1 |
747 |
jeremybenn |
// Copyright 2011 The Go Authors. All rights reserved.
|
2 |
|
|
// Use of this source code is governed by a BSD-style
|
3 |
|
|
// license that can be found in the LICENSE file.
|
4 |
|
|
|
5 |
|
|
package strconv
|
6 |
|
|
|
7 |
|
|
import "math"
|
8 |
|
|
|
9 |
|
|
// An extFloat represents an extended floating-point number, with more
|
10 |
|
|
// precision than a float64. It does not try to save bits: the
|
11 |
|
|
// number represented by the structure is mant*(2^exp), with a negative
|
12 |
|
|
// sign if neg is true.
|
13 |
|
|
type extFloat struct {
|
14 |
|
|
mant uint64
|
15 |
|
|
exp int
|
16 |
|
|
neg bool
|
17 |
|
|
}
|
18 |
|
|
|
19 |
|
|
// Powers of ten taken from double-conversion library.
|
20 |
|
|
// http://code.google.com/p/double-conversion/
|
21 |
|
|
const (
|
22 |
|
|
firstPowerOfTen = -348
|
23 |
|
|
stepPowerOfTen = 8
|
24 |
|
|
)
|
25 |
|
|
|
26 |
|
|
var smallPowersOfTen = [...]extFloat{
|
27 |
|
|
{1 << 63, -63, false}, // 1
|
28 |
|
|
{0xa << 60, -60, false}, // 1e1
|
29 |
|
|
{0x64 << 57, -57, false}, // 1e2
|
30 |
|
|
{0x3e8 << 54, -54, false}, // 1e3
|
31 |
|
|
{0x2710 << 50, -50, false}, // 1e4
|
32 |
|
|
{0x186a0 << 47, -47, false}, // 1e5
|
33 |
|
|
{0xf4240 << 44, -44, false}, // 1e6
|
34 |
|
|
{0x989680 << 40, -40, false}, // 1e7
|
35 |
|
|
}
|
36 |
|
|
|
37 |
|
|
var powersOfTen = [...]extFloat{
|
38 |
|
|
{0xfa8fd5a0081c0288, -1220, false}, // 10^-348
|
39 |
|
|
{0xbaaee17fa23ebf76, -1193, false}, // 10^-340
|
40 |
|
|
{0x8b16fb203055ac76, -1166, false}, // 10^-332
|
41 |
|
|
{0xcf42894a5dce35ea, -1140, false}, // 10^-324
|
42 |
|
|
{0x9a6bb0aa55653b2d, -1113, false}, // 10^-316
|
43 |
|
|
{0xe61acf033d1a45df, -1087, false}, // 10^-308
|
44 |
|
|
{0xab70fe17c79ac6ca, -1060, false}, // 10^-300
|
45 |
|
|
{0xff77b1fcbebcdc4f, -1034, false}, // 10^-292
|
46 |
|
|
{0xbe5691ef416bd60c, -1007, false}, // 10^-284
|
47 |
|
|
{0x8dd01fad907ffc3c, -980, false}, // 10^-276
|
48 |
|
|
{0xd3515c2831559a83, -954, false}, // 10^-268
|
49 |
|
|
{0x9d71ac8fada6c9b5, -927, false}, // 10^-260
|
50 |
|
|
{0xea9c227723ee8bcb, -901, false}, // 10^-252
|
51 |
|
|
{0xaecc49914078536d, -874, false}, // 10^-244
|
52 |
|
|
{0x823c12795db6ce57, -847, false}, // 10^-236
|
53 |
|
|
{0xc21094364dfb5637, -821, false}, // 10^-228
|
54 |
|
|
{0x9096ea6f3848984f, -794, false}, // 10^-220
|
55 |
|
|
{0xd77485cb25823ac7, -768, false}, // 10^-212
|
