1 |
747 |
jeremybenn |
// Copyright 2010 The Go Authors. All rights reserved.
|
2 |
|
|
// Use of this source code is governed by a BSD-style
|
3 |
|
|
// license that can be found in the LICENSE file.
|
4 |
|
|
|
5 |
|
|
package math
|
6 |
|
|
|
7 |
|
|
// The original C code, the long comment, and the constants
|
8 |
|
|
// below are from FreeBSD's /usr/src/lib/msun/src/s_log1p.c
|
9 |
|
|
// and came with this notice. The go code is a simplified
|
10 |
|
|
// version of the original C.
|
11 |
|
|
//
|
12 |
|
|
// ====================================================
|
13 |
|
|
// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
14 |
|
|
//
|
15 |
|
|
// Developed at SunPro, a Sun Microsystems, Inc. business.
|
16 |
|
|
// Permission to use, copy, modify, and distribute this
|
17 |
|
|
// software is freely granted, provided that this notice
|
18 |
|
|
// is preserved.
|
19 |
|
|
// ====================================================
|
20 |
|
|
//
|
21 |
|
|
//
|
22 |
|
|
// double log1p(double x)
|
23 |
|
|
//
|
24 |
|
|
// Method :
|
25 |
|
|
// 1. Argument Reduction: find k and f such that
|
26 |
|
|
// 1+x = 2**k * (1+f),
|
27 |
|
|
// where sqrt(2)/2 < 1+f < sqrt(2) .
|
28 |
|
|
//
|
29 |
|
|
// Note. If k=0, then f=x is exact. However, if k!=0, then f
|
30 |
|
|
// may not be representable exactly. In that case, a correction
|
31 |
|
|
// term is need. Let u=1+x rounded. Let c = (1+x)-u, then
|
32 |
|
|
// log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
|
33 |
|
|
// and add back the correction term c/u.
|
34 |
|
|
// (Note: when x > 2**53, one can simply return log(x))
|
35 |
|
|
//
|
36 |
|
|
// 2. Approximation of log1p(f).
|
37 |
|
|
// Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
|
38 |
|
|
// = 2s + 2/3 s**3 + 2/5 s**5 + .....,
|
39 |
|
|
// = 2s + s*R
|
40 |
|
|
// We use a special Reme algorithm on [0,0.1716] to generate
|
41 |
|
|
// a polynomial of degree 14 to approximate R The maximum error
|
42 |
|
|
// of this polynomial approximation is bounded by 2**-58.45. In
|
43 |
|
|
// other words,
|
44 |
|
|
// 2 4 6 8 10 12 14
|
45 |
|
|
// R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s +Lp6*s +Lp7*s
|
46 |
|
|
// (the values of Lp1 to Lp7 are listed in the program)
|
47 |
|
|
// and
|
48 |
|
|
// | 2 14 | -58.45
|
49 |
|
|
// | Lp1*s +...+Lp7*s - R(z) | <= 2
|
50 |
|
|
// | |
|
51 |
|
|
// Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
|
52 |
|
|
// In order to guarantee error in log below 1ulp, we compute log
|
53 |
|
|
// by
|
54 |
|
|
// log1p(f) = f - (hfsq - s*(hfsq+R)).
|
55 |
|
|
//
|
56 |
|
|
// 3. Finally, log1p(x) = k*ln2 + log1p(f).
|
57 |
|
|
// = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
|
58 |
|
|
// Here ln2 is split into two floating point number:
|
59 |
|
|
// ln2_hi + ln2_lo,
|
60 |
|
|
// where n*ln2_hi is always exact for |n| < 2000.
|
61 |
|
|
//
|
62 |
|
|
// Special cases:
|
63 |
|
|
// log1p(x) is NaN with signal if x < -1 (including -INF) ;
|
64 |
|
|
// log1p(+INF) is +INF; log1p(-1) is -INF with signal;
|
65 |
|
|
// log1p(NaN) is that NaN with no signal.
|
66 |
|
|
//
|
67 |
|
|
// Accuracy:
|
68 |
|
|
// according to an error analysis, the error is always less than
|
69 |
|
|
// 1 ulp (unit in the last place).
