OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libgo/] [go/] [strconv/] [decimal.go] - Blame information for rev 860

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 747 jeremybenn
// Copyright 2009 The Go Authors. All rights reserved.
2
// Use of this source code is governed by a BSD-style
3
// license that can be found in the LICENSE file.
4
 
5
// Multiprecision decimal numbers.
6
// For floating-point formatting only; not general purpose.
7
// Only operations are assign and (binary) left/right shift.
8
// Can do binary floating point in multiprecision decimal precisely
9
// because 2 divides 10; cannot do decimal floating point
10
// in multiprecision binary precisely.
11
 
12
package strconv
13
 
14
type decimal struct {
15
        // TODO(rsc): Can make d[] a bit smaller and add
16
        // truncated bool;
17
        d   [800]byte // digits
18
        nd  int       // number of digits used
19
        dp  int       // decimal point
20
        neg bool
21
}
22
 
23
func (a *decimal) String() string {
24
        n := 10 + a.nd
25
        if a.dp > 0 {
26
                n += a.dp
27
        }
28
        if a.dp < 0 {
29
                n += -a.dp
30
        }
31
 
32
        buf := make([]byte, n)
33
        w := 0
34
        switch {
35
        case a.nd == 0:
36
                return "0"
37
 
38
        case a.dp <= 0:
39
                // zeros fill space between decimal point and digits
40
                buf[w] = '0'
41
                w++
42
                buf[w] = '.'
43
                w++
44
                w += digitZero(buf[w : w+-a.dp])
45
                w += copy(buf[w:], a.d[0:a.nd])
46
 
47
        case a.dp < a.nd:
48
                // decimal point in middle of digits
49
                w += copy(buf[w:], a.d[0:a.dp])
50
                buf[w] = '.'
51
                w++
52
                w += copy(buf[w:], a.d[a.dp:a.nd])
53
 
54
        default:
55
                // zeros fill space between digits and decimal point
56
                w += copy(buf[w:], a.d[0:a.nd])
57
                w += digitZero(buf[w : w+a.dp-a.nd])
58
        }
59
        return string(buf[0:w])
60
}
61
 
62
func digitZero(dst []byte) int {
63
        for i := range dst {
64
                dst[i] = '0'
65
        }
66
        return len(dst)
67
}
68
 
69
// trim trailing zeros from number.
70
// (They are meaningless; the decimal point is tracked
71
// independent of the number of digits.)
72
func trim(a *decimal) {
73
        for a.nd > 0 && a.d[a.nd-1] == '0' {
74
                a.nd--
75
        }
76
        if a.nd == 0 {
77
                a.dp = 0
78
        }
79
}
80
 
81
// Assign v to a.
82
func (a *decimal) Assign(v uint64) {
83
        var buf [50]byte
84
 
85
        // Write reversed decimal in buf.
86
        n := 0
87
        for v > 0 {
88
                v1 := v / 10
89
                v -= 10 * v1
90
                buf[n] = byte(v + '0')
91
                n++
92
                v = v1
93
        }
94
 
95
        // Reverse again to produce forward decimal in a.d.
96
        a.nd = 0
97
        for n--; n >= 0; n-- {
98
                a.d[a.nd] = buf[n]
99
                a.nd++
100
        }
101
        a.dp = a.nd
102
        trim(a)
103
}
104
 
105
// Maximum shift that we can do in one pass without overflow.
106
// Signed int has 31 bits, and we have to be able to accommodate 9<
107
const maxShift = 27
108
 
109
// Binary shift right (* 2) by k bits.  k <= maxShift to avoid overflow.
110
func rightShift(a *decimal, k uint) {
111
        r := 0 // read pointer
112
        w := 0 // write pointer
113
 
114
        // Pick up enough leading digits to cover first shift.
115
        n := 0
116
        for ; n>>k == 0; r++ {
117
                if r >= a.nd {
118
                        if n == 0 {
119
                                // a == 0; shouldn't get here, but handle anyway.
120
                                a.nd = 0
121
                                return
122
                        }
123
                        for n>>k == 0 {
124
                                n = n * 10
125
                                r++
126
                        }
127
                        break
128
                }
129
                c := int(a.d[r])
130
                n = n*10 + c - '0'
131
        }
132
        a.dp -= r - 1
133
 