56 |
|
|
{0xa086cfcd97bf97f4, -741, false}, // 10^-204
|
57 |
|
|
{0xef340a98172aace5, -715, false}, // 10^-196
|
58 |
|
|
{0xb23867fb2a35b28e, -688, false}, // 10^-188
|
59 |
|
|
{0x84c8d4dfd2c63f3b, -661, false}, // 10^-180
|
60 |
|
|
{0xc5dd44271ad3cdba, -635, false}, // 10^-172
|
61 |
|
|
{0x936b9fcebb25c996, -608, false}, // 10^-164
|
62 |
|
|
{0xdbac6c247d62a584, -582, false}, // 10^-156
|
63 |
|
|
{0xa3ab66580d5fdaf6, -555, false}, // 10^-148
|
64 |
|
|
{0xf3e2f893dec3f126, -529, false}, // 10^-140
|
65 |
|
|
{0xb5b5ada8aaff80b8, -502, false}, // 10^-132
|
66 |
|
|
{0x87625f056c7c4a8b, -475, false}, // 10^-124
|
67 |
|
|
{0xc9bcff6034c13053, -449, false}, // 10^-116
|
68 |
|
|
{0x964e858c91ba2655, -422, false}, // 10^-108
|
69 |
|
|
{0xdff9772470297ebd, -396, false}, // 10^-100
|
70 |
|
|
{0xa6dfbd9fb8e5b88f, -369, false}, // 10^-92
|
71 |
|
|
{0xf8a95fcf88747d94, -343, false}, // 10^-84
|
72 |
|
|
{0xb94470938fa89bcf, -316, false}, // 10^-76
|
73 |
|
|
{0x8a08f0f8bf0f156b, -289, false}, // 10^-68
|
74 |
|
|
{0xcdb02555653131b6, -263, false}, // 10^-60
|
75 |
|
|
{0x993fe2c6d07b7fac, -236, false}, // 10^-52
|
76 |
|
|
{0xe45c10c42a2b3b06, -210, false}, // 10^-44
|
77 |
|
|
{0xaa242499697392d3, -183, false}, // 10^-36
|
78 |
|
|
{0xfd87b5f28300ca0e, -157, false}, // 10^-28
|
79 |
|
|
{0xbce5086492111aeb, -130, false}, // 10^-20
|
80 |
|
|
{0x8cbccc096f5088cc, -103, false}, // 10^-12
|
81 |
|
|
{0xd1b71758e219652c, -77, false}, // 10^-4
|
82 |
|
|
{0x9c40000000000000, -50, false}, // 10^4
|
83 |
|
|
{0xe8d4a51000000000, -24, false}, // 10^12
|
84 |
|
|
{0xad78ebc5ac620000, 3, false}, // 10^20
|
85 |
|
|
{0x813f3978f8940984, 30, false}, // 10^28
|
86 |
|
|
{0xc097ce7bc90715b3, 56, false}, // 10^36
|
87 |
|
|
{0x8f7e32ce7bea5c70, 83, false}, // 10^44
|
88 |
|
|
{0xd5d238a4abe98068, 109, false}, // 10^52
|
89 |
|
|
{0x9f4f2726179a2245, 136, false}, // 10^60
|
90 |
|
|
{0xed63a231d4c4fb27, 162, false}, // 10^68
|
91 |
|
|
{0xb0de65388cc8ada8, 189, false}, // 10^76
|
92 |
|
|
{0x83c7088e1aab65db, 216, false}, // 10^84
|
93 |
|
|
{0xc45d1df942711d9a, 242, false}, // 10^92
|
94 |
|
|
{0x924d692ca61be758, 269, false}, // 10^100
|
95 |
|
|
{0xda01ee641a708dea, 295, false}, // 10^108
|
96 |
|
|
{0xa26da3999aef774a, 322, false}, // 10^116
|
97 |
|
|
{0xf209787bb47d6b85, 348, false}, // 10^124
|
98 |
|
|
{0xb454e4a179dd1877, 375, false}, // 10^132
|
99 |
|
|
{0x865b86925b9bc5c2, 402, false}, // 10^140
