OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libgo/] [go/] [math/] [jn.go] - Blame information for rev 867

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 747 jeremybenn
// Copyright 2010 The Go Authors. All rights reserved.
2
// Use of this source code is governed by a BSD-style
3
// license that can be found in the LICENSE file.
4
 
5
package math
6
 
7
/*
8
        Bessel function of the first and second kinds of order n.
9
*/
10
 
11
// The original C code and the long comment below are
12
// from FreeBSD's /usr/src/lib/msun/src/e_jn.c and
13
// came with this notice.  The go code is a simplified
14
// version of the original C.
15
//
16
// ====================================================
17
// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
18
//
19
// Developed at SunPro, a Sun Microsystems, Inc. business.
20
// Permission to use, copy, modify, and distribute this
21
// software is freely granted, provided that this notice
22
// is preserved.
23
// ====================================================
24
//
25
// __ieee754_jn(n, x), __ieee754_yn(n, x)
26
// floating point Bessel's function of the 1st and 2nd kind
27
// of order n
28
//
29
// Special cases:
30
//      y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
31
//      y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
32
// Note 2. About jn(n,x), yn(n,x)
33
//      For n=0, j0(x) is called,
34
//      for n=1, j1(x) is called,
35
//      for n
36
//      from values of j0(x) and j1(x).
37
//      for n>x, a continued fraction approximation to
38
//      j(n,x)/j(n-1,x) is evaluated and then backward
39
//      recursion is used starting from a supposed value
40
//      for j(n,x). The resulting value of j(0,x) is
41
//      compared with the actual value to correct the
42
//      supposed value of j(n,x).
43
//
44
//      yn(n,x) is similar in all respects, except
45
//      that forward recursion is used for all
46
//      values of n>1.
47
 
48
// Jn returns the order-n Bessel function of the first kind.
49
//
50
// Special cases are:
51
//      Jn(n, ±Inf) = 0
52
//      Jn(n, NaN) = NaN
53
func Jn(n int, x float64) float64 {
54
        const (
55
                TwoM29 = 1.0 / (1 << 29) // 2**-29 0x3e10000000000000
56
                Two302 = 1 << 302        // 2**302 0x52D0000000000000
57
        )
58
        // special cases
59
        switch {
60
        case IsNaN(x):
61
                return x
62
        case IsInf(x, 0):
63
                return 0
64
        }
65
        // J(-n, x) = (-1)**n * J(n, x), J(n, -x) = (-1)**n * J(n, x)
66
        // Thus, J(-n, x) = J(n, -x)
67
 
68
        if n == 0 {
69
                return J0(x)
70
        }
71
        if x == 0 {
72
                return 0
73
        }
74
        if n < 0 {
75
                n, x = -n, -x
76
        }
77
        if n == 1 {
78
                return J1(x)
79
        }
80
        sign := false
81
        if x < 0 {
82
                x = -x
83
                if n&1 == 1 {
84
                        sign = true // odd n and negative x
85
                }
86
        }
87
        var b float64
88
        if float64(n) <= x {
89
                // Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x)
90
                if x >= Two302 { // x > 2**302
91
 
92
                        // (x >> n**2)
93
                        //          Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
94
                        //          Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
95
                        //          Let s=sin(x), c=cos(x),
96
                        //              xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
97
                        //
98
                        //                 n    sin(xn)*sqt2    cos(xn)*sqt2
99
                        //              ----------------------------------
100
                        //                 0     s-c             c+s
101
                        //                 1    -s-c            -c+s
102
                        //                 2    -s+c            -c-s
103
                        //                 3     s+c             c-s
104
 
105
                        var temp float64
106
                        switch n & 3 {
107
                        case 0:
108
                                temp = Cos(x) + Sin(x)
109
                        case 1:
110
                                temp = -Cos(x) + Sin(x)
111
                        case 2:
112
                                temp = -Cos(x) - Sin(x)
113
                        case 3:
114
                                temp = Cos(x) - Sin(x)
115
                        }
116
                        b = (1 / SqrtPi) * temp / Sqrt(x)
117
                } else {
118
                        b = J1(x)
119
                        for i, a := 1, J0(x); i < n; i++ {
120
                                a, b = b, b*(float64(i+i)/x)-a // avoid underflow
121
                        }
122
                }
123
        } else {
124
                if x < TwoM29 { // x < 2**-29
125
                        // x is tiny, return the first Taylor expansion of J(n,x)
126
                        // J(n,x) = 1/n!*(x/2)**n  - ...
127
 
128
                        if n > 33 { // underflow
129
                                b = 0
130
                        } else {
131
                                temp := x * 0.5
132
                                b = temp
133
                                a := 1.0
134
                                for i := 2; i <= n; i++ {
135
                                        a *= float64(i) // a = n!
136
                                        b *= temp       // b = (x/2)**n
137
                                }
138
                                b /= a
139
                        }
140
                } else {
141
                        // use backward recurrence
142
                        //                      x      x**2      x**2
143
                        //  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
144
                        //                      2n  - 2(n+1) - 2(n+2)
145
                        //
146
                        //                      1      1        1
147
                        //  (for large x)   =  ----  ------   ------   .....
148
                        //                      2n   2(n+1)   2(n+2)
149
                        //                      -- - ------ - ------ -
150
                        //                       x     x         x
151
                        //
152
                        // Let w = 2n/x and h=2/x, then the above quotient
153
                        // is equal to the continued fraction:
154
                        //                  1
155
                        //      = -----------------------
156
                        //                     1
157
                        //         w - -----------------
158
                        //                        1
159
                        //              w+h - ---------
160
                        //                     w+2h - ...
161
                        //
162
                        // To determine how many terms needed, let
163
                        // Q(0) = w, Q(1) = w(w+h) - 1,
164
                        // Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
165
                        // When Q(k) > 1e4      good for single
166
                        // When Q(k) > 1e9      good for double
167
                        // When Q(k) > 1e17     good for quadruple
168
 
