OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libgo/] [go/] [math/] [lgamma.go] - Blame information for rev 801

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 747 jeremybenn
// Copyright 2010 The Go Authors. All rights reserved.
2
// Use of this source code is governed by a BSD-style
3
// license that can be found in the LICENSE file.
4
 
5
package math
6
 
7
/*
8
        Floating-point logarithm of the Gamma function.
9
*/
10
 
11
// The original C code and the long comment below are
12
// from FreeBSD's /usr/src/lib/msun/src/e_lgamma_r.c and
13
// came with this notice.  The go code is a simplified
14
// version of the original C.
15
//
16
// ====================================================
17
// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
18
//
19
// Developed at SunPro, a Sun Microsystems, Inc. business.
20
// Permission to use, copy, modify, and distribute this
21
// software is freely granted, provided that this notice
22
// is preserved.
23
// ====================================================
24
//
25
// __ieee754_lgamma_r(x, signgamp)
26
// Reentrant version of the logarithm of the Gamma function
27
// with user provided pointer for the sign of Gamma(x).
28
//
29
// Method:
30
//   1. Argument Reduction for 0 < x <= 8
31
//      Since gamma(1+s)=s*gamma(s), for x in [0,8], we may
32
//      reduce x to a number in [1.5,2.5] by
33
//              lgamma(1+s) = log(s) + lgamma(s)
34
//      for example,
35
//              lgamma(7.3) = log(6.3) + lgamma(6.3)
36
//                          = log(6.3*5.3) + lgamma(5.3)
37
//                          = log(6.3*5.3*4.3*3.3*2.3) + lgamma(2.3)
38
//   2. Polynomial approximation of lgamma around its
39
//      minimum (ymin=1.461632144968362245) to maintain monotonicity.
40
//      On [ymin-0.23, ymin+0.27] (i.e., [1.23164,1.73163]), use
41
//              Let z = x-ymin;
42
//              lgamma(x) = -1.214862905358496078218 + z**2*poly(z)
43
//              poly(z) is a 14 degree polynomial.
44
//   2. Rational approximation in the primary interval [2,3]
45
//      We use the following approximation:
46
//              s = x-2.0;
47
//              lgamma(x) = 0.5*s + s*P(s)/Q(s)
48
//      with accuracy
49
//              |P/Q - (lgamma(x)-0.5s)| < 2**-61.71
50
//      Our algorithms are based on the following observation
51
//
52
//                             zeta(2)-1    2    zeta(3)-1    3
53
// lgamma(2+s) = s*(1-Euler) + --------- * s  -  --------- * s  + ...
54
//                                 2                 3
55
//
56
//      where Euler = 0.5772156649... is the Euler constant, which
57
//      is very close to 0.5.
58
//
59
//   3. For x>=8, we have
60
//      lgamma(x)~(x-0.5)log(x)-x+0.5*log(2pi)+1/(12x)-1/(360x**3)+....
61
//      (better formula:
62
//         lgamma(x)~(x-0.5)*(log(x)-1)-.5*(log(2pi)-1) + ...)
63
//      Let z = 1/x, then we approximation
64
//              f(z) = lgamma(x) - (x-0.5)(log(x)-1)
65
//      by
66
//                                  3       5             11
67
//              w = w0 + w1*z + w2*z  + w3*z  + ... + w6*z
68
//      where
69
//              |w - f(z)| < 2**-58.74
70
//
71
//   4. For negative x, since (G is gamma function)
72
//              -x*G(-x)*G(x) = pi/sin(pi*x),
73
//      we have
74
//              G(x) = pi/(sin(pi*x)*(-x)*G(-x))
75
//      since G(-x) is positive, sign(G(x)) = sign(sin(pi*x)) for x<0
76
//      Hence, for x<0, signgam = sign(sin(pi*x)) and
77
//              lgamma(x) = log(|Gamma(x)|)
78
//                        = log(pi/(|x*sin(pi*x)|)) - lgamma(-x);
79
//      Note: one should avoid computing pi*(-x) directly in the
80
//            computation of sin(pi*(-x)).
81
//
82
//   5. Special Cases
83
//              lgamma(2+s) ~ s*(1-Euler) for tiny s
84
//              lgamma(1)=lgamma(2)=0
85
//              lgamma(x) ~ -log(x) for tiny x
86
//              lgamma(0) = lgamma(inf) = inf
87
//              lgamma(-integer) = +-inf
88
//
89
//
90
 