|
100 |
|
|
{0xc83553c5c8965d3d, 428, false}, // 10^148
|
101 |
|
|
{0x952ab45cfa97a0b3, 455, false}, // 10^156
|
102 |
|
|
{0xde469fbd99a05fe3, 481, false}, // 10^164
|
103 |
|
|
{0xa59bc234db398c25, 508, false}, // 10^172
|
104 |
|
|
{0xf6c69a72a3989f5c, 534, false}, // 10^180
|
105 |
|
|
{0xb7dcbf5354e9bece, 561, false}, // 10^188
|
106 |
|
|
{0x88fcf317f22241e2, 588, false}, // 10^196
|
107 |
|
|
{0xcc20ce9bd35c78a5, 614, false}, // 10^204
|
108 |
|
|
{0x98165af37b2153df, 641, false}, // 10^212
|
109 |
|
|
{0xe2a0b5dc971f303a, 667, false}, // 10^220
|
110 |
|
|
{0xa8d9d1535ce3b396, 694, false}, // 10^228
|
111 |
|
|
{0xfb9b7cd9a4a7443c, 720, false}, // 10^236
|
112 |
|
|
{0xbb764c4ca7a44410, 747, false}, // 10^244
|
113 |
|
|
{0x8bab8eefb6409c1a, 774, false}, // 10^252
|
114 |
|
|
{0xd01fef10a657842c, 800, false}, // 10^260
|
115 |
|
|
{0x9b10a4e5e9913129, 827, false}, // 10^268
|
116 |
|
|
{0xe7109bfba19c0c9d, 853, false}, // 10^276
|
117 |
|
|
{0xac2820d9623bf429, 880, false}, // 10^284
|
118 |
|
|
{0x80444b5e7aa7cf85, 907, false}, // 10^292
|
119 |
|
|
{0xbf21e44003acdd2d, 933, false}, // 10^300
|
120 |
|
|
{0x8e679c2f5e44ff8f, 960, false}, // 10^308
|
121 |
|
|
{0xd433179d9c8cb841, 986, false}, // 10^316
|
122 |
|
|
{0x9e19db92b4e31ba9, 1013, false}, // 10^324
|
123 |
|
|
{0xeb96bf6ebadf77d9, 1039, false}, // 10^332
|
124 |
|
|
{0xaf87023b9bf0ee6b, 1066, false}, // 10^340
|
125 |
|
|
}
|
126 |
|
|
|
127 |
|
|
// floatBits returns the bits of the float64 that best approximates
|
128 |
|
|
// the extFloat passed as receiver. Overflow is set to true if
|
129 |
|
|
// the resulting float64 is ±Inf.
|
130 |
|
|
func (f *extFloat) floatBits() (bits uint64, overflow bool) {
|
131 |
|
|
flt := &float64info
|
132 |
|
|
f.Normalize()
|
133 |
|
|
|
134 |
|
|
exp := f.exp + 63
|
135 |
|
|
|
136 |
|
|
// Exponent too small.
|
137 |
|
|
if exp < flt.bias+1 {
|
138 |
|
|
n := flt.bias + 1 - exp
|
139 |
|
|
f.mant >>= uint(n)
|
140 |
|
|
exp += n
|
141 |
|
|
}
|
142 |
|
|
|
143 |
|
|
// Extract 1+flt.mantbits bits.
|
144 |
|
|
mant := f.mant >> (63 - flt.mantbits)
|
145 |
|
|
if f.mant&(1<<(62-flt.mantbits)) != 0 {
|
146 |
|
|
// Round up.
|
147 |
|
|
mant += 1
|
148 |
|
|
}
|
149 |
|
|
|
150 |
|
|
// Rounding might have added a bit; shift down.
|
151 |
|
|
if mant == 2<
|
152 |
|
|
mant >>= 1
|
153 |
|
|
exp++
|
154 |
|
|
}
|
155 |
|
|
|
156 |
|
|
// Infinities.