134
        // Pick up a digit, put down a digit.
135
        for ; r < a.nd; r++ {
136
                c := int(a.d[r])
137
                dig := n >> k
138
                n -= dig << k
139
                a.d[w] = byte(dig + '0')
140
                w++
141
                n = n*10 + c - '0'
142
        }
143
 
144
        // Put down extra digits.
145
        for n > 0 {
146
                dig := n >> k
147
                n -= dig << k
148
                a.d[w] = byte(dig + '0')
149
                w++
150
                n = n * 10
151
        }
152
 
153
        a.nd = w
154
        trim(a)
155
}
156
 
157
// Cheat sheet for left shift: table indexed by shift count giving
158
// number of new digits that will be introduced by that shift.
159
//
160
// For example, leftcheats[4] = {2, "625"}.  That means that
161
// if we are shifting by 4 (multiplying by 16), it will add 2 digits
162
// when the string prefix is "625" through "999", and one fewer digit
163
// if the string prefix is "000" through "624".
164
//
165
// Credit for this trick goes to Ken.
166
 
167
type leftCheat struct {
168
        delta  int    // number of new digits
169
        cutoff string //   minus one digit if original < a.
170
}
171
 
172
var leftcheats = []leftCheat{
173
        // Leading digits of 1/2^i = 5^i.
174
        // 5^23 is not an exact 64-bit floating point number,
175
        // so have to use bc for the math.
176
        /*
177
                seq 27 | sed 's/^/5^/' | bc |
178
                awk 'BEGIN{ print "\tleftCheat{ 0, \"\" }," }
179
                {
180
                        log2 = log(2)/log(10)
181
                        printf("\tleftCheat{ %d, \"%s\" },\t// * %d\n",
182
                                int(log2*NR+1), $0, 2**NR)
183
                }'
184
        */
185
        {0, ""},
186
        {1, "5"},                   // * 2
187
        {1, "25"},                  // * 4
188
        {1, "125"},                 // * 8
189
        {2, "625"},                 // * 16
190
        {2, "3125"},                // * 32
191
        {2, "15625"},               // * 64
192
        {3, "78125"},               // * 128
193
        {3, "390625"},              // * 256
194
        {3, "1953125"},             // * 512
195
        {4, "9765625"},             // * 1024
196
        {4, "48828125"},            // * 2048
197
        {4, "244140625"},           // * 4096
198
        {4, "1220703125"},          // * 8192
199
        {5, "6103515625"},          // * 16384
200
        {5, "30517578125"},         // * 32768
201
        {5, "152587890625"},        // * 65536
202
        {6, "762939453125"},        // * 131072
203
        {6, "3814697265625"},       // * 262144
204
        {6, "19073486328125"},      // * 524288
205
        {7, "95367431640625"},      // * 1048576
206
        {7, "476837158203125"},     // * 2097152
207
        {7, "2384185791015625"},    // * 4194304
208
        {7, "11920928955078125"},   // * 8388608
209
        {8, "59604644775390625"},   // * 16777216
210
        {8, "298023223876953125"},  // * 33554432
211
        {8, "1490116119384765625"}, // * 67108864
212
        {9, "7450580596923828125"}, // * 134217728
213
}
214
 
215
// Is the leading prefix of b lexicographically less than s?
216
func prefixIsLessThan(b []byte, s string) bool {
217
        for i := 0; i < len(s); i++ {
218
                if i >= len(b) {
219
                        return true
220
                }
221
                if b[i] != s[i] {
222
                        return b[i] < s[i]
223
                }
224
        }
225
        return false
226
}
227
 
228
// Binary shift left (/ 2) by k bits.  k <= maxShift to avoid overflow.
229
func leftShift(a *decimal, k uint) {
230
        delta := leftcheats[k].delta
231
        if prefixIsLessThan(a.d[0:a.nd], leftcheats[k].cutoff) {
232
                delta--
233
        }
234
 