169
                        // determine k
170
                        w := float64(n+n) / x
171
                        h := 2 / x
172
                        q0 := w
173
                        z := w + h
174
                        q1 := w*z - 1
175
                        k := 1
176
                        for q1 < 1e9 {
177
                                k += 1
178
                                z += h
179
                                q0, q1 = q1, z*q1-q0
180
                        }
181
                        m := n + n
182
                        t := 0.0
183
                        for i := 2 * (n + k); i >= m; i -= 2 {
184
                                t = 1 / (float64(i)/x - t)
185
                        }
186
                        a := t
187
                        b = 1
188
                        //  estimate log((2/x)**n*n!) = n*log(2/x)+n*ln(n)
189
                        //  Hence, if n*(log(2n/x)) > ...
190
                        //  single 8.8722839355e+01
191
                        //  double 7.09782712893383973096e+02
192
                        //  long double 1.1356523406294143949491931077970765006170e+04
193
                        //  then recurrent value may overflow and the result is
194
                        //  likely underflow to zero
195
 
196
                        tmp := float64(n)
197
                        v := 2 / x
198
                        tmp = tmp * Log(Abs(v*tmp))
199
                        if tmp < 7.09782712893383973096e+02 {
200
                                for i := n - 1; i > 0; i-- {
201
                                        di := float64(i + i)
202
                                        a, b = b, b*di/x-a
203
                                        di -= 2
204
                                }
205
                        } else {
206
                                for i := n - 1; i > 0; i-- {
207
                                        di := float64(i + i)
208
                                        a, b = b, b*di/x-a
209
                                        di -= 2
210
                                        // scale b to avoid spurious overflow
211
                                        if b > 1e100 {
212
                                                a /= b
213
                                                t /= b
214
                                                b = 1
215
                                        }
216
                                }
217
                        }
218
                        b = t * J0(x) / b
219
                }
220
        }
221
        if sign {
222
                return -b
223
        }
224
        return b
225
}
226
 
227
// Yn returns the order-n Bessel function of the second kind.
228
//
229
// Special cases are:
230
//      Yn(n, +Inf) = 0
231
//      Yn(n > 0, 0) = -Inf
232
//      Yn(n < 0, 0) = +Inf if n is odd, -Inf if n is even
233
//      Y1(n, x < 0) = NaN
234
//      Y1(n, NaN) = NaN
235
func Yn(n int, x float64) float64 {
236
        const Two302 = 1 << 302 // 2**302 0x52D0000000000000
237
        // special cases
238
        switch {
239
        case x < 0 || IsNaN(x):
240
                return NaN()
241
        case IsInf(x, 1):
242
                return 0
243
        }
244
 
245
        if n == 0 {
246
                return Y0(x)
247
        }
248
        if x == 0 {
249
                if n < 0 && n&1 == 1 {
250
                        return Inf(1)
251
                }
252
                return Inf(-1)
253
        }
254
        sign := false
255
        if n < 0 {
256
                n = -n
257
                if n&1 == 1 {
258
                        sign = true // sign true if n < 0 && |n| odd
259
                }
260
        }
261
        if n == 1 {
262
                if sign {
263
                        return -Y1(x)
264
                }
265
                return Y1(x)
266
        }
267
        var b float64
268
        if x >= Two302 { // x > 2**302
269
                // (x >> n**2)
270
                //          Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
271
                //          Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
272
                //          Let s=sin(x), c=cos(x),
273
                //              xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
274
                //
275
                //                 n    sin(xn)*sqt2    cos(xn)*sqt2
276
                //              ----------------------------------
277
                //                 0     s-c             c+s
278
                //                 1    -s-c            -c+s
279
                //                 2    -s+c            -c-s
280
                //                 3     s+c             c-s
281
 
282
                var temp float64
283
                switch n & 3 {
284
                case 0:
285
                        temp = Sin(x) - Cos(x)
286
                case 1:
287
                        temp = -Sin(x) - Cos(x)
288
                case 2:
289
                        temp = -Sin(x) + Cos(x)
290
                case 3:
291
                        temp = Sin(x) + Cos(x)
292
                }
293
                b = (1 / SqrtPi) * temp / Sqrt(x)
294
        } else {
295
                a := Y0(x)
296
                b = Y1(x)
297
                // quit if b is -inf
298
                for i := 1; i < n && !IsInf(b, -1); i++ {
299
                        a, b = b, (float64(i+i)/x)*b-a
300
                }
301
        }
302
        if sign {
303
                return -b
304
        }
305
        return b
306
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.