|
157 |
|
|
if exp-flt.bias >= 1<
|
158 |
|
|
goto overflow
|
159 |
|
|
}
|
160 |
|
|
|
161 |
|
|
// Denormalized?
|
162 |
|
|
if mant&(1<
|
163 |
|
|
exp = flt.bias
|
164 |
|
|
}
|
165 |
|
|
goto out
|
166 |
|
|
|
167 |
|
|
overflow:
|
168 |
|
|
// ±Inf
|
169 |
|
|
mant = 0
|
170 |
|
|
exp = 1<
|
171 |
|
|
overflow = true
|
172 |
|
|
|
173 |
|
|
out:
|
174 |
|
|
// Assemble bits.
|
175 |
|
|
bits = mant & (uint64(1)<
|
176 |
|
|
bits |= uint64((exp-flt.bias)&(1<
|
177 |
|
|
if f.neg {
|
178 |
|
|
bits |= 1 << (flt.mantbits + flt.expbits)
|
179 |
|
|
}
|
180 |
|
|
return
|
181 |
|
|
}
|
182 |
|
|
|
183 |
|
|
// Assign sets f to the value of x.
|
184 |
|
|
func (f *extFloat) Assign(x float64) {
|
185 |
|
|
if x < 0 {
|
186 |
|
|
x = -x
|
187 |
|
|
f.neg = true
|
188 |
|
|
}
|
189 |
|
|
x, f.exp = math.Frexp(x)
|
190 |
|
|
f.mant = uint64(x * float64(1<<64))
|
191 |
|
|
f.exp -= 64
|
192 |
|
|
}
|
193 |
|
|
|
194 |
|
|
// AssignComputeBounds sets f to the value of x and returns
|
195 |
|
|
// lower, upper such that any number in the closed interval
|
196 |
|
|
// [lower, upper] is converted back to x.
|
197 |
|
|
func (f *extFloat) AssignComputeBounds(x float64) (lower, upper extFloat) {
|
198 |
|
|
// Special cases.
|
199 |
|
|
bits := math.Float64bits(x)
|
200 |
|
|
flt := &float64info
|
201 |
|
|
neg := bits>>(flt.expbits+flt.mantbits) != 0
|
202 |
|
|
expBiased := int(bits>>flt.mantbits) & (1<
|
203 |
|
|
mant := bits & (uint64(1)<
|
204 |
|
|
|
205 |
|
|
if expBiased == 0 {
|
206 |
|
|
// denormalized.
|
207 |
|
|
f.mant = mant
|
208 |
|
|
f.exp = 1 + flt.bias - int(flt.mantbits)
|
209 |
|
|
} else {
|
210 |
|
|
f.mant = mant | 1<
|
211 |
|
|
f.exp = expBiased + flt.bias - int(flt.mantbits)
|
212 |
|
|
}
|
213 |
|
|
f.neg = neg
|
214 |
|
|
|
215 |
|
|
upper = extFloat{mant: 2*f.mant + 1, exp: f.exp - 1, neg: f.neg}
|
216 |
|
|
if mant != 0 || expBiased == 1 {
|
217 |
|
|
lower = extFloat{mant: 2*f.mant - 1, exp: f.exp - 1, neg: f.neg}
|
218 |
|
|
} else {
|
219 |
|
|
lower = extFloat{mant: 4*f.mant - 1, exp: f.exp - 2, neg: f.neg}
|
220 |
|
|
}
|
221 |
|
|
return
|
222 |
|
|
}
|
223 |
|
|
|
224 |
|
|
// Normalize normalizes f so that the highest bit of the mantissa is
|
225 |
|
|
// set, and returns the number by which the mantissa was left-shifted.