91
var _lgamA = [...]float64{
92
        7.72156649015328655494e-02, // 0x3FB3C467E37DB0C8
93
        3.22467033424113591611e-01, // 0x3FD4A34CC4A60FAD
94
        6.73523010531292681824e-02, // 0x3FB13E001A5562A7
95
        2.05808084325167332806e-02, // 0x3F951322AC92547B
96
        7.38555086081402883957e-03, // 0x3F7E404FB68FEFE8
97
        2.89051383673415629091e-03, // 0x3F67ADD8CCB7926B
98
        1.19270763183362067845e-03, // 0x3F538A94116F3F5D
99
        5.10069792153511336608e-04, // 0x3F40B6C689B99C00
100
        2.20862790713908385557e-04, // 0x3F2CF2ECED10E54D
101
        1.08011567247583939954e-04, // 0x3F1C5088987DFB07
102
        2.52144565451257326939e-05, // 0x3EFA7074428CFA52
103
        4.48640949618915160150e-05, // 0x3F07858E90A45837
104
}
105
var _lgamR = [...]float64{
106
        1.0, // placeholder
107
        1.39200533467621045958e+00, // 0x3FF645A762C4AB74
108
        7.21935547567138069525e-01, // 0x3FE71A1893D3DCDC
109
        1.71933865632803078993e-01, // 0x3FC601EDCCFBDF27
110
        1.86459191715652901344e-02, // 0x3F9317EA742ED475
111
        7.77942496381893596434e-04, // 0x3F497DDACA41A95B
112
        7.32668430744625636189e-06, // 0x3EDEBAF7A5B38140
113
}
114
var _lgamS = [...]float64{
115
        -7.72156649015328655494e-02, // 0xBFB3C467E37DB0C8
116
        2.14982415960608852501e-01,  // 0x3FCB848B36E20878
117
        3.25778796408930981787e-01,  // 0x3FD4D98F4F139F59
118
        1.46350472652464452805e-01,  // 0x3FC2BB9CBEE5F2F7
119
        2.66422703033638609560e-02,  // 0x3F9B481C7E939961
120
        1.84028451407337715652e-03,  // 0x3F5E26B67368F239
121
        3.19475326584100867617e-05,  // 0x3F00BFECDD17E945
122
}
123
var _lgamT = [...]float64{
124
        4.83836122723810047042e-01,  // 0x3FDEF72BC8EE38A2
125
        -1.47587722994593911752e-01, // 0xBFC2E4278DC6C509
126
        6.46249402391333854778e-02,  // 0x3FB08B4294D5419B
127
        -3.27885410759859649565e-02, // 0xBFA0C9A8DF35B713
128
        1.79706750811820387126e-02,  // 0x3F9266E7970AF9EC
129
        -1.03142241298341437450e-02, // 0xBF851F9FBA91EC6A
130
        6.10053870246291332635e-03,  // 0x3F78FCE0E370E344
131
        -3.68452016781138256760e-03, // 0xBF6E2EFFB3E914D7
132
        2.25964780900612472250e-03,  // 0x3F6282D32E15C915
133
        -1.40346469989232843813e-03, // 0xBF56FE8EBF2D1AF1
134
        8.81081882437654011382e-04,  // 0x3F4CDF0CEF61A8E9
135
        -5.38595305356740546715e-04, // 0xBF41A6109C73E0EC
136
        3.15632070903625950361e-04,  // 0x3F34AF6D6C0EBBF7
137
        -3.12754168375120860518e-04, // 0xBF347F24ECC38C38
138
        3.35529192635519073543e-04,  // 0x3F35FD3EE8C2D3F4
139
}
140
var _lgamU = [...]float64{
141
        -7.72156649015328655494e-02, // 0xBFB3C467E37DB0C8
142
        6.32827064025093366517e-01,  // 0x3FE4401E8B005DFF
143
        1.45492250137234768737e+00,  // 0x3FF7475CD119BD6F
144
        9.77717527963372745603e-01,  // 0x3FEF497644EA8450
145
        2.28963728064692451092e-01,  // 0x3FCD4EAEF6010924
146
        1.33810918536787660377e-02,  // 0x3F8B678BBF2BAB09
147
}
148
var _lgamV = [...]float64{
149
        1.0,
150
        2.45597793713041134822e+00, // 0x4003A5D7C2BD619C
151
        2.12848976379893395361e+00, // 0x40010725A42B18F5
152
        7.69285150456672783825e-01, // 0x3FE89DFBE45050AF
153
        1.04222645593369134254e-01, // 0x3FBAAE55D6537C88
154
        3.21709242282423911810e-03, // 0x3F6A5ABB57D0CF61
155
}
156
var _lgamW = [...]float64{
157
        4.18938533204672725052e-01,  // 0x3FDACFE390C97D69
158
        8.33333333333329678849e-02,  // 0x3FB555555555553B
159
        -2.77777777728775536470e-03, // 0xBF66C16C16B02E5C
160
        7.93650558643019558500e-04,  // 0x3F4A019F98CF38B6
161
        -5.95187557450339963135e-04, // 0xBF4380CB8C0FE741
162
        8.36339918996282139126e-04,  // 0x3F4B67BA4CDAD5D1
163
        -1.63092934096575273989e-03, // 0xBF5AB89D0B9E43E4
164
}
165
 
