OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libgo/] [go/] [math/] [sin.go] - Blame information for rev 801

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 747 jeremybenn
// Copyright 2011 The Go Authors. All rights reserved.
2
// Use of this source code is governed by a BSD-style
3
// license that can be found in the LICENSE file.
4
 
5
package math
6
 
7
/*
8
        Floating-point sine and cosine.
9
*/
10
 
11
// The original C code, the long comment, and the constants
12
// below were from http://netlib.sandia.gov/cephes/cmath/sin.c,
13
// available from http://www.netlib.org/cephes/cmath.tgz.
14
// The go code is a simplified version of the original C.
15
//
16
//      sin.c
17
//
18
//      Circular sine
19
//
20
// SYNOPSIS:
21
//
22
// double x, y, sin();
23
// y = sin( x );
24
//
25
// DESCRIPTION:
26
//
27
// Range reduction is into intervals of pi/4.  The reduction error is nearly
28
// eliminated by contriving an extended precision modular arithmetic.
29
//
30
// Two polynomial approximating functions are employed.
31
// Between 0 and pi/4 the sine is approximated by
32
//      x  +  x**3 P(x**2).
33
// Between pi/4 and pi/2 the cosine is represented as
34
//      1  -  x**2 Q(x**2).
35
//
36
// ACCURACY:
37
//
38
//                      Relative error:
39
// arithmetic   domain      # trials      peak         rms
40
//    DEC       0, 10       150000       3.0e-17     7.8e-18
41
//    IEEE -1.07e9,+1.07e9  130000       2.1e-16     5.4e-17
42
//
43
// Partial loss of accuracy begins to occur at x = 2**30 = 1.074e9.  The loss
44
// is not gradual, but jumps suddenly to about 1 part in 10e7.  Results may
45
// be meaningless for x > 2**49 = 5.6e14.
46
//
47
//      cos.c
48
//
49
//      Circular cosine
50
//
51
// SYNOPSIS:
52
//
53
// double x, y, cos();
54
// y = cos( x );
55
//
56
// DESCRIPTION:
57
//
58
// Range reduction is into intervals of pi/4.  The reduction error is nearly
59
// eliminated by contriving an extended precision modular arithmetic.
60
//
61
// Two polynomial approximating functions are employed.
62
// Between 0 and pi/4 the cosine is approximated by
63
//      1  -  x**2 Q(x**2).
64
// Between pi/4 and pi/2 the sine is represented as
65
//      x  +  x**3 P(x**2).
66
//
67
// ACCURACY:
68
//
69
//                      Relative error:
70
// arithmetic   domain      # trials      peak         rms
71
//    IEEE -1.07e9,+1.07e9  130000       2.1e-16     5.4e-17
72
//    DEC        0,+1.07e9   17000       3.0e-17     7.2e-18
73
//
74
// Cephes Math Library Release 2.8:  June, 2000
75
// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
76
//
77
// The readme file at http://netlib.sandia.gov/cephes/ says:
78
//    Some software in this archive may be from the book _Methods and
79
// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster
80
// International, 1989) or from the Cephes Mathematical Library, a
81
// commercial product. In either event, it is copyrighted by the author.
82
// What you see here may be used freely but it comes with no support or
83
// guarantee.
84
//
85
//   The two known misprints in the book are repaired here in the
86
// source listings for the gamma function and the incomplete beta
87
// integral.
88
//
89
//   Stephen L. Moshier
90
//   moshier@na-net.ornl.gov
91
 
92
// sin coefficients
93
var _sin = [...]float64{
94
        1.58962301576546568060E-10, // 0x3de5d8fd1fd19ccd
95
        -2.50507477628578072866E-8, // 0xbe5ae5e5a9291f5d
96
        2.75573136213857245213E-6,  // 0x3ec71de3567d48a1
97
        -1.98412698295895385996E-4, // 0xbf2a01a019bfdf03
98
        8.33333333332211858878E-3,  // 0x3f8111111110f7d0
99
        -1.66666666666666307295E-1, // 0xbfc5555555555548
100
}
101
 
102
// cos coefficients
103
var _cos = [...]float64{
104
        -1.13585365213876817300E-11, // 0xbda8fa49a0861a9b
105
        2.08757008419747316778E-9,   // 0x3e21ee9d7b4e3f05
106
        -2.75573141792967388112E-7,  // 0xbe927e4f7eac4bc6
107
        2.48015872888517045348E-5,   // 0x3efa01a019c844f5
108
        -1.38888888888730564116E-3,  // 0xbf56c16c16c14f91
109
        4.16666666666665929218E-2,   // 0x3fa555555555554b
110
}
111
 