|
226 |
|
|
func (f *extFloat) Normalize() uint {
|
227 |
|
|
if f.mant == 0 {
|
228 |
|
|
return 0
|
229 |
|
|
}
|
230 |
|
|
exp_before := f.exp
|
231 |
|
|
for f.mant < (1 << 55) {
|
232 |
|
|
f.mant <<= 8
|
233 |
|
|
f.exp -= 8
|
234 |
|
|
}
|
235 |
|
|
for f.mant < (1 << 63) {
|
236 |
|
|
f.mant <<= 1
|
237 |
|
|
f.exp -= 1
|
238 |
|
|
}
|
239 |
|
|
return uint(exp_before - f.exp)
|
240 |
|
|
}
|
241 |
|
|
|
242 |
|
|
// Multiply sets f to the product f*g: the result is correctly rounded,
|
243 |
|
|
// but not normalized.
|
244 |
|
|
func (f *extFloat) Multiply(g extFloat) {
|
245 |
|
|
fhi, flo := f.mant>>32, uint64(uint32(f.mant))
|
246 |
|
|
ghi, glo := g.mant>>32, uint64(uint32(g.mant))
|
247 |
|
|
|
248 |
|
|
// Cross products.
|
249 |
|
|
cross1 := fhi * glo
|
250 |
|
|
cross2 := flo * ghi
|
251 |
|
|
|
252 |
|
|
// f.mant*g.mant is fhi*ghi << 64 + (cross1+cross2) << 32 + flo*glo
|
253 |
|
|
f.mant = fhi*ghi + (cross1 >> 32) + (cross2 >> 32)
|
254 |
|
|
rem := uint64(uint32(cross1)) + uint64(uint32(cross2)) + ((flo * glo) >> 32)
|
255 |
|
|
// Round up.
|
256 |
|
|
rem += (1 << 31)
|
257 |
|
|
|
258 |
|
|
f.mant += (rem >> 32)
|
259 |
|
|
f.exp = f.exp + g.exp + 64
|
260 |
|
|
}
|
261 |
|
|
|
262 |
|
|
var uint64pow10 = [...]uint64{
|
263 |
|
|
1, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
|
264 |
|
|
1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
|
265 |
|
|
}
|
266 |
|
|
|
267 |
|
|
// AssignDecimal sets f to an approximate value of the decimal d. It
|
268 |
|
|
// returns true if the value represented by f is guaranteed to be the
|
269 |
|
|
// best approximation of d after being rounded to a float64.
|
270 |
|
|
func (f *extFloat) AssignDecimal(d *decimal) (ok bool) {
|
271 |
|
|
const uint64digits = 19
|
272 |
|
|
const errorscale = 8
|
273 |
|
|
mant10, digits := d.atou64()
|
274 |
|
|
exp10 := d.dp - digits
|
275 |
|
|
errors := 0 // An upper bound for error, computed in errorscale*ulp.
|
276 |
|
|
|
277 |
|
|
if digits < d.nd {
|
278 |
|
|
// the decimal number was truncated.
|
279 |
|
|
errors += errorscale / 2
|
280 |
|
|
}
|
281 |
|
|
|
282 |
|
|
f.mant = mant10
|
283 |
|
|
f.exp = 0
|
284 |
|
|
f.neg = d.neg
|
285 |
|
|
|
286 |
|
|
// Multiply by powers of ten.
|
287 |
|
|
i := (exp10 - firstPowerOfTen) / stepPowerOfTen
|
288 |
|
|
if exp10 < firstPowerOfTen || i >= len(powersOfTen) {
|
289 |
|
|
return false
|
290 |
|
|
}
|
291 |
|
|
adjExp := (exp10 - firstPowerOfTen) % stepPowerOfTen
|
292 |
|
|
|
293 |
|
|
// We multiply by exp%step
|
294 |
|
|
if digits+adjExp <= uint64digits {
|
295 |
|
|
// We can multiply the mantissa
|
296 |
|
|
f.mant *= uint64(float64pow10[adjExp])
|
297 |
|
|
f.Normalize()
|
298 |
|
|
} else {
|
299 |
|
|
f.Normalize()
|
300 |
|
|
f.Multiply(smallPowersOfTen[adjExp])
|
301 |
|
|
errors += errorscale / 2
|
302 |
|
|
}
|
303 |
|
|
|
304 |
|
|
// We multiply by 10 to the exp - exp%step.