166
// Lgamma returns the natural logarithm and sign (-1 or +1) of Gamma(x).
167
//
168
// Special cases are:
169
//      Lgamma(+Inf) = +Inf
170
//      Lgamma(0) = +Inf
171
//      Lgamma(-integer) = +Inf
172
//      Lgamma(-Inf) = -Inf
173
//      Lgamma(NaN) = NaN
174
func Lgamma(x float64) (lgamma float64, sign int) {
175
        const (
176
                Ymin  = 1.461632144968362245
177
                Two52 = 1 << 52                     // 0x4330000000000000 ~4.5036e+15
178
                Two53 = 1 << 53                     // 0x4340000000000000 ~9.0072e+15
179
                Two58 = 1 << 58                     // 0x4390000000000000 ~2.8823e+17
180
                Tiny  = 1.0 / (1 << 70)             // 0x3b90000000000000 ~8.47033e-22
181
                Tc    = 1.46163214496836224576e+00  // 0x3FF762D86356BE3F
182
                Tf    = -1.21486290535849611461e-01 // 0xBFBF19B9BCC38A42
183
                // Tt = -(tail of Tf)
184
                Tt = -3.63867699703950536541e-18 // 0xBC50C7CAA48A971F
185
        )
186
        // special cases
187
        sign = 1
188
        switch {
189
        case IsNaN(x):
190
                lgamma = x
191
                return
192
        case IsInf(x, 0):
193
                lgamma = x
194
                return
195
        case x == 0:
196
                lgamma = Inf(1)
197
                return
198
        }
199
 
200
        neg := false
201
        if x < 0 {
202
                x = -x
203
                neg = true
204
        }
205
 
206
        if x < Tiny { // if |x| < 2**-70, return -log(|x|)
207
                if neg {
208
                        sign = -1
209
                }
210
                lgamma = -Log(x)
211
                return
212
        }
213
        var nadj float64
214
        if neg {
215
                if x >= Two52 { // |x| >= 2**52, must be -integer
216
                        lgamma = Inf(1)
217
                        return
218
                }
219
                t := sinPi(x)
220
                if t == 0 {
221
                        lgamma = Inf(1) // -integer
222
                        return
223
                }
224
                nadj = Log(Pi / Abs(t*x))
225
                if t < 0 {
226
                        sign = -1
227
                }
228
        }
229
 
