OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libgo/] [go/] [math/] [log1p.go] - Blame information for rev 867

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 747 jeremybenn
// Copyright 2010 The Go Authors. All rights reserved.
2
// Use of this source code is governed by a BSD-style
3
// license that can be found in the LICENSE file.
4
 
5
package math
6
 
7
// The original C code, the long comment, and the constants
8
// below are from FreeBSD's /usr/src/lib/msun/src/s_log1p.c
9
// and came with this notice.  The go code is a simplified
10
// version of the original C.
11
//
12
// ====================================================
13
// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
14
//
15
// Developed at SunPro, a Sun Microsystems, Inc. business.
16
// Permission to use, copy, modify, and distribute this
17
// software is freely granted, provided that this notice
18
// is preserved.
19
// ====================================================
20
//
21
//
22
// double log1p(double x)
23
//
24
// Method :
25
//   1. Argument Reduction: find k and f such that
26
//                      1+x = 2**k * (1+f),
27
//         where  sqrt(2)/2 < 1+f < sqrt(2) .
28
//
29
//      Note. If k=0, then f=x is exact. However, if k!=0, then f
30
//      may not be representable exactly. In that case, a correction
31
//      term is need. Let u=1+x rounded. Let c = (1+x)-u, then
32
//      log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
33
//      and add back the correction term c/u.
34
//      (Note: when x > 2**53, one can simply return log(x))
35
//
36
//   2. Approximation of log1p(f).
37
//      Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
38
//               = 2s + 2/3 s**3 + 2/5 s**5 + .....,
39
//               = 2s + s*R
40
//      We use a special Reme algorithm on [0,0.1716] to generate
41
//      a polynomial of degree 14 to approximate R The maximum error
42
//      of this polynomial approximation is bounded by 2**-58.45. In
43
//      other words,
44
//                      2      4      6      8      10      12      14
45
//          R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s  +Lp6*s  +Lp7*s
46
//      (the values of Lp1 to Lp7 are listed in the program)
47
//      and
48
//          |      2          14          |     -58.45
49
//          | Lp1*s +...+Lp7*s    -  R(z) | <= 2
50
//          |                             |
51
//      Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
52
//      In order to guarantee error in log below 1ulp, we compute log
53
//      by
54
//              log1p(f) = f - (hfsq - s*(hfsq+R)).
55
//
56
//   3. Finally, log1p(x) = k*ln2 + log1p(f).
57
//                        = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
58
//      Here ln2 is split into two floating point number:
59
//                   ln2_hi + ln2_lo,
60
//      where n*ln2_hi is always exact for |n| < 2000.
61
//
62
// Special cases:
63
//      log1p(x) is NaN with signal if x < -1 (including -INF) ;
64
//      log1p(+INF) is +INF; log1p(-1) is -INF with signal;
65
//      log1p(NaN) is that NaN with no signal.
66
//
67
// Accuracy:
68
//      according to an error analysis, the error is always less than
69
//      1 ulp (unit in the last place).
70
//
71
// Constants:
72
// The hexadecimal values are the intended ones for the following
73
// constants. The decimal values may be used, provided that the
74
// compiler will convert from decimal to binary accurately enough
75
// to produce the hexadecimal values shown.
76
//
77
// Note: Assuming log() return accurate answer, the following
78
//       algorithm can be used to compute log1p(x) to within a few ULP:
79
//
80
//              u = 1+x;
81
//              if(u==1.0) return x ; else
82
//                         return log(u)*(x/(u-1.0));
83
//
84
//       See HP-15C Advanced Functions Handbook, p.193.
85
 
86
// Log1p returns the natural logarithm of 1 plus its argument x.
87
// It is more accurate than Log(1 + x) when x is near zero.
88
//
89
// Special cases are:
90
//      Log1p(+Inf) = +Inf
91
//      Log1p(±0) = ±0
92
//      Log1p(-1) = -Inf
93
//      Log1p(x < -1) = NaN
94
//      Log1p(NaN) = NaN
95
 
