OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libgo/] [go/] [strconv/] [extfloat.go] - Blame information for rev 774

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 747 jeremybenn
// Copyright 2011 The Go Authors. All rights reserved.
2
// Use of this source code is governed by a BSD-style
3
// license that can be found in the LICENSE file.
4
 
5
package strconv
6
 
7
import "math"
8
 
9
// An extFloat represents an extended floating-point number, with more
10
// precision than a float64. It does not try to save bits: the
11
// number represented by the structure is mant*(2^exp), with a negative
12
// sign if neg is true.
13
type extFloat struct {
14
        mant uint64
15
        exp  int
16
        neg  bool
17
}
18
 
19
// Powers of ten taken from double-conversion library.
20
// http://code.google.com/p/double-conversion/
21
const (
22
        firstPowerOfTen = -348
23
        stepPowerOfTen  = 8
24
)
25
 
26
var smallPowersOfTen = [...]extFloat{
27
        {1 << 63, -63, false},        // 1
28
        {0xa << 60, -60, false},      // 1e1
29
        {0x64 << 57, -57, false},     // 1e2
30
        {0x3e8 << 54, -54, false},    // 1e3
31
        {0x2710 << 50, -50, false},   // 1e4
32
        {0x186a0 << 47, -47, false},  // 1e5
33
        {0xf4240 << 44, -44, false},  // 1e6
34
        {0x989680 << 40, -40, false}, // 1e7
35
}
36
 