230
        switch {
231
        case x == 1 || x == 2: // purge off 1 and 2
232
                lgamma = 0
233
                return
234
        case x < 2: // use lgamma(x) = lgamma(x+1) - log(x)
235
                var y float64
236
                var i int
237
                if x <= 0.9 {
238
                        lgamma = -Log(x)
239
                        switch {
240
                        case x >= (Ymin - 1 + 0.27): // 0.7316 <= x <=  0.9
241
                                y = 1 - x
242
                                i = 0
243
                        case x >= (Ymin - 1 - 0.27): // 0.2316 <= x < 0.7316
244
                                y = x - (Tc - 1)
245
                                i = 1
246
                        default: // 0 < x < 0.2316
247
                                y = x
248
                                i = 2
249
                        }
250
                } else {
251
                        lgamma = 0
252
                        switch {
253
                        case x >= (Ymin + 0.27): // 1.7316 <= x < 2
254
                                y = 2 - x
255
                                i = 0
256
                        case x >= (Ymin - 0.27): // 1.2316 <= x < 1.7316
257
                                y = x - Tc
258
                                i = 1
259
                        default: // 0.9 < x < 1.2316
260
                                y = x - 1
261
                                i = 2
262
                        }
263
                }
264
                switch i {
265
                case 0:
266
                        z := y * y
267
                        p1 := _lgamA[0] + z*(_lgamA[2]+z*(_lgamA[4]+z*(_lgamA[6]+z*(_lgamA[8]+z*_lgamA[10]))))
268
                        p2 := z * (_lgamA[1] + z*(+_lgamA[3]+z*(_lgamA[5]+z*(_lgamA[7]+z*(_lgamA[9]+z*_lgamA[11])))))
269
                        p := y*p1 + p2
270
                        lgamma += (p - 0.5*y)
271
                case 1:
272
                        z := y * y
273
                        w := z * y
274
                        p1 := _lgamT[0] + w*(_lgamT[3]+w*(_lgamT[6]+w*(_lgamT[9]+w*_lgamT[12]))) // parallel comp
275
                        p2 := _lgamT[1] + w*(_lgamT[4]+w*(_lgamT[7]+w*(_lgamT[10]+w*_lgamT[13])))
276
                        p3 := _lgamT[2] + w*(_lgamT[5]+w*(_lgamT[8]+w*(_lgamT[11]+w*_lgamT[14])))
277
                        p := z*p1 - (Tt - w*(p2+y*p3))
278
                        lgamma += (Tf + p)
279
                case 2:
280
                        p1 := y * (_lgamU[0] + y*(_lgamU[1]+y*(_lgamU[2]+y*(_lgamU[3]+y*(_lgamU[4]+y*_lgamU[5])))))
281
                        p2 := 1 + y*(_lgamV[1]+y*(_lgamV[2]+y*(_lgamV[3]+y*(_lgamV[4]+y*_lgamV[5]))))
282
                        lgamma += (-0.5*y + p1/p2)
283
                }
284
        case x < 8: // 2 <= x < 8
285
                i := int(x)
286
                y := x - float64(i)
287
                p := y * (_lgamS[0] + y*(_lgamS[1]+y*(_lgamS[2]+y*(_lgamS[3]+y*(_lgamS[4]+y*(_lgamS[5]+y*_lgamS[6]))))))
288
                q := 1 + y*(_lgamR[1]+y*(_lgamR[2]+y*(_lgamR[3]+y*(_lgamR[4]+y*(_lgamR[5]+y*_lgamR[6])))))
289
                lgamma = 0.5*y + p/q
290
                z := 1.0 // Lgamma(1+s) = Log(s) + Lgamma(s)
291
                switch i {
292
                case 7:
293
                        z *= (y + 6)
294
                        fallthrough
295
                case 6:
296
                        z *= (y + 5)
297
                        fallthrough
298
                case 5:
299
                        z *= (y + 4)
300
                        fallthrough
301
                case 4:
302
                        z *= (y + 3)
303
                        fallthrough
304
                case 3:
305
                        z *= (y + 2)
306
                        lgamma += Log(z)
307
                }
308
        case x < Two58: // 8 <= x < 2**58
309
                t := Log(x)
310
                z := 1 / x
311
                y := z * z
312
                w := _lgamW[0] + z*(_lgamW[1]+y*(_lgamW[2]+y*(_lgamW[3]+y*(_lgamW[4]+y*(_lgamW[5]+y*_lgamW[6])))))
313
                lgamma = (x-0.5)*(t-1) + w
314
        default: // 2**58 <= x <= Inf
315
                lgamma = x * (Log(x) - 1)
316
        }
317
        if neg {
318
                lgamma = nadj - lgamma
319
        }
320
        return
321
}
322
 
323
// sinPi(x) is a helper function for negative x
324
func sinPi(x float64) float64 {
325
        const (
326
                Two52 = 1 << 52 // 0x4330000000000000 ~4.5036e+15
327
                Two53 = 1 << 53 // 0x4340000000000000 ~9.0072e+15
328
        )
329
        if x < 0.25 {
330
                return -Sin(Pi * x)
331
        }
332
 
333
        // argument reduction
334
        z := Floor(x)
335
        var n int
336
        if z != x { // inexact
337
                x = Mod(x, 2)
338
                n = int(x * 4)
339
        } else {
340
                if x >= Two53 { // x must be even
341
                        x = 0
342
                        n = 0
343
                } else {
344
                        if x < Two52 {
345
                                z = x + Two52 // exact
346
                        }
347
                        n = int(1 & Float64bits(z))
348
                        x = float64(n)
349
                        n <<= 2
350
                }
351
        }
352
        switch n {
353
        case 0:
354
                x = Sin(Pi * x)
355
        case 1, 2:
356
                x = Cos(Pi * (0.5 - x))
357
        case 3, 4:
358
                x = Sin(Pi * (1 - x))
359
        case 5, 6:
360
                x = -Cos(Pi * (x - 1.5))
361
        default:
362
                x = Sin(Pi * (x - 2))
363
        }
364
        return -x
365
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.