OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libgo/] [go/] [strconv/] [ftoa.go] - Blame information for rev 867

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 747 jeremybenn
// Copyright 2009 The Go Authors. All rights reserved.
2
// Use of this source code is governed by a BSD-style
3
// license that can be found in the LICENSE file.
4
 
5
// Binary to decimal floating point conversion.
6
// Algorithm:
7
//   1) store mantissa in multiprecision decimal
8
//   2) shift decimal by exponent
9
//   3) read digits out & format
10
 
11
package strconv
12
 
13
import "math"
14
 
15
// TODO: move elsewhere?
16
type floatInfo struct {
17
        mantbits uint
18
        expbits  uint
19
        bias     int
20
}
21
 
22
var float32info = floatInfo{23, 8, -127}
23
var float64info = floatInfo{52, 11, -1023}
24
 
25
// FormatFloat converts the floating-point number f to a string,
26
// according to the format fmt and precision prec.  It rounds the
27
// result assuming that the original was obtained from a floating-point
28
// value of bitSize bits (32 for float32, 64 for float64).
29
//
30
// The format fmt is one of
31
// 'b' (-ddddp±ddd, a binary exponent),
32
// 'e' (-d.dddde±dd, a decimal exponent),
33
// 'E' (-d.ddddE±dd, a decimal exponent),
34
// 'f' (-ddd.dddd, no exponent),
35
// 'g' ('e' for large exponents, 'f' otherwise), or
36
// 'G' ('E' for large exponents, 'f' otherwise).
37
//
38
// The precision prec controls the number of digits
39
// (excluding the exponent) printed by the 'e', 'E', 'f', 'g', and 'G' formats.
40
// For 'e', 'E', and 'f' it is the number of digits after the decimal point.
41
// For 'g' and 'G' it is the total number of digits.
42
// The special precision -1 uses the smallest number of digits
43
// necessary such that ParseFloat will return f exactly.
44
func FormatFloat(f float64, fmt byte, prec, bitSize int) string {
45
        return string(genericFtoa(make([]byte, 0, max(prec+4, 24)), f, fmt, prec, bitSize))
46
}
47
 
48
// AppendFloat appends the string form of the floating-point number f,
49
// as generated by FormatFloat, to dst and returns the extended buffer.
50
func AppendFloat(dst []byte, f float64, fmt byte, prec int, bitSize int) []byte {
51
        return genericFtoa(dst, f, fmt, prec, bitSize)
52
}
53
 
54
func genericFtoa(dst []byte, val float64, fmt byte, prec, bitSize int) []byte {
55
        var bits uint64
56
        var flt *floatInfo
57
        switch bitSize {
58
        case 32:
59
                bits = uint64(math.Float32bits(float32(val)))
60
                flt = &float32info
61
        case 64:
62
                bits = math.Float64bits(val)
63
                flt = &float64info
64
        default:
65
                panic("strconv: illegal AppendFloat/FormatFloat bitSize")
66
        }
67
 
68
        neg := bits>>(flt.expbits+flt.mantbits) != 0
69
        exp := int(bits>>flt.mantbits) & (1<
70
        mant := bits & (uint64(1)<
71
 
72
        switch exp {
73
        case 1<
74
                // Inf, NaN
75
                var s string
76
                switch {
77
                case mant != 0:
78
                        s = "NaN"
79
                case neg:
80
                        s = "-Inf"
81
                default:
82
                        s = "+Inf"
83
                }
84
                return append(dst, s...)
85
 
86
        case 0:
87
                // denormalized
88
                exp++
89
 
90
        default:
91
                // add implicit top bit
92
                mant |= uint64(1) << flt.mantbits
93
        }
94
        exp += flt.bias
95
 
96
        // Pick off easy binary format.
97
        if fmt == 'b' {
98
                return fmtB(dst, neg, mant, exp, flt)
99
        }
100
 
101
        // Negative precision means "only as much as needed to be exact."
102
        shortest := prec < 0
103
 