37
var powersOfTen = [...]extFloat{
38
        {0xfa8fd5a0081c0288, -1220, false}, // 10^-348
39
        {0xbaaee17fa23ebf76, -1193, false}, // 10^-340
40
        {0x8b16fb203055ac76, -1166, false}, // 10^-332
41
        {0xcf42894a5dce35ea, -1140, false}, // 10^-324
42
        {0x9a6bb0aa55653b2d, -1113, false}, // 10^-316
43
        {0xe61acf033d1a45df, -1087, false}, // 10^-308
44
        {0xab70fe17c79ac6ca, -1060, false}, // 10^-300
45
        {0xff77b1fcbebcdc4f, -1034, false}, // 10^-292
46
        {0xbe5691ef416bd60c, -1007, false}, // 10^-284
47
        {0x8dd01fad907ffc3c, -980, false},  // 10^-276
48
        {0xd3515c2831559a83, -954, false},  // 10^-268
49
        {0x9d71ac8fada6c9b5, -927, false},  // 10^-260
50
        {0xea9c227723ee8bcb, -901, false},  // 10^-252
51
        {0xaecc49914078536d, -874, false},  // 10^-244
52
        {0x823c12795db6ce57, -847, false},  // 10^-236
53
        {0xc21094364dfb5637, -821, false},  // 10^-228
54
        {0x9096ea6f3848984f, -794, false},  // 10^-220
55
        {0xd77485cb25823ac7, -768, false},  // 10^-212
56
        {0xa086cfcd97bf97f4, -741, false},  // 10^-204
57
        {0xef340a98172aace5, -715, false},  // 10^-196
58
        {0xb23867fb2a35b28e, -688, false},  // 10^-188
59
        {0x84c8d4dfd2c63f3b, -661, false},  // 10^-180
60
        {0xc5dd44271ad3cdba, -635, false},  // 10^-172
61
        {0x936b9fcebb25c996, -608, false},  // 10^-164
62
        {0xdbac6c247d62a584, -582, false},  // 10^-156
63
        {0xa3ab66580d5fdaf6, -555, false},  // 10^-148
64
        {0xf3e2f893dec3f126, -529, false},  // 10^-140
65
        {0xb5b5ada8aaff80b8, -502, false},  // 10^-132
66
        {0x87625f056c7c4a8b, -475, false},  // 10^-124
67
        {0xc9bcff6034c13053, -449, false},  // 10^-116
68
        {0x964e858c91ba2655, -422, false},  // 10^-108
69
        {0xdff9772470297ebd, -396, false},  // 10^-100
70
        {0xa6dfbd9fb8e5b88f, -369, false},  // 10^-92
71
        {0xf8a95fcf88747d94, -343, false},  // 10^-84
72
        {0xb94470938fa89bcf, -316, false},  // 10^-76
73
        {0x8a08f0f8bf0f156b, -289, false},  // 10^-68
74
        {0xcdb02555653131b6, -263, false},  // 10^-60
75
        {0x993fe2c6d07b7fac, -236, false},  // 10^-52
76
        {0xe45c10c42a2b3b06, -210, false},  // 10^-44
77
        {0xaa242499697392d3, -183, false},  // 10^-36
78
        {0xfd87b5f28300ca0e, -157, false},  // 10^-28
79
        {0xbce5086492111aeb, -130, false},  // 10^-20
80
        {0x8cbccc096f5088cc, -103, false},  // 10^-12
81
        {0xd1b71758e219652c, -77, false},   // 10^-4
82
        {0x9c40000000000000, -50, false},   // 10^4
83
        {0xe8d4a51000000000, -24, false},   // 10^12
84
        {0xad78ebc5ac620000, 3, false},     // 10^20
85
        {0x813f3978f8940984, 30, false},    // 10^28
86
        {0xc097ce7bc90715b3, 56, false},    // 10^36
87
        {0x8f7e32ce7bea5c70, 83, false},    // 10^44
88
        {0xd5d238a4abe98068, 109, false},   // 10^52
89
        {0x9f4f2726179a2245, 136, false},   // 10^60
90
        {0xed63a231d4c4fb27, 162, false},   // 10^68
91
        {0xb0de65388cc8ada8, 189, false},   // 10^76
92
        {0x83c7088e1aab65db, 216, false},   // 10^84
93
        {0xc45d1df942711d9a, 242, false},   // 10^92
94
        {0x924d692ca61be758, 269, false},   // 10^100
95
        {0xda01ee641a708dea, 295, false},   // 10^108
96
        {0xa26da3999aef774a, 322, false},   // 10^116
97
        {0xf209787bb47d6b85, 348, false},   // 10^124
98
        {0xb454e4a179dd1877, 375, false},   // 10^132
99
        {0x865b86925b9bc5c2, 402, false},   // 10^140
100
        {0xc83553c5c8965d3d, 428, false},   // 10^148
101
        {0x952ab45cfa97a0b3, 455, false},   // 10^156
102
        {0xde469fbd99a05fe3, 481, false},   // 10^164
103
        {0xa59bc234db398c25, 508, false},   // 10^172
104
        {0xf6c69a72a3989f5c, 534, false},   // 10^180
105
        {0xb7dcbf5354e9bece, 561, false},   // 10^188
106
        {0x88fcf317f22241e2, 588, false},   // 10^196
107
        {0xcc20ce9bd35c78a5, 614, false},   // 10^204
108
        {0x98165af37b2153df, 641, false},   // 10^212
109
        {0xe2a0b5dc971f303a, 667, false},   // 10^220
110
        {0xa8d9d1535ce3b396, 694, false},   // 10^228
111
        {0xfb9b7cd9a4a7443c, 720, false},   // 10^236
112
        {0xbb764c4ca7a44410, 747, false},   // 10^244
113
        {0x8bab8eefb6409c1a, 774, false},   // 10^252
114
        {0xd01fef10a657842c, 800, false},   // 10^260
115
        {0x9b10a4e5e9913129, 827, false},   // 10^268
116
        {0xe7109bfba19c0c9d, 853, false},   // 10^276
117
        {0xac2820d9623bf429, 880, false},   // 10^284
118
        {0x80444b5e7aa7cf85, 907, false},   // 10^292
119
        {0xbf21e44003acdd2d, 933, false},   // 10^300
120
        {0x8e679c2f5e44ff8f, 960, false},   // 10^308
121
        {0xd433179d9c8cb841, 986, false},   // 10^316
122
        {0x9e19db92b4e31ba9, 1013, false},  // 10^324
123
        {0xeb96bf6ebadf77d9, 1039, false},  // 10^332
124
        {0xaf87023b9bf0ee6b, 1066, false},  // 10^340
125
}
126
 
127
// floatBits returns the bits of the float64 that best approximates
128
// the extFloat passed as receiver. Overflow is set to true if
129
// the resulting float64 is ±Inf.
130
func (f *extFloat) floatBits() (bits uint64, overflow bool) {
131
        flt := &float64info
132
        f.Normalize()
133
 
134
        exp := f.exp + 63
135
 
136
        // Exponent too small.
137
        if exp < flt.bias+1 {
138
                n := flt.bias + 1 - exp
139
                f.mant >>= uint(n)
140
                exp += n
141
        }
142
 
143
        // Extract 1+flt.mantbits bits.
144
        mant := f.mant >> (63 - flt.mantbits)
145
        if f.mant&(1<<(62-flt.mantbits)) != 0 {
146
                // Round up.
147
                mant += 1
148
        }
149
 
150
        // Rounding might have added a bit; shift down.
151
        if mant == 2<
152
                mant >>= 1
153
                exp++
154
        }
155
 
