| 1 |
747 |
jeremybenn |
// Copyright 2011 The Go Authors. All rights reserved.
|
| 2 |
|
|
// Use of this source code is governed by a BSD-style
|
| 3 |
|
|
// license that can be found in the LICENSE file.
|
| 4 |
|
|
|
| 5 |
|
|
package syntax
|
| 6 |
|
|
|
| 7 |
|
|
// Simplify returns a regexp equivalent to re but without counted repetitions
|
| 8 |
|
|
// and with various other simplifications, such as rewriting /(?:a+)+/ to /a+/.
|
| 9 |
|
|
// The resulting regexp will execute correctly but its string representation
|
| 10 |
|
|
// will not produce the same parse tree, because capturing parentheses
|
| 11 |
|
|
// may have been duplicated or removed. For example, the simplified form
|
| 12 |
|
|
// for /(x){1,2}/ is /(x)(x)?/ but both parentheses capture as $1.
|
| 13 |
|
|
// The returned regexp may share structure with or be the original.
|
| 14 |
|
|
func (re *Regexp) Simplify() *Regexp {
|
| 15 |
|
|
if re == nil {
|
| 16 |
|
|
return nil
|
| 17 |
|
|
}
|
| 18 |
|
|
switch re.Op {
|
| 19 |
|
|
case OpCapture, OpConcat, OpAlternate:
|
| 20 |
|
|
// Simplify children, building new Regexp if children change.
|
| 21 |
|
|
nre := re
|
| 22 |
|
|
for i, sub := range re.Sub {
|
| 23 |
|
|
nsub := sub.Simplify()
|
| 24 |
|
|
if nre == re && nsub != sub {
|
| 25 |
|
|
// Start a copy.
|
| 26 |
|
|
nre = new(Regexp)
|
| 27 |
|
|
*nre = *re
|
| 28 |
|
|
nre.Rune = nil
|
| 29 |
|
|
nre.Sub = append(nre.Sub0[:0], re.Sub[:i]...)
|
| 30 |
|
|
}
|
| 31 |
|
|
if nre != re {
|
| 32 |
|
|
nre.Sub = append(nre.Sub, nsub)
|
| 33 |
|
|
}
|
| 34 |
|
|
}
|
| 35 |
|
|
return nre
|
| 36 |
|
|
|
| 37 |
|
|
case OpStar, OpPlus, OpQuest:
|
| 38 |
|
|
sub := re.Sub[0].Simplify()
|
| 39 |
|
|
return simplify1(re.Op, re.Flags, sub, re)
|
| 40 |
|
|
|
| 41 |
|
|
case OpRepeat:
|
| 42 |
|
|
// Special special case: x{0} matches the empty string
|
| 43 |
|
|
// and doesn't even need to consider x.
|
| 44 |
|
|
if re.Min == 0 && re.Max == 0 {
|
| 45 |
|
|
return &Regexp{Op: OpEmptyMatch}
|
| 46 |
|
|
}
|
| 47 |
|
|
|
| 48 |
|
|
// The fun begins.
|
| 49 |
|
|
sub := re.Sub[0].Simplify()
|
| 50 |
|
|
|
| 51 |
|
|
// x{n,} means at least n matches of x.
|
| 52 |
|
|
if re.Max == -1 {
|
| 53 |
|
|
// Special case: x{0,} is x*.
|
| 54 |
|
|
if re.Min == 0 {
|
| 55 |
|
|
return simplify1(OpStar, re.Flags, sub, nil)
|
| 56 |
|
|
}
|
| 57 |
|
|
|
| 58 |
|
|
// Special case: x{1,} is x+.
|
| 59 |
|
|
if re.Min == 1 {
|
| 60 |
|
|
return simplify1(OpPlus, re.Flags, sub, nil)
|
| 61 |
|
|
}
|
| 62 |
|
|
|
| 63 |
|
|
// General case: x{4,} is xxxx+.
|
| 64 |
|
|
nre := &Regexp{Op: OpConcat}
|
| 65 |
|
|
nre.Sub = nre.Sub0[:0]
|
| 66 |
|
|
for i := 0; i < re.Min-1; i++ {
|
| 67 |
|
|
nre.Sub = append(nre.Sub, sub)
|
| 68 |
|
|
}
|
| 69 |
|
|
nre.Sub = append(nre.Sub, simplify1(OpPlus, re.Flags, sub, nil))
|
| 70 |
|
|
return nre
|
| 71 |
|
|
}
|
| 72 |
|
|
|
| 73 |
|
|
// Special case x{0} handled above.
|
| 74 |
|
|
|
| 75 |
|
|
// Special case: x{1} is just x.