|
70 |
|
|
//
|
71 |
|
|
// Constants:
|
72 |
|
|
// The hexadecimal values are the intended ones for the following
|
73 |
|
|
// constants. The decimal values may be used, provided that the
|
74 |
|
|
// compiler will convert from decimal to binary accurately enough
|
75 |
|
|
// to produce the hexadecimal values shown.
|
76 |
|
|
//
|
77 |
|
|
// Note: Assuming log() return accurate answer, the following
|
78 |
|
|
// algorithm can be used to compute log1p(x) to within a few ULP:
|
79 |
|
|
//
|
80 |
|
|
// u = 1+x;
|
81 |
|
|
// if(u==1.0) return x ; else
|
82 |
|
|
// return log(u)*(x/(u-1.0));
|
83 |
|
|
//
|
84 |
|
|
// See HP-15C Advanced Functions Handbook, p.193.
|
85 |
|
|
|
86 |
|
|
// Log1p returns the natural logarithm of 1 plus its argument x.
|
87 |
|
|
// It is more accurate than Log(1 + x) when x is near zero.
|
88 |
|
|
//
|
89 |
|
|
// Special cases are:
|
90 |
|
|
// Log1p(+Inf) = +Inf
|
91 |
|
|
// Log1p(±0) = ±0
|
92 |
|
|
// Log1p(-1) = -Inf
|
93 |
|
|
// Log1p(x < -1) = NaN
|
94 |
|
|
// Log1p(NaN) = NaN
|
95 |
|
|
|
96 |
|
|
//extern log1p
|
97 |
|
|
func libc_log1p(float64) float64
|
98 |
|
|
|
99 |
|
|
func Log1p(x float64) float64 {
|
100 |
|
|
return libc_log1p(x)
|
101 |
|
|
}
|
102 |
|
|
|
103 |
|
|
func log1p(x float64) float64 {
|
104 |
|
|
const (
|
105 |
|
|
Sqrt2M1 = 4.142135623730950488017e-01 // Sqrt(2)-1 = 0x3fda827999fcef34
|
106 |
|
|
Sqrt2HalfM1 = -2.928932188134524755992e-01 // Sqrt(2)/2-1 = 0xbfd2bec333018866
|
107 |
|
|
Small = 1.0 / (1 << 29) // 2**-29 = 0x3e20000000000000
|
108 |
|
|
Tiny = 1.0 / (1 << 54) // 2**-54
|
109 |
|
|
Two53 = 1 << 53 // 2**53
|
110 |
|
|
Ln2Hi = 6.93147180369123816490e-01 // 3fe62e42fee00000
|
111 |
|
|
Ln2Lo = 1.90821492927058770002e-10 // 3dea39ef35793c76
|
112 |
|
|
Lp1 = 6.666666666666735130e-01 // 3FE5555555555593
|
113 |
|
|
Lp2 = 3.999999999940941908e-01 // 3FD999999997FA04
|
114 |
|
|
Lp3 = 2.857142874366239149e-01 // 3FD2492494229359
|
115 |
|
|
Lp4 = 2.222219843214978396e-01 // 3FCC71C51D8E78AF
|
116 |
|
|
Lp5 = 1.818357216161805012e-01 // 3FC7466496CB03DE
|
117 |
|
|
Lp6 = 1.531383769920937332e-01 // 3FC39A09D078C69F
|
118 |
|
|
Lp7 = 1.479819860511658591e-01 // 3FC2F112DF3E5244
|
119 |
|
|
)
|
120 |
|
|
|
121 |
|
|
// special cases
|
122 |
|
|
switch {
|
123 |
|
|
case x < -1 || IsNaN(x): // includes -Inf
|
124 |
|
|
return NaN()
|
125 |
|
|
case x == -1:
|
126 |
|
|
return Inf(-1)
