OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libgo/] [go/] [regexp/] [exec.go] - Blame information for rev 774

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 747 jeremybenn
// Copyright 2011 The Go Authors. All rights reserved.
2
// Use of this source code is governed by a BSD-style
3
// license that can be found in the LICENSE file.
4
 
5
package regexp
6
 
7
import (
8
        "io"
9
        "regexp/syntax"
10
)
11
 
12
// A queue is a 'sparse array' holding pending threads of execution.
13
// See http://research.swtch.com/2008/03/using-uninitialized-memory-for-fun-and.html
14
type queue struct {
15
        sparse []uint32
16
        dense  []entry
17
}
18
 
19
// A entry is an entry on a queue.
20
// It holds both the instruction pc and the actual thread.
21
// Some queue entries are just place holders so that the machine
22
// knows it has considered that pc.  Such entries have t == nil.
23
type entry struct {
24
        pc uint32
25
        t  *thread
26
}
27
 
28
// A thread is the state of a single path through the machine:
29
// an instruction and a corresponding capture array.
30
// See http://swtch.com/~rsc/regexp/regexp2.html
31
type thread struct {
32
        inst *syntax.Inst
33
        cap  []int
34
}
35
 
36
// A machine holds all the state during an NFA simulation for p.
37
type machine struct {
38
        re       *Regexp      // corresponding Regexp
39
        p        *syntax.Prog // compiled program
40
        q0, q1   queue        // two queues for runq, nextq
41
        pool     []*thread    // pool of available threads
42
        matched  bool         // whether a match was found
43
        matchcap []int        // capture information for the match
44
 
45
        // cached inputs, to avoid allocation
46
        inputBytes  inputBytes
47
        inputString inputString
48
        inputReader inputReader
49
}
50
 
51
func (m *machine) newInputBytes(b []byte) input {
52
        m.inputBytes.str = b
53
        return &m.inputBytes
54
}
55
 
56
func (m *machine) newInputString(s string) input {
57
        m.inputString.str = s
58
        return &m.inputString
59
}
60
 
61
func (m *machine) newInputReader(r io.RuneReader) input {
62
        m.inputReader.r = r
63
        m.inputReader.atEOT = false
64
        m.inputReader.pos = 0
65
        return &m.inputReader
66
}
67
 
68
// progMachine returns a new machine running the prog p.
69
func progMachine(p *syntax.Prog) *machine {
70
        m := &machine{p: p}
71
        n := len(m.p.Inst)
72
        m.q0 = queue{make([]uint32, n), make([]entry, 0, n)}
73
        m.q1 = queue{make([]uint32, n), make([]entry, 0, n)}
74
        ncap := p.NumCap
75
        if ncap < 2 {
76
                ncap = 2
77
        }
78
        m.matchcap = make([]int, ncap)
79
        return m
80
}
81
 
82
func (m *machine) init(ncap int) {
83
        for _, t := range m.pool {
84
                t.cap = t.cap[:ncap]
85
        }
86
        m.matchcap = m.matchcap[:ncap]
87
}
88
 
89
// alloc allocates a new thread with the given instruction.
90
// It uses the free pool if possible.
91
func (m *machine) alloc(i *syntax.Inst) *thread {
92
        var t *thread
93
        if n := len(m.pool); n > 0 {
94
                t = m.pool[n-1]
95
                m.pool = m.pool[:n-1]
96
        } else {
97
                t = new(thread)
98
                t.cap = make([]int, len(m.matchcap), cap(m.matchcap))
99
        }
100
        t.inst = i
101
        return t
102
}
103
 
104
// free returns t to the free pool.
105
func (m *machine) free(t *thread) {
106
        m.inputBytes.str = nil
107
        m.inputString.str = ""
108
        m.inputReader.r = nil
109
        m.pool = append(m.pool, t)
110
}
111
 