|
305 |
|
|
f.Multiply(powersOfTen[i])
|
306 |
|
|
if errors > 0 {
|
307 |
|
|
errors += 1
|
308 |
|
|
}
|
309 |
|
|
errors += errorscale / 2
|
310 |
|
|
|
311 |
|
|
// Normalize
|
312 |
|
|
shift := f.Normalize()
|
313 |
|
|
errors <<= shift
|
314 |
|
|
|
315 |
|
|
// Now f is a good approximation of the decimal.
|
316 |
|
|
// Check whether the error is too large: that is, if the mantissa
|
317 |
|
|
// is perturbated by the error, the resulting float64 will change.
|
318 |
|
|
// The 64 bits mantissa is 1 + 52 bits for float64 + 11 extra bits.
|
319 |
|
|
//
|
320 |
|
|
// In many cases the approximation will be good enough.
|
321 |
|
|
const denormalExp = -1023 - 63
|
322 |
|
|
flt := &float64info
|
323 |
|
|
var extrabits uint
|
324 |
|
|
if f.exp <= denormalExp {
|
325 |
|
|
extrabits = uint(63 - flt.mantbits + 1 + uint(denormalExp-f.exp))
|
326 |
|
|
} else {
|
327 |
|
|
extrabits = uint(63 - flt.mantbits)
|
328 |
|
|
}
|
329 |
|
|
|
330 |
|
|
halfway := uint64(1) << (extrabits - 1)
|
331 |
|
|
mant_extra := f.mant & (1<
|
332 |
|
|
|
333 |
|
|
// Do a signed comparison here! If the error estimate could make
|
334 |
|
|
// the mantissa round differently for the conversion to double,
|
335 |
|
|
// then we can't give a definite answer.
|
336 |
|
|
if int64(halfway)-int64(errors) < int64(mant_extra) &&
|
337 |
|
|
int64(mant_extra) < int64(halfway)+int64(errors) {
|
338 |
|
|
return false
|
339 |
|
|
}
|
340 |
|
|
return true
|
341 |
|
|
}
|
342 |
|
|
|
343 |
|
|
// Frexp10 is an analogue of math.Frexp for decimal powers. It scales
|
344 |
|
|
// f by an approximate power of ten 10^-exp, and returns exp10, so
|
345 |
|
|
// that f*10^exp10 has the same value as the old f, up to an ulp,
|
346 |
|
|
// as well as the index of 10^-exp in the powersOfTen table.
|
347 |
|
|
// The arguments expMin and expMax constrain the final value of the
|
348 |
|
|
// binary exponent of f.
|
349 |
|
|
func (f *extFloat) frexp10(expMin, expMax int) (exp10, index int) {
|
350 |
|
|
// it is illegal to call this function with a too restrictive exponent range.
|
351 |
|
|
if expMax-expMin <= 25 {
|
352 |
|
|
panic("strconv: invalid exponent range")
|
353 |
|
|
}
|
354 |
|
|
// Find power of ten such that x * 10^n has a binary exponent
|
355 |
|
|
// between expMin and expMax
|
356 |
|
|
approxExp10 := -(f.exp + 100) * 28 / 93 // log(10)/log(2) is close to 93/28.
|
357 |
|
|
i := (approxExp10 - firstPowerOfTen) / stepPowerOfTen
|
358 |
|
|
Loop:
|
359 |
|
|
for {
|
360 |
|
|
exp := f.exp + powersOfTen[i].exp + 64
|
361 |
|
|
switch {
|
362 |
|
|
case exp < expMin:
|
363 |
|
|
i++
|
364 |
|
|
case exp > expMax:
|
365 |
|
|
i--
|
366 |
|
|
default:
|
367 |
|
|
break Loop
|
368 |
|
|
}
|
369 |
|
|
}
|
370 |
|
|
// Apply the desired decimal shift on f. It will have exponent
|
371 |
|
|
// in the desired range. This is multiplication by 10^-exp10.