|
127 |
|
|
case IsInf(x, 1):
|
128 |
|
|
return Inf(1)
|
129 |
|
|
}
|
130 |
|
|
|
131 |
|
|
absx := x
|
132 |
|
|
if absx < 0 {
|
133 |
|
|
absx = -absx
|
134 |
|
|
}
|
135 |
|
|
|
136 |
|
|
var f float64
|
137 |
|
|
var iu uint64
|
138 |
|
|
k := 1
|
139 |
|
|
if absx < Sqrt2M1 { // |x| < Sqrt(2)-1
|
140 |
|
|
if absx < Small { // |x| < 2**-29
|
141 |
|
|
if absx < Tiny { // |x| < 2**-54
|
142 |
|
|
return x
|
143 |
|
|
}
|
144 |
|
|
return x - x*x*0.5
|
145 |
|
|
}
|
146 |
|
|
if x > Sqrt2HalfM1 { // Sqrt(2)/2-1 < x
|
147 |
|
|
// (Sqrt(2)/2-1) < x < (Sqrt(2)-1)
|
148 |
|
|
k = 0
|
149 |
|
|
f = x
|
150 |
|
|
iu = 1
|
151 |
|
|
}
|
152 |
|
|
}
|
153 |
|
|
var c float64
|
154 |
|
|
if k != 0 {
|
155 |
|
|
var u float64
|
156 |
|
|
if absx < Two53 { // 1<<53
|
157 |
|
|
u = 1.0 + x
|
158 |
|
|
iu = Float64bits(u)
|
159 |
|
|
k = int((iu >> 52) - 1023)
|
160 |
|
|
if k > 0 {
|
161 |
|
|
c = 1.0 - (u - x)
|
162 |
|
|
} else {
|
163 |
|
|
c = x - (u - 1.0) // correction term
|
164 |
|
|
c /= u
|
165 |
|
|
}
|
166 |
|
|
} else {
|
167 |
|
|
u = x
|
168 |
|
|
iu = Float64bits(u)
|
169 |
|
|
k = int((iu >> 52) - 1023)
|
170 |
|
|
c = 0
|
171 |
|
|
}
|
172 |
|
|
iu &= 0x000fffffffffffff
|
173 |
|
|
if iu < 0x0006a09e667f3bcd { // mantissa of Sqrt(2)
|
174 |
|
|
u = Float64frombits(iu | 0x3ff0000000000000) // normalize u
|
175 |
|
|
} else {
|
176 |
|
|
k += 1
|
177 |
|
|
u = Float64frombits(iu | 0x3fe0000000000000) // normalize u/2
|
178 |
|
|
iu = (0x0010000000000000 - iu) >> 2
|
179 |
|
|
}
|
180 |
|
|
f = u - 1.0 // Sqrt(2)/2 < u < Sqrt(2)
|
181 |
|
|
}
|
182 |
|
|
hfsq := 0.5 * f * f
|
183 |
|
|
var s, R, z float64
|
184 |
|
|
if iu == 0 { // |f| < 2**-20
|
185 |
|
|
if f == 0 {
|
186 |
|
|
if k == 0 {
|
187 |
|
|
return 0
|
188 |
|
|
} else {
|
189 |
|
|
c += float64(k) * Ln2Lo
|
190 |
|
|
return float64(k)*Ln2Hi + c
|
191 |
|
|
}
|
192 |
|
|
}
|
193 |
|
|
R = hfsq * (1.0 - 0.66666666666666666*f) // avoid division
|
194 |
|
|
if k == 0 {
|
195 |
|
|
return f - R
|
196 |
|
|
}
|
197 |
|
|
return float64(k)*Ln2Hi - ((R - (float64(k)*Ln2Lo + c)) - f)
|
198 |
|
|
}
|
199 |
|
|
s = f / (2.0 + f)
|
200 |
|
|
z = s * s
|
201 |
|
|
R = z * (Lp1 + z*(Lp2+z*(Lp3+z*(Lp4+z*(Lp5+z*(Lp6+z*Lp7))))))
|
202 |
|
|
if k == 0 {
|
203 |
|
|
return f - (hfsq - s*(hfsq+R))
|
204 |
|
|
}
|
205 |
|
|
return float64(k)*Ln2Hi - ((hfsq - (s*(hfsq+R) + (float64(k)*Ln2Lo + c))) - f)
|
206 |
|
|
}
|