156
        // Infinities.
157
        if exp-flt.bias >= 1<
158
                goto overflow
159
        }
160
 
161
        // Denormalized?
162
        if mant&(1<
163
                exp = flt.bias
164
        }
165
        goto out
166
 
167
overflow:
168
        // ±Inf
169
        mant = 0
170
        exp = 1<
171
        overflow = true
172
 
173
out:
174
        // Assemble bits.
175
        bits = mant & (uint64(1)<
176
        bits |= uint64((exp-flt.bias)&(1<
177
        if f.neg {
178
                bits |= 1 << (flt.mantbits + flt.expbits)
179
        }
180
        return
181
}
182
 
183
// Assign sets f to the value of x.
184
func (f *extFloat) Assign(x float64) {
185
        if x < 0 {
186
                x = -x
187
                f.neg = true
188
        }
189
        x, f.exp = math.Frexp(x)
190
        f.mant = uint64(x * float64(1<<64))
191
        f.exp -= 64
192
}
193
 
194
// AssignComputeBounds sets f to the value of x and returns
195
// lower, upper such that any number in the closed interval
196
// [lower, upper] is converted back to x.
197
func (f *extFloat) AssignComputeBounds(x float64) (lower, upper extFloat) {
198
        // Special cases.
199
        bits := math.Float64bits(x)
200
        flt := &float64info
201
        neg := bits>>(flt.expbits+flt.mantbits) != 0
202
        expBiased := int(bits>>flt.mantbits) & (1<
203
        mant := bits & (uint64(1)<
204
 
205
        if expBiased == 0 {
206
                // denormalized.
207
                f.mant = mant
208
                f.exp = 1 + flt.bias - int(flt.mantbits)
209
        } else {
210
                f.mant = mant | 1<
211
                f.exp = expBiased + flt.bias - int(flt.mantbits)
212
        }
213
        f.neg = neg
214
 
215
        upper = extFloat{mant: 2*f.mant + 1, exp: f.exp - 1, neg: f.neg}
216
        if mant != 0 || expBiased == 1 {
217
                lower = extFloat{mant: 2*f.mant - 1, exp: f.exp - 1, neg: f.neg}
218
        } else {
219
                lower = extFloat{mant: 4*f.mant - 1, exp: f.exp - 2, neg: f.neg}
220
        }
221
        return
222
}
223
 
224
// Normalize normalizes f so that the highest bit of the mantissa is
225
// set, and returns the number by which the mantissa was left-shifted.
226
func (f *extFloat) Normalize() uint {
227
        if f.mant == 0 {
228
                return 0
229
        }
230
        exp_before := f.exp
231
        for f.mant < (1 << 55) {
232
                f.mant <<= 8
233
                f.exp -= 8
234
        }
235
        for f.mant < (1 << 63) {
236
                f.mant <<= 1
237
                f.exp -= 1
238
        }
239
        return uint(exp_before - f.exp)
240
}
241
 
242
// Multiply sets f to the product f*g: the result is correctly rounded,
243
// but not normalized.
244
func (f *extFloat) Multiply(g extFloat) {
245
        fhi, flo := f.mant>>32, uint64(uint32(f.mant))
246
        ghi, glo := g.mant>>32, uint64(uint32(g.mant))
247
 
248
        // Cross products.
249
        cross1 := fhi * glo
250
        cross2 := flo * ghi
251
 
252
        // f.mant*g.mant is fhi*ghi << 64 + (cross1+cross2) << 32 + flo*glo
253
        f.mant = fhi*ghi + (cross1 >> 32) + (cross2 >> 32)
254
        rem := uint64(uint32(cross1)) + uint64(uint32(cross2)) + ((flo * glo) >> 32)
255
        // Round up.
256
        rem += (1 << 31)
257
 
258
        f.mant += (rem >> 32)
259
        f.exp = f.exp + g.exp + 64
260
}
261
 
262
var uint64pow10 = [...]uint64{
263
        1, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
264
        1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
265
}
266
 
267
// AssignDecimal sets f to an approximate value of the decimal d. It
268
// returns true if the value represented by f is guaranteed to be the
269
// best approximation of d after being rounded to a float64.
270
func (f *extFloat) AssignDecimal(d *decimal) (ok bool) {
271
        const uint64digits = 19
272
        const errorscale = 8
273
        mant10, digits := d.atou64()
274
        exp10 := d.dp - digits
275
        errors := 0 // An upper bound for error, computed in errorscale*ulp.
276
 