104
        d := new(decimal)
105
        if shortest {
106
                ok := false
107
                if optimize && bitSize == 64 {
108
                        // Try Grisu3 algorithm.
109
                        f := new(extFloat)
110
                        lower, upper := f.AssignComputeBounds(val)
111
                        ok = f.ShortestDecimal(d, &lower, &upper)
112
                }
113
                if !ok {
114
                        // Create exact decimal representation.
115
                        // The shift is exp - flt.mantbits because mant is a 1-bit integer
116
                        // followed by a flt.mantbits fraction, and we are treating it as
117
                        // a 1+flt.mantbits-bit integer.
118
                        d.Assign(mant)
119
                        d.Shift(exp - int(flt.mantbits))
120
                        roundShortest(d, mant, exp, flt)
121
                }
122
                // Precision for shortest representation mode.
123
                if prec < 0 {
124
                        switch fmt {
125
                        case 'e', 'E':
126
                                prec = d.nd - 1
127
                        case 'f':
128
                                prec = max(d.nd-d.dp, 0)
129
                        case 'g', 'G':
130
                                prec = d.nd
131
                        }
132
                }
133
        } else {
134
                // Create exact decimal representation.
135
                d.Assign(mant)
136
                d.Shift(exp - int(flt.mantbits))
137
                // Round appropriately.
138
                switch fmt {
139
                case 'e', 'E':
140
                        d.Round(prec + 1)
141
                case 'f':
142
                        d.Round(d.dp + prec)
143
                case 'g', 'G':
144
                        if prec == 0 {
145
                                prec = 1
146
                        }
147
                        d.Round(prec)
148
                }
149
        }
150
 
151
        switch fmt {
152
        case 'e', 'E':
153
                return fmtE(dst, neg, d, prec, fmt)
154
        case 'f':
155
                return fmtF(dst, neg, d, prec)
156
        case 'g', 'G':
157
                // trailing fractional zeros in 'e' form will be trimmed.
158
                eprec := prec
159
                if eprec > d.nd && d.nd >= d.dp {
160
                        eprec = d.nd
161
                }
162
                // %e is used if the exponent from the conversion
163
                // is less than -4 or greater than or equal to the precision.
164
                // if precision was the shortest possible, use precision 6 for this decision.
165
                if shortest {
166
                        eprec = 6
167
                }
168
                exp := d.dp - 1
169
                if exp < -4 || exp >= eprec {
170
                        if prec > d.nd {
171
                                prec = d.nd
172
                        }
173
                        return fmtE(dst, neg, d, prec-1, fmt+'e'-'g')
174
                }
175
                if prec > d.dp {
176
                        prec = d.nd
177
                }
178
                return fmtF(dst, neg, d, max(prec-d.dp, 0))
179
        }
180
 
181
        // unknown format
182
        return append(dst, '%', fmt)
183
}
184
 
185
// Round d (= mant * 2^exp) to the shortest number of digits
186
// that will let the original floating point value be precisely
187
// reconstructed.  Size is original floating point size (64 or 32).
188
func roundShortest(d *decimal, mant uint64, exp int, flt *floatInfo) {
189
        // If mantissa is zero, the number is zero; stop now.
190
        if mant == 0 {
191
                d.nd = 0
192
                return
193
        }
194
 
195
        // Compute upper and lower such that any decimal number
196
        // between upper and lower (possibly inclusive)
197
        // will round to the original floating point number.
198
 
199
        // We may see at once that the number is already shortest.
200
        //
201
        // Suppose d is not denormal, so that 2^exp <= d < 10^dp.
202
        // The closest shorter number is at least 10^(dp-nd) away.
203
        // The lower/upper bounds computed below are at distance
204
        // at most 2^(exp-mantbits).
205
        //
206
        // So the number is already shortest if 10^(dp-nd) > 2^(exp-mantbits),
207
        // or equivalently log2(10)*(dp-nd) > exp-mantbits.
208
        // It is true if 332/100*(dp-nd) >= exp-mantbits (log2(10) > 3.32).
209
        minexp := flt.bias + 1 // minimum possible exponent
210
        if exp > minexp && 332*(d.dp-d.nd) >= 100*(exp-int(flt.mantbits)) {
211
                // The number is already shortest.
212
                return
213
        }
214
 