235
        r := a.nd         // read index
236
        w := a.nd + delta // write index
237
        n := 0
238
 
239
        // Pick up a digit, put down a digit.
240
        for r--; r >= 0; r-- {
241
                n += (int(a.d[r]) - '0') << k
242
                quo := n / 10
243
                rem := n - 10*quo
244
                w--
245
                a.d[w] = byte(rem + '0')
246
                n = quo
247
        }
248
 
249
        // Put down extra digits.
250
        for n > 0 {
251
                quo := n / 10
252
                rem := n - 10*quo
253
                w--
254
                a.d[w] = byte(rem + '0')
255
                n = quo
256
        }
257
 
258
        a.nd += delta
259
        a.dp += delta
260
        trim(a)
261
}
262
 
263
// Binary shift left (k > 0) or right (k < 0).
264
func (a *decimal) Shift(k int) {
265
        switch {
266
        case a.nd == 0:
267
                // nothing to do: a == 0
268
        case k > 0:
269
                for k > maxShift {
270
                        leftShift(a, maxShift)
271
                        k -= maxShift
272
                }
273
                leftShift(a, uint(k))
274
        case k < 0:
275
                for k < -maxShift {
276
                        rightShift(a, maxShift)
277
                        k += maxShift
278
                }
279
                rightShift(a, uint(-k))
280
        }
281
}
282
 
283
// If we chop a at nd digits, should we round up?
284
func shouldRoundUp(a *decimal, nd int) bool {
285
        if nd < 0 || nd >= a.nd {
286
                return false
287
        }
288
        if a.d[nd] == '5' && nd+1 == a.nd { // exactly halfway - round to even
289
                return nd > 0 && (a.d[nd-1]-'0')%2 != 0
290
        }
291
        // not halfway - digit tells all
292
        return a.d[nd] >= '5'
293
}
294
 
295
// Round a to nd digits (or fewer).
296
// Returns receiver for convenience.
297
// If nd is zero, it means we're rounding
298
// just to the left of the digits, as in
299
// 0.09 -> 0.1.
300
func (a *decimal) Round(nd int) {
301
        if nd < 0 || nd >= a.nd {
302
                return
303
        }
304
        if shouldRoundUp(a, nd) {
305
                a.RoundUp(nd)
306
        } else {
307
                a.RoundDown(nd)
308
        }
309
}
310
 
311
// Round a down to nd digits (or fewer).
312
// Returns receiver for convenience.
313
func (a *decimal) RoundDown(nd int) {
314
        if nd < 0 || nd >= a.nd {
315
                return
316
        }
317
        a.nd = nd
318
        trim(a)
319
}
320
 
321
// Round a up to nd digits (or fewer).
322
// Returns receiver for convenience.
323
func (a *decimal) RoundUp(nd int) {
324
        if nd < 0 || nd >= a.nd {
325
                return
326
        }
327
 
328
        // round up
329
        for i := nd - 1; i >= 0; i-- {
330
                c := a.d[i]
331
                if c < '9' { // can stop after this digit
332
                        a.d[i]++
333
                        a.nd = i + 1
334
                        return
335
                }
336
        }
337
 
338
        // Number is all 9s.
339
        // Change to single 1 with adjusted decimal point.
340
        a.d[0] = '1'
341
        a.nd = 1
342
        a.dp++
343
}
344
 
345
// Extract integer part, rounded appropriately.
346
// No guarantees about overflow.
347
func (a *decimal) RoundedInteger() uint64 {
348
        if a.dp > 20 {
349
                return 0xFFFFFFFFFFFFFFFF
350
        }
351
        var i int
352
        n := uint64(0)
353
        for i = 0; i < a.dp && i < a.nd; i++ {
354
                n = n*10 + uint64(a.d[i]-'0')
355
        }
356
        for ; i < a.dp; i++ {
357
                n *= 10
358
        }
359
        if shouldRoundUp(a, a.dp) {
360
                n++
361
        }
362
        return n
363
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.