277
        if digits < d.nd {
278
                // the decimal number was truncated.
279
                errors += errorscale / 2
280
        }
281
 
282
        f.mant = mant10
283
        f.exp = 0
284
        f.neg = d.neg
285
 
286
        // Multiply by powers of ten.
287
        i := (exp10 - firstPowerOfTen) / stepPowerOfTen
288
        if exp10 < firstPowerOfTen || i >= len(powersOfTen) {
289
                return false
290
        }
291
        adjExp := (exp10 - firstPowerOfTen) % stepPowerOfTen
292
 
293
        // We multiply by exp%step
294
        if digits+adjExp <= uint64digits {
295
                // We can multiply the mantissa
296
                f.mant *= uint64(float64pow10[adjExp])
297
                f.Normalize()
298
        } else {
299
                f.Normalize()
300
                f.Multiply(smallPowersOfTen[adjExp])
301
                errors += errorscale / 2
302
        }
303
 
304
        // We multiply by 10 to the exp - exp%step.
305
        f.Multiply(powersOfTen[i])
306
        if errors > 0 {
307
                errors += 1
308
        }
309
        errors += errorscale / 2
310
 
311
        // Normalize
312
        shift := f.Normalize()
313
        errors <<= shift
314
 
315
        // Now f is a good approximation of the decimal.
316
        // Check whether the error is too large: that is, if the mantissa
317
        // is perturbated by the error, the resulting float64 will change.
318
        // The 64 bits mantissa is 1 + 52 bits for float64 + 11 extra bits.
319
        //
320
        // In many cases the approximation will be good enough.
321
        const denormalExp = -1023 - 63
322
        flt := &float64info
323
        var extrabits uint
324
        if f.exp <= denormalExp {
325
                extrabits = uint(63 - flt.mantbits + 1 + uint(denormalExp-f.exp))
326
        } else {
327
                extrabits = uint(63 - flt.mantbits)
328
        }
329
 
330
        halfway := uint64(1) << (extrabits - 1)
331
        mant_extra := f.mant & (1<
332
 
333
        // Do a signed comparison here! If the error estimate could make
334
        // the mantissa round differently for the conversion to double,
335
        // then we can't give a definite answer.
336
        if int64(halfway)-int64(errors) < int64(mant_extra) &&
337
                int64(mant_extra) < int64(halfway)+int64(errors) {
338
                return false
339
        }
340
        return true
341
}
342
 
343
// Frexp10 is an analogue of math.Frexp for decimal powers. It scales
344
// f by an approximate power of ten 10^-exp, and returns exp10, so
345
// that f*10^exp10 has the same value as the old f, up to an ulp,
346
// as well as the index of 10^-exp in the powersOfTen table.
347
// The arguments expMin and expMax constrain the final value of the
348
// binary exponent of f.
349
func (f *extFloat) frexp10(expMin, expMax int) (exp10, index int) {
350
        // it is illegal to call this function with a too restrictive exponent range.
351
        if expMax-expMin <= 25 {
352
                panic("strconv: invalid exponent range")
353
        }
354
        // Find power of ten such that x * 10^n has a binary exponent
355
        // between expMin and expMax
356
        approxExp10 := -(f.exp + 100) * 28 / 93 // log(10)/log(2) is close to 93/28.
357
        i := (approxExp10 - firstPowerOfTen) / stepPowerOfTen
358
Loop:
359
        for {
360
                exp := f.exp + powersOfTen[i].exp + 64
361
                switch {
362
                case exp < expMin:
363
                        i++
364
                case exp > expMax:
365
                        i--
366
                default:
367
                        break Loop
368
                }
369
        }
370
        // Apply the desired decimal shift on f. It will have exponent
371
        // in the desired range. This is multiplication by 10^-exp10.
372
        f.Multiply(powersOfTen[i])
373
 
374
        return -(firstPowerOfTen + i*stepPowerOfTen), i
375
}
376
 
377
// frexp10Many applies a common shift by a power of ten to a, b, c.
378
func frexp10Many(expMin, expMax int, a, b, c *extFloat) (exp10 int) {
379
        exp10, i := c.frexp10(expMin, expMax)
380
        a.Multiply(powersOfTen[i])
381
        b.Multiply(powersOfTen[i])
382
        return
383
}
384
 