|
372 |
|
|
f.Multiply(powersOfTen[i])
|
373 |
|
|
|
374 |
|
|
return -(firstPowerOfTen + i*stepPowerOfTen), i
|
375 |
|
|
}
|
376 |
|
|
|
377 |
|
|
// frexp10Many applies a common shift by a power of ten to a, b, c.
|
378 |
|
|
func frexp10Many(expMin, expMax int, a, b, c *extFloat) (exp10 int) {
|
379 |
|
|
exp10, i := c.frexp10(expMin, expMax)
|
380 |
|
|
a.Multiply(powersOfTen[i])
|
381 |
|
|
b.Multiply(powersOfTen[i])
|
382 |
|
|
return
|
383 |
|
|
}
|
384 |
|
|
|
385 |
|
|
// ShortestDecimal stores in d the shortest decimal representation of f
|
386 |
|
|
// which belongs to the open interval (lower, upper), where f is supposed
|
387 |
|
|
// to lie. It returns false whenever the result is unsure. The implementation
|
388 |
|
|
// uses the Grisu3 algorithm.
|
389 |
|
|
func (f *extFloat) ShortestDecimal(d *decimal, lower, upper *extFloat) bool {
|
390 |
|
|
if f.mant == 0 {
|
391 |
|
|
d.d[0] = '0'
|
392 |
|
|
d.nd = 1
|
393 |
|
|
d.dp = 0
|
394 |
|
|
d.neg = f.neg
|
395 |
|
|
}
|
396 |
|
|
const minExp = -60
|
397 |
|
|
const maxExp = -32
|
398 |
|
|
upper.Normalize()
|
399 |
|
|
// Uniformize exponents.
|
400 |
|
|
if f.exp > upper.exp {
|
401 |
|
|
f.mant <<= uint(f.exp - upper.exp)
|
402 |
|
|
f.exp = upper.exp
|
403 |
|
|
}
|
404 |
|
|
if lower.exp > upper.exp {
|
405 |
|
|
lower.mant <<= uint(lower.exp - upper.exp)
|
406 |
|
|
lower.exp = upper.exp
|
407 |
|
|
}
|
408 |
|
|
|
409 |
|
|
exp10 := frexp10Many(minExp, maxExp, lower, f, upper)
|
410 |
|
|
// Take a safety margin due to rounding in frexp10Many, but we lose precision.
|
411 |
|
|
upper.mant++
|
412 |
|
|
lower.mant--
|
413 |
|
|
|
414 |
|
|
// The shortest representation of f is either rounded up or down, but
|
415 |
|
|
// in any case, it is a truncation of upper.
|
416 |
|
|
shift := uint(-upper.exp)
|
417 |
|
|
integer := uint32(upper.mant >> shift)
|
418 |
|
|
fraction := upper.mant - (uint64(integer) << shift)
|
419 |
|
|
|
420 |
|
|
// How far we can go down from upper until the result is wrong.
|
421 |
|
|
allowance := upper.mant - lower.mant
|
422 |
|
|
// How far we should go to get a very precise result.
|
423 |
|
|
targetDiff := upper.mant - f.mant
|
424 |
|
|
|
425 |
|
|
// Count integral digits: there are at most 10.
|
426 |
|
|
var integerDigits int
|
427 |
|
|
for i, pow := range uint64pow10 {
|
428 |
|
|
if uint64(integer) >= pow {
|
429 |
|
|
integerDigits = i + 1
|
430 |
|
|
}
|
431 |
|
|
}
|
432 |
|
|
for i := 0; i < integerDigits; i++ {
|
433 |
|
|
pow := uint64pow10[integerDigits-i-1]
|
434 |
|
|
digit := integer / uint32(pow)
|
435 |
|
|
d.d[i] = byte(digit + '0')
|
436 |
|
|
integer -= digit * uint32(pow)
|
437 |
|
|
// evaluate whether we should stop.