112
// Cos returns the cosine of x.
113
//
114
// Special cases are:
115
//      Cos(±Inf) = NaN
116
//      Cos(NaN) = NaN
117
 
118
//extern cos
119
func libc_cos(float64) float64
120
 
121
func Cos(x float64) float64 {
122
        return libc_cos(x)
123
}
124
 
125
func cos(x float64) float64 {
126
        const (
127
                PI4A = 7.85398125648498535156E-1                             // 0x3fe921fb40000000, Pi/4 split into three parts
128
                PI4B = 3.77489470793079817668E-8                             // 0x3e64442d00000000,
129
                PI4C = 2.69515142907905952645E-15                            // 0x3ce8469898cc5170,
130
                M4PI = 1.273239544735162542821171882678754627704620361328125 // 4/pi
131
        )
132
        // special cases
133
        switch {
134
        case IsNaN(x) || IsInf(x, 0):
135
                return NaN()
136
        }
137
 
138
        // make argument positive
139
        sign := false
140
        if x < 0 {
141
                x = -x
142
        }
143
 
144
        j := int64(x * M4PI) // integer part of x/(Pi/4), as integer for tests on the phase angle
145
        y := float64(j)      // integer part of x/(Pi/4), as float
146
 
147
        // map zeros to origin
148
        if j&1 == 1 {
149
                j += 1
150
                y += 1
151
        }
152
        j &= 7 // octant modulo 2Pi radians (360 degrees)
153
        if j > 3 {
154
                j -= 4
155
                sign = !sign
156
        }
157
        if j > 1 {
158
                sign = !sign
159
        }
160
 
161
        z := ((x - y*PI4A) - y*PI4B) - y*PI4C // Extended precision modular arithmetic
162
        zz := z * z
163
        if j == 1 || j == 2 {
164
                y = z + z*zz*((((((_sin[0]*zz)+_sin[1])*zz+_sin[2])*zz+_sin[3])*zz+_sin[4])*zz+_sin[5])
165
        } else {
166
                y = 1.0 - 0.5*zz + zz*zz*((((((_cos[0]*zz)+_cos[1])*zz+_cos[2])*zz+_cos[3])*zz+_cos[4])*zz+_cos[5])
167
        }
168
        if sign {
169
                y = -y
170
        }
171
        return y
172
}
173
 
174
// Sin returns the sine of x.
175
//
176
// Special cases are:
177
//      Sin(±0) = ±0
178
//      Sin(±Inf) = NaN
179
//      Sin(NaN) = NaN
180
 
181
//extern sin
182
func libc_sin(float64) float64
183
 
184
func Sin(x float64) float64 {
185
        return libc_sin(x)
186
}
187
 
188
func sin(x float64) float64 {
189
        const (
190
                PI4A = 7.85398125648498535156E-1                             // 0x3fe921fb40000000, Pi/4 split into three parts
191
                PI4B = 3.77489470793079817668E-8                             // 0x3e64442d00000000,
192
                PI4C = 2.69515142907905952645E-15                            // 0x3ce8469898cc5170,
193
                M4PI = 1.273239544735162542821171882678754627704620361328125 // 4/pi
194
        )
195
        // special cases
196
        switch {
197
        case x == 0 || IsNaN(x):
198
                return x // return ±0 || NaN()
199
        case IsInf(x, 0):
200
                return NaN()
201
        }
202
 
203
        // make argument positive but save the sign
204
        sign := false
205
        if x < 0 {
206
                x = -x
207
                sign = true
208
        }
209
 
210
        j := int64(x * M4PI) // integer part of x/(Pi/4), as integer for tests on the phase angle
211
        y := float64(j)      // integer part of x/(Pi/4), as float
212
 
213
        // map zeros to origin
214
        if j&1 == 1 {
215
                j += 1
216
                y += 1
217
        }
218
        j &= 7 // octant modulo 2Pi radians (360 degrees)
219
        // reflect in x axis
220
        if j > 3 {
221
                sign = !sign
222
                j -= 4
223
        }
224
 
225
        z := ((x - y*PI4A) - y*PI4B) - y*PI4C // Extended precision modular arithmetic
226
        zz := z * z
227
        if j == 1 || j == 2 {
228
                y = 1.0 - 0.5*zz + zz*zz*((((((_cos[0]*zz)+_cos[1])*zz+_cos[2])*zz+_cos[3])*zz+_cos[4])*zz+_cos[5])
229
        } else {
230
                y = z + z*zz*((((((_sin[0]*zz)+_sin[1])*zz+_sin[2])*zz+_sin[3])*zz+_sin[4])*zz+_sin[5])
231
        }
232
        if sign {
233
                y = -y
234
        }
235
        return y
236
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.