112
// match runs the machine over the input starting at pos.
113
// It reports whether a match was found.
114
// If so, m.matchcap holds the submatch information.
115
func (m *machine) match(i input, pos int) bool {
116
        startCond := m.re.cond
117
        if startCond == ^syntax.EmptyOp(0) { // impossible
118
                return false
119
        }
120
        m.matched = false
121
        for i := range m.matchcap {
122
                m.matchcap[i] = -1
123
        }
124
        runq, nextq := &m.q0, &m.q1
125
        r, r1 := endOfText, endOfText
126
        width, width1 := 0, 0
127
        r, width = i.step(pos)
128
        if r != endOfText {
129
                r1, width1 = i.step(pos + width)
130
        }
131
        var flag syntax.EmptyOp
132
        if pos == 0 {
133
                flag = syntax.EmptyOpContext(-1, r)
134
        } else {
135
                flag = i.context(pos)
136
        }
137
        for {
138
                if len(runq.dense) == 0 {
139
                        if startCond&syntax.EmptyBeginText != 0 && pos != 0 {
140
                                // Anchored match, past beginning of text.
141
                                break
142
                        }
143
                        if m.matched {
144
                                // Have match; finished exploring alternatives.
145
                                break
146
                        }
147
                        if len(m.re.prefix) > 0 && r1 != m.re.prefixRune && i.canCheckPrefix() {
148
                                // Match requires literal prefix; fast search for it.
149
                                advance := i.index(m.re, pos)
150
                                if advance < 0 {
151
                                        break
152
                                }
153
                                pos += advance
154
                                r, width = i.step(pos)
155
                                r1, width1 = i.step(pos + width)
156
                        }
157
                }
158
                if !m.matched {
159
                        if len(m.matchcap) > 0 {
160
                                m.matchcap[0] = pos
161
                        }
162
                        m.add(runq, uint32(m.p.Start), pos, m.matchcap, flag, nil)
163
                }
164
                flag = syntax.EmptyOpContext(r, r1)
165
                m.step(runq, nextq, pos, pos+width, r, flag)
166
                if width == 0 {
167
                        break
168
                }
169
                if len(m.matchcap) == 0 && m.matched {
170
                        // Found a match and not paying attention
171
                        // to where it is, so any match will do.
172
                        break
173
                }
174
                pos += width
175
                r, width = r1, width1
176
                if r != endOfText {
177
                        r1, width1 = i.step(pos + width)
178
                }
179
                runq, nextq = nextq, runq
180
        }
181
        m.clear(nextq)
182
        return m.matched
183
}
184
 
185
// clear frees all threads on the thread queue.
186
func (m *machine) clear(q *queue) {
187
        for _, d := range q.dense {
188
                if d.t != nil {
189
                        // m.free(d.t)
190
                        m.pool = append(m.pool, d.t)
191
                }
192
        }
193
        q.dense = q.dense[:0]
194
}
195
 
196
// step executes one step of the machine, running each of the threads
197
// on runq and appending new threads to nextq.
198
// The step processes the rune c (which may be endOfText),
199
// which starts at position pos and ends at nextPos.
200
// nextCond gives the setting for the empty-width flags after c.
201
func (m *machine) step(runq, nextq *queue, pos, nextPos int, c rune, nextCond syntax.EmptyOp) {
202
        longest := m.re.longest
203
        for j := 0; j < len(runq.dense); j++ {
204
                d := &runq.dense[j]
205
                t := d.t
206
                if t == nil {
207
                        continue
208
                }
209
                if longest && m.matched && len(t.cap) > 0 && m.matchcap[0] < t.cap[0] {
210
                        // m.free(t)
211
                        m.pool = append(m.pool, t)
212
                        continue
213
                }
214
                i := t.inst
215
                add := false
216
                switch i.Op {
217
                default:
218
                        panic("bad inst")
219
 
220
                case syntax.InstMatch:
221
                        if len(t.cap) > 0 && (!longest || !m.matched || m.matchcap[1] < pos) {
222
                                t.cap[1] = pos
223
                                copy(m.matchcap, t.cap)
224
                        }
225
                        if !longest {
226
                                // First-match mode: cut off all lower-priority threads.
227
                                for _, d := range runq.dense[j+1:] {
228
                                        if d.t != nil {
229
                                                // m.free(d.t)
230
                                                m.pool = append(m.pool, d.t)
231
                                        }
232
                                }
233
                                runq.dense = runq.dense[:0]
234
                        }
235
                        m.matched = true
236
 