|
| 76 |
|
|
if re.Min == 1 && re.Max == 1 {
|
| 77 |
|
|
return sub
|
| 78 |
|
|
}
|
| 79 |
|
|
|
| 80 |
|
|
// General case: x{n,m} means n copies of x and m copies of x?
|
| 81 |
|
|
// The machine will do less work if we nest the final m copies,
|
| 82 |
|
|
// so that x{2,5} = xx(x(x(x)?)?)?
|
| 83 |
|
|
|
| 84 |
|
|
// Build leading prefix: xx.
|
| 85 |
|
|
var prefix *Regexp
|
| 86 |
|
|
if re.Min > 0 {
|
| 87 |
|
|
prefix = &Regexp{Op: OpConcat}
|
| 88 |
|
|
prefix.Sub = prefix.Sub0[:0]
|
| 89 |
|
|
for i := 0; i < re.Min; i++ {
|
| 90 |
|
|
prefix.Sub = append(prefix.Sub, sub)
|
| 91 |
|
|
}
|
| 92 |
|
|
}
|
| 93 |
|
|
|
| 94 |
|
|
// Build and attach suffix: (x(x(x)?)?)?
|
| 95 |
|
|
if re.Max > re.Min {
|
| 96 |
|
|
suffix := simplify1(OpQuest, re.Flags, sub, nil)
|
| 97 |
|
|
for i := re.Min + 1; i < re.Max; i++ {
|
| 98 |
|
|
nre2 := &Regexp{Op: OpConcat}
|
| 99 |
|
|
nre2.Sub = append(nre2.Sub0[:0], sub, suffix)
|
| 100 |
|
|
suffix = simplify1(OpQuest, re.Flags, nre2, nil)
|
| 101 |
|
|
}
|
| 102 |
|
|
if prefix == nil {
|
| 103 |
|
|
return suffix
|
| 104 |
|
|
}
|
| 105 |
|
|
prefix.Sub = append(prefix.Sub, suffix)
|
| 106 |
|
|
}
|
| 107 |
|
|
if prefix != nil {
|
| 108 |
|
|
return prefix
|
| 109 |
|
|
}
|
| 110 |
|
|
|
| 111 |
|
|
// Some degenerate case like min > max or min < max < 0.
|
| 112 |
|
|
// Handle as impossible match.
|
| 113 |
|
|
return &Regexp{Op: OpNoMatch}
|
| 114 |
|
|
}
|
| 115 |
|
|
|
| 116 |
|
|
return re
|
| 117 |
|
|
}
|
| 118 |
|
|
|
| 119 |
|
|
// simplify1 implements Simplify for the unary OpStar,
|
| 120 |
|
|
// OpPlus, and OpQuest operators. It returns the simple regexp
|
| 121 |
|
|
// equivalent to
|
| 122 |
|
|
//
|
| 123 |
|
|
// Regexp{Op: op, Flags: flags, Sub: {sub}}
|
| 124 |
|
|
//
|
| 125 |
|
|
// under the assumption that sub is already simple, and
|
| 126 |
|
|
// without first allocating that structure. If the regexp
|
| 127 |
|
|
// to be returned turns out to be equivalent to re, simplify1
|
| 128 |
|
|
// returns re instead.
|
| 129 |
|
|
//
|
| 130 |
|
|
// simplify1 is factored out of Simplify because the implementation
|
| 131 |
|
|
// for other operators generates these unary expressions.
|
| 132 |
|
|
// Letting them call simplify1 makes sure the expressions they
|
| 133 |
|
|
// generate are simple.
|
| 134 |
|
|
func simplify1(op Op, flags Flags, sub, re *Regexp) *Regexp {
|
| 135 |
|
|
// Special case: repeat the empty string as much as
|
| 136 |
|
|
// you want, but it's still the empty string.
|
| 137 |
|
|
if sub.Op == OpEmptyMatch {
|
| 138 |
|
|
return sub
|
| 139 |
|
|
}
|
| 140 |
|
|
// The operators are idempotent if the flags match.
|
| 141 |
|
|
if op == sub.Op && flags&NonGreedy == sub.Flags&NonGreedy {
|
| 142 |
|
|
return sub
|
| 143 |
|
|
}
|
| 144 |
|
|
if re != nil && re.Op == op && re.Flags&NonGreedy == flags&NonGreedy && sub == re.Sub[0] {
|
| 145 |
|
|
return re
|
| 146 |
|
|
}
|
| 147 |
|
|
|
| 148 |
|
|
re = &Regexp{Op: op, Flags: flags}
|
| 149 |
|
|
re.Sub = append(re.Sub0[:0], sub)
|
| 150 |
|
|
return re
|
| 151 |
|
|
}
|