.