OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libgo/] [go/] [math/] [log.go] - Blame information for rev 801

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 747 jeremybenn
// Copyright 2009 The Go Authors. All rights reserved.
2
// Use of this source code is governed by a BSD-style
3
// license that can be found in the LICENSE file.
4
 
5
package math
6
 
7
/*
8
        Floating-point logarithm.
9
*/
10
 
11
// The original C code, the long comment, and the constants
12
// below are from FreeBSD's /usr/src/lib/msun/src/e_log.c
13
// and came with this notice.  The go code is a simpler
14
// version of the original C.
15
//
16
// ====================================================
17
// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
18
//
19
// Developed at SunPro, a Sun Microsystems, Inc. business.
20
// Permission to use, copy, modify, and distribute this
21
// software is freely granted, provided that this notice
22
// is preserved.
23
// ====================================================
24
//
25
// __ieee754_log(x)
26
// Return the logarithm of x
27
//
28
// Method :
29
//   1. Argument Reduction: find k and f such that
30
//                      x = 2**k * (1+f),
31
//         where  sqrt(2)/2 < 1+f < sqrt(2) .
32
//
33
//   2. Approximation of log(1+f).
34
//      Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
35
//               = 2s + 2/3 s**3 + 2/5 s**5 + .....,
36
//               = 2s + s*R
37
//      We use a special Reme algorithm on [0,0.1716] to generate
38
//      a polynomial of degree 14 to approximate R.  The maximum error
39
//      of this polynomial approximation is bounded by 2**-58.45. In
40
//      other words,
41
//                      2      4      6      8      10      12      14
42
//          R(z) ~ L1*s +L2*s +L3*s +L4*s +L5*s  +L6*s  +L7*s
43
//      (the values of L1 to L7 are listed in the program) and
44
//          |      2          14          |     -58.45
45
//          | L1*s +...+L7*s    -  R(z) | <= 2
46
//          |                             |
47
//      Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
48
//      In order to guarantee error in log below 1ulp, we compute log by
49
//              log(1+f) = f - s*(f - R)                (if f is not too large)
50
//              log(1+f) = f - (hfsq - s*(hfsq+R)).     (better accuracy)
51
//
52
//      3. Finally,  log(x) = k*Ln2 + log(1+f).
53
//                          = k*Ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*Ln2_lo)))
54
//         Here Ln2 is split into two floating point number:
55
//                      Ln2_hi + Ln2_lo,
56
//         where n*Ln2_hi is always exact for |n| < 2000.
57
//
58
// Special cases:
59
//      log(x) is NaN with signal if x < 0 (including -INF) ;
60
//      log(+INF) is +INF; log(0) is -INF with signal;
61
//      log(NaN) is that NaN with no signal.
62
//
63
// Accuracy:
64
//      according to an error analysis, the error is always less than
65
//      1 ulp (unit in the last place).
66
//
67
// Constants:
68
// The hexadecimal values are the intended ones for the following
69
// constants. The decimal values may be used, provided that the
70
// compiler will convert from decimal to binary accurately enough
71
// to produce the hexadecimal values shown.
72
 
73
// Log returns the natural logarithm of x.
74
//
75
// Special cases are:
76
//      Log(+Inf) = +Inf
77
//      Log(0) = -Inf
78
//      Log(x < 0) = NaN
79
//      Log(NaN) = NaN
80
 
81
//extern log
82
func libc_log(float64) float64
83
 
84
func Log(x float64) float64 {
85
        return libc_log(x)
86
}
87
 
88
func log(x float64) float64 {
89
        const (
90
                Ln2Hi = 6.93147180369123816490e-01 /* 3fe62e42 fee00000 */
91
                Ln2Lo = 1.90821492927058770002e-10 /* 3dea39ef 35793c76 */
92
                L1    = 6.666666666666735130e-01   /* 3FE55555 55555593 */
93
                L2    = 3.999999999940941908e-01   /* 3FD99999 9997FA04 */
94
                L3    = 2.857142874366239149e-01   /* 3FD24924 94229359 */
95
                L4    = 2.222219843214978396e-01   /* 3FCC71C5 1D8E78AF */
96
                L5    = 1.818357216161805012e-01   /* 3FC74664 96CB03DE */
97
                L6    = 1.531383769920937332e-01   /* 3FC39A09 D078C69F */
98
                L7    = 1.479819860511658591e-01   /* 3FC2F112 DF3E5244 */
99
        )
100
 
101
        // special cases
102
        switch {
103
        case IsNaN(x) || IsInf(x, 1):
104
                return x
105
        case x < 0:
106
                return NaN()
107
        case x == 0:
108
                return Inf(-1)
109
        }
110
 
111
        // reduce
112
        f1, ki := Frexp(x)
113
        if f1 < Sqrt2/2 {
114
                f1 *= 2
115
                ki--
116
        }
117
        f := f1 - 1
118
        k := float64(ki)
119
 
120
        // compute
121
        s := f / (2 + f)
122
        s2 := s * s
123
        s4 := s2 * s2
124
        t1 := s2 * (L1 + s4*(L3+s4*(L5+s4*L7)))
125
        t2 := s4 * (L2 + s4*(L4+s4*L6))
126
        R := t1 + t2
127
        hfsq := 0.5 * f * f
128
        return k*Ln2Hi - ((hfsq - (s*(hfsq+R) + k*Ln2Lo)) - f)
129
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.