96
//extern log1p
97
func libc_log1p(float64) float64
98
 
99
func Log1p(x float64) float64 {
100
        return libc_log1p(x)
101
}
102
 
103
func log1p(x float64) float64 {
104
        const (
105
                Sqrt2M1     = 4.142135623730950488017e-01  // Sqrt(2)-1 = 0x3fda827999fcef34
106
                Sqrt2HalfM1 = -2.928932188134524755992e-01 // Sqrt(2)/2-1 = 0xbfd2bec333018866
107
                Small       = 1.0 / (1 << 29)              // 2**-29 = 0x3e20000000000000
108
                Tiny        = 1.0 / (1 << 54)              // 2**-54
109
                Two53       = 1 << 53                      // 2**53
110
                Ln2Hi       = 6.93147180369123816490e-01   // 3fe62e42fee00000
111
                Ln2Lo       = 1.90821492927058770002e-10   // 3dea39ef35793c76
112
                Lp1         = 6.666666666666735130e-01     // 3FE5555555555593
113
                Lp2         = 3.999999999940941908e-01     // 3FD999999997FA04
114
                Lp3         = 2.857142874366239149e-01     // 3FD2492494229359
115
                Lp4         = 2.222219843214978396e-01     // 3FCC71C51D8E78AF
116
                Lp5         = 1.818357216161805012e-01     // 3FC7466496CB03DE
117
                Lp6         = 1.531383769920937332e-01     // 3FC39A09D078C69F
118
                Lp7         = 1.479819860511658591e-01     // 3FC2F112DF3E5244
119
        )
120
 
121
        // special cases
122
        switch {
123
        case x < -1 || IsNaN(x): // includes -Inf
124
                return NaN()
125
        case x == -1:
126
                return Inf(-1)
127
        case IsInf(x, 1):
128
                return Inf(1)
129
        }
130
 
131
        absx := x
132
        if absx < 0 {
133
                absx = -absx
134
        }
135
 
136
        var f float64
137
        var iu uint64
138
        k := 1
139
        if absx < Sqrt2M1 { //  |x| < Sqrt(2)-1
140
                if absx < Small { // |x| < 2**-29
141
                        if absx < Tiny { // |x| < 2**-54
142
                                return x
143
                        }
144
                        return x - x*x*0.5
145
                }
146
                if x > Sqrt2HalfM1 { // Sqrt(2)/2-1 < x
147
                        // (Sqrt(2)/2-1) < x < (Sqrt(2)-1)
148
                        k = 0
149
                        f = x
150
                        iu = 1
151
                }
152
        }
153
        var c float64
154
        if k != 0 {
155
                var u float64
156
                if absx < Two53 { // 1<<53
157
                        u = 1.0 + x
158
                        iu = Float64bits(u)
159
                        k = int((iu >> 52) - 1023)
160
                        if k > 0 {
161
                                c = 1.0 - (u - x)
162
                        } else {
163
                                c = x - (u - 1.0) // correction term
164
                                c /= u
165
                        }
166
                } else {
167
                        u = x
168
                        iu = Float64bits(u)
169
                        k = int((iu >> 52) - 1023)
170
                        c = 0
171
                }
172
                iu &= 0x000fffffffffffff
173
                if iu < 0x0006a09e667f3bcd { // mantissa of Sqrt(2)
174
                        u = Float64frombits(iu | 0x3ff0000000000000) // normalize u
175
                } else {
176
                        k += 1
177
                        u = Float64frombits(iu | 0x3fe0000000000000) // normalize u/2
178
                        iu = (0x0010000000000000 - iu) >> 2
179
                }
180
                f = u - 1.0 // Sqrt(2)/2 < u < Sqrt(2)
181
        }
182
        hfsq := 0.5 * f * f
183
        var s, R, z float64
184
        if iu == 0 { // |f| < 2**-20
185
                if f == 0 {
186
                        if k == 0 {
187
                                return 0
188
                        } else {
189
                                c += float64(k) * Ln2Lo
190
                                return float64(k)*Ln2Hi + c
191
                        }
192
                }
193
                R = hfsq * (1.0 - 0.66666666666666666*f) // avoid division
194
                if k == 0 {
195
                        return f - R
196
                }
197
                return float64(k)*Ln2Hi - ((R - (float64(k)*Ln2Lo + c)) - f)
198
        }
199
        s = f / (2.0 + f)
200
        z = s * s
201
        R = z * (Lp1 + z*(Lp2+z*(Lp3+z*(Lp4+z*(Lp5+z*(Lp6+z*Lp7))))))
202
        if k == 0 {
203
                return f - (hfsq - s*(hfsq+R))
204
        }
205
        return float64(k)*Ln2Hi - ((hfsq - (s*(hfsq+R) + (float64(k)*Ln2Lo + c))) - f)
206
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.