|
438 |
|
|
if currentDiff := uint64(integer)<
|
439 |
|
|
d.nd = i + 1
|
440 |
|
|
d.dp = integerDigits + exp10
|
441 |
|
|
d.neg = f.neg
|
442 |
|
|
// Sometimes allowance is so large the last digit might need to be
|
443 |
|
|
// decremented to get closer to f.
|
444 |
|
|
return adjustLastDigit(d, currentDiff, targetDiff, allowance, pow<
|
445 |
|
|
}
|
446 |
|
|
}
|
447 |
|
|
d.nd = integerDigits
|
448 |
|
|
d.dp = d.nd + exp10
|
449 |
|
|
d.neg = f.neg
|
450 |
|
|
|
451 |
|
|
// Compute digits of the fractional part. At each step fraction does not
|
452 |
|
|
// overflow. The choice of minExp implies that fraction is less than 2^60.
|
453 |
|
|
var digit int
|
454 |
|
|
multiplier := uint64(1)
|
455 |
|
|
for {
|
456 |
|
|
fraction *= 10
|
457 |
|
|
multiplier *= 10
|
458 |
|
|
digit = int(fraction >> shift)
|
459 |
|
|
d.d[d.nd] = byte(digit + '0')
|
460 |
|
|
d.nd++
|
461 |
|
|
fraction -= uint64(digit) << shift
|
462 |
|
|
if fraction < allowance*multiplier {
|
463 |
|
|
// We are in the admissible range. Note that if allowance is about to
|
464 |
|
|
// overflow, that is, allowance > 2^64/10, the condition is automatically
|
465 |
|
|
// true due to the limited range of fraction.
|
466 |
|
|
return adjustLastDigit(d,
|
467 |
|
|
fraction, targetDiff*multiplier, allowance*multiplier,
|
468 |
|
|
1<
|
469 |
|
|
}
|
470 |
|
|
}
|
471 |
|
|
return false
|
472 |
|
|
}
|
473 |
|
|
|
474 |
|
|
// adjustLastDigit modifies d = x-currentDiff*ε, to get closest to
|
475 |
|
|
// d = x-targetDiff*ε, without becoming smaller than x-maxDiff*ε.
|
476 |
|
|
// It assumes that a decimal digit is worth ulpDecimal*ε, and that
|
477 |
|
|
// all data is known with a error estimate of ulpBinary*ε.
|
478 |
|
|
func adjustLastDigit(d *decimal, currentDiff, targetDiff, maxDiff, ulpDecimal, ulpBinary uint64) bool {
|
479 |
|
|
if ulpDecimal < 2*ulpBinary {
|
480 |
|
|
// Appromixation is too wide.
|
481 |
|
|
return false
|
482 |
|
|
}
|
483 |
|
|
for currentDiff+ulpDecimal/2+ulpBinary < targetDiff {
|
484 |
|
|
d.d[d.nd-1]--
|
485 |
|
|
currentDiff += ulpDecimal
|
486 |
|
|
}
|
487 |
|
|
if currentDiff+ulpDecimal <= targetDiff+ulpDecimal/2+ulpBinary {
|
488 |
|
|
// we have two choices, and don't know what to do.
|
489 |
|
|
return false
|
490 |
|
|
}
|
491 |
|
|
if currentDiff < ulpBinary || currentDiff > maxDiff-ulpBinary {
|
492 |
|
|
// we went too far
|
493 |
|
|
return false
|
494 |
|
|
}
|
495 |
|
|
if d.nd == 1 && d.d[0] == '0' {
|
496 |
|
|
// the number has actually reached zero.
|
497 |
|
|
d.nd = 0
|
498 |
|
|
d.dp = 0
|
499 |
|
|
}
|
500 |
|
|
return true
|
501 |
|
|
}
|