237
                case syntax.InstRune:
238
                        add = i.MatchRune(c)
239
                case syntax.InstRune1:
240
                        add = c == i.Rune[0]
241
                case syntax.InstRuneAny:
242
                        add = true
243
                case syntax.InstRuneAnyNotNL:
244
                        add = c != '\n'
245
                }
246
                if add {
247
                        t = m.add(nextq, i.Out, nextPos, t.cap, nextCond, t)
248
                }
249
                if t != nil {
250
                        // m.free(t)
251
                        m.pool = append(m.pool, t)
252
                }
253
        }
254
        runq.dense = runq.dense[:0]
255
}
256
 
257
// add adds an entry to q for pc, unless the q already has such an entry.
258
// It also recursively adds an entry for all instructions reachable from pc by following
259
// empty-width conditions satisfied by cond.  pos gives the current position
260
// in the input.
261
func (m *machine) add(q *queue, pc uint32, pos int, cap []int, cond syntax.EmptyOp, t *thread) *thread {
262
        if pc == 0 {
263
                return t
264
        }
265
        if j := q.sparse[pc]; j < uint32(len(q.dense)) && q.dense[j].pc == pc {
266
                return t
267
        }
268
 
269
        j := len(q.dense)
270
        q.dense = q.dense[:j+1]
271
        d := &q.dense[j]
272
        d.t = nil
273
        d.pc = pc
274
        q.sparse[pc] = uint32(j)
275
 
276
        i := &m.p.Inst[pc]
277
        switch i.Op {
278
        default:
279
                panic("unhandled")
280
        case syntax.InstFail:
281
                // nothing
282
        case syntax.InstAlt, syntax.InstAltMatch:
283
                t = m.add(q, i.Out, pos, cap, cond, t)
284
                t = m.add(q, i.Arg, pos, cap, cond, t)
285
        case syntax.InstEmptyWidth:
286
                if syntax.EmptyOp(i.Arg)&^cond == 0 {
287
                        t = m.add(q, i.Out, pos, cap, cond, t)
288
                }
289
        case syntax.InstNop:
290
                t = m.add(q, i.Out, pos, cap, cond, t)
291
        case syntax.InstCapture:
292
                if int(i.Arg) < len(cap) {
293
                        opos := cap[i.Arg]
294
                        cap[i.Arg] = pos
295
                        m.add(q, i.Out, pos, cap, cond, nil)
296
                        cap[i.Arg] = opos
297
                } else {
298
                        t = m.add(q, i.Out, pos, cap, cond, t)
299
                }
300
        case syntax.InstMatch, syntax.InstRune, syntax.InstRune1, syntax.InstRuneAny, syntax.InstRuneAnyNotNL:
301
                if t == nil {
302
                        t = m.alloc(i)
303
                } else {
304
                        t.inst = i
305
                }
306
                if len(cap) > 0 && &t.cap[0] != &cap[0] {
307
                        copy(t.cap, cap)
308
                }
309
                d.t = t
310
                t = nil
311
        }
312
        return t
313
}
314
 
315
// empty is a non-nil 0-element slice,
316
// so doExecute can avoid an allocation
317
// when 0 captures are requested from a successful match.
318
var empty = make([]int, 0)
319
 
320
// doExecute finds the leftmost match in the input and returns
321
// the position of its subexpressions.
322
func (re *Regexp) doExecute(r io.RuneReader, b []byte, s string, pos int, ncap int) []int {
323
        m := re.get()
324
        var i input
325
        if r != nil {
326
                i = m.newInputReader(r)
327
        } else if b != nil {
328
                i = m.newInputBytes(b)
329
        } else {
330
                i = m.newInputString(s)
331
        }
332
        m.init(ncap)
333
        if !m.match(i, pos) {
334
                re.put(m)
335
                return nil
336
        }
337
        if ncap == 0 {
338
                re.put(m)
339
                return empty // empty but not nil
340
        }
341
        cap := make([]int, ncap)
342
        copy(cap, m.matchcap)
343
        re.put(m)
344
        return cap
345
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.