385
// ShortestDecimal stores in d the shortest decimal representation of f
386
// which belongs to the open interval (lower, upper), where f is supposed
387
// to lie. It returns false whenever the result is unsure. The implementation
388
// uses the Grisu3 algorithm.
389
func (f *extFloat) ShortestDecimal(d *decimal, lower, upper *extFloat) bool {
390
        if f.mant == 0 {
391
                d.d[0] = '0'
392
                d.nd = 1
393
                d.dp = 0
394
                d.neg = f.neg
395
        }
396
        const minExp = -60
397
        const maxExp = -32
398
        upper.Normalize()
399
        // Uniformize exponents.
400
        if f.exp > upper.exp {
401
                f.mant <<= uint(f.exp - upper.exp)
402
                f.exp = upper.exp
403
        }
404
        if lower.exp > upper.exp {
405
                lower.mant <<= uint(lower.exp - upper.exp)
406
                lower.exp = upper.exp
407
        }
408
 
409
        exp10 := frexp10Many(minExp, maxExp, lower, f, upper)
410
        // Take a safety margin due to rounding in frexp10Many, but we lose precision.
411
        upper.mant++
412
        lower.mant--
413
 
414
        // The shortest representation of f is either rounded up or down, but
415
        // in any case, it is a truncation of upper.
416
        shift := uint(-upper.exp)
417
        integer := uint32(upper.mant >> shift)
418
        fraction := upper.mant - (uint64(integer) << shift)
419
 
420
        // How far we can go down from upper until the result is wrong.
421
        allowance := upper.mant - lower.mant
422
        // How far we should go to get a very precise result.
423
        targetDiff := upper.mant - f.mant
424
 
425
        // Count integral digits: there are at most 10.
426
        var integerDigits int
427
        for i, pow := range uint64pow10 {
428
                if uint64(integer) >= pow {
429
                        integerDigits = i + 1
430
                }
431
        }
432
        for i := 0; i < integerDigits; i++ {
433
                pow := uint64pow10[integerDigits-i-1]
434
                digit := integer / uint32(pow)
435
                d.d[i] = byte(digit + '0')
436
                integer -= digit * uint32(pow)
437
                // evaluate whether we should stop.
438
                if currentDiff := uint64(integer)<
439
                        d.nd = i + 1
440
                        d.dp = integerDigits + exp10
441
                        d.neg = f.neg
442
                        // Sometimes allowance is so large the last digit might need to be
443
                        // decremented to get closer to f.
444
                        return adjustLastDigit(d, currentDiff, targetDiff, allowance, pow<
445
                }
446
        }
447
        d.nd = integerDigits
448
        d.dp = d.nd + exp10
449
        d.neg = f.neg
450
 
451
        // Compute digits of the fractional part. At each step fraction does not
452
        // overflow. The choice of minExp implies that fraction is less than 2^60.
453
        var digit int
454
        multiplier := uint64(1)
455
        for {
456
                fraction *= 10
457
                multiplier *= 10
458
                digit = int(fraction >> shift)
459
                d.d[d.nd] = byte(digit + '0')
460
                d.nd++
461
                fraction -= uint64(digit) << shift
462
                if fraction < allowance*multiplier {
463
                        // We are in the admissible range. Note that if allowance is about to
464
                        // overflow, that is, allowance > 2^64/10, the condition is automatically
465
                        // true due to the limited range of fraction.
466
                        return adjustLastDigit(d,
467
                                fraction, targetDiff*multiplier, allowance*multiplier,
468
                                1<
469
                }
470
        }
471
        return false
472
}
473
 
474
// adjustLastDigit modifies d = x-currentDiff*ε, to get closest to
475
// d = x-targetDiff*ε, without becoming smaller than x-maxDiff*ε.
476
// It assumes that a decimal digit is worth ulpDecimal*ε, and that
477
// all data is known with a error estimate of ulpBinary*ε.
478
func adjustLastDigit(d *decimal, currentDiff, targetDiff, maxDiff, ulpDecimal, ulpBinary uint64) bool {
479
        if ulpDecimal < 2*ulpBinary {
480
                // Appromixation is too wide.
481
                return false
482
        }
483
        for currentDiff+ulpDecimal/2+ulpBinary < targetDiff {
484
                d.d[d.nd-1]--
485
                currentDiff += ulpDecimal
486
        }
487
        if currentDiff+ulpDecimal <= targetDiff+ulpDecimal/2+ulpBinary {
488
                // we have two choices, and don't know what to do.
489
                return false
490
        }
491
        if currentDiff < ulpBinary || currentDiff > maxDiff-ulpBinary {
492
                // we went too far
493
                return false
494
        }
495
        if d.nd == 1 && d.d[0] == '0' {
496
                // the number has actually reached zero.
497
                d.nd = 0
498
                d.dp = 0
499
        }
500
        return true
501
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.