215
        // d = mant << (exp - mantbits)
216
        // Next highest floating point number is mant+1 << exp-mantbits.
217
        // Our upper bound is halfway inbetween, mant*2+1 << exp-mantbits-1.
218
        upper := new(decimal)
219
        upper.Assign(mant*2 + 1)
220
        upper.Shift(exp - int(flt.mantbits) - 1)
221
 
222
        // d = mant << (exp - mantbits)
223
        // Next lowest floating point number is mant-1 << exp-mantbits,
224
        // unless mant-1 drops the significant bit and exp is not the minimum exp,
225
        // in which case the next lowest is mant*2-1 << exp-mantbits-1.
226
        // Either way, call it mantlo << explo-mantbits.
227
        // Our lower bound is halfway inbetween, mantlo*2+1 << explo-mantbits-1.
228
        var mantlo uint64
229
        var explo int
230
        if mant > 1<
231
                mantlo = mant - 1
232
                explo = exp
233
        } else {
234
                mantlo = mant*2 - 1
235
                explo = exp - 1
236
        }
237
        lower := new(decimal)
238
        lower.Assign(mantlo*2 + 1)
239
        lower.Shift(explo - int(flt.mantbits) - 1)
240
 
241
        // The upper and lower bounds are possible outputs only if
242
        // the original mantissa is even, so that IEEE round-to-even
243
        // would round to the original mantissa and not the neighbors.
244
        inclusive := mant%2 == 0
245
 
246
        // Now we can figure out the minimum number of digits required.
247
        // Walk along until d has distinguished itself from upper and lower.
248
        for i := 0; i < d.nd; i++ {
249
                var l, m, u byte // lower, middle, upper digits
250
                if i < lower.nd {
251
                        l = lower.d[i]
252
                } else {
253
                        l = '0'
254
                }
255
                m = d.d[i]
256
                if i < upper.nd {
257
                        u = upper.d[i]
258
                } else {
259
                        u = '0'
260
                }
261
 
262
                // Okay to round down (truncate) if lower has a different digit
263
                // or if lower is inclusive and is exactly the result of rounding down.
264
                okdown := l != m || (inclusive && l == m && i+1 == lower.nd)
265
 
266
                // Okay to round up if upper has a different digit and
267
                // either upper is inclusive or upper is bigger than the result of rounding up.
268
                okup := m != u && (inclusive || m+1 < u || i+1 < upper.nd)
269
 
270
                // If it's okay to do either, then round to the nearest one.
271
                // If it's okay to do only one, do it.
272
                switch {
273
                case okdown && okup:
274
                        d.Round(i + 1)
275
                        return
276
                case okdown:
277
                        d.RoundDown(i + 1)
278
                        return
279
                case okup:
280
                        d.RoundUp(i + 1)
281
                        return
282
                }
283
        }
284
}
285
 
286
// %e: -d.ddddde±dd
287
func fmtE(dst []byte, neg bool, d *decimal, prec int, fmt byte) []byte {
288
        // sign
289
        if neg {
290
                dst = append(dst, '-')
291
        }
292
 
293
        // first digit
294
        ch := byte('0')
295
        if d.nd != 0 {
296
                ch = d.d[0]
297
        }
298
        dst = append(dst, ch)
299
 
300
        // .moredigits
301
        if prec > 0 {
302
                dst = append(dst, '.')
303
                for i := 1; i <= prec; i++ {
304
                        ch = '0'
305
                        if i < d.nd {
306
                                ch = d.d[i]
307
                        }
308
                        dst = append(dst, ch)
309
                }
310
        }
311
 
312
        // e±
313
        dst = append(dst, fmt)
314
        exp := d.dp - 1
315
        if d.nd == 0 { // special case: 0 has exponent 0
316
                exp = 0
317
        }
318
        if exp < 0 {
319
                ch = '-'
320
                exp = -exp
321
        } else {
322
                ch = '+'
323
        }
324
        dst = append(dst, ch)
325
 
326
        // dddd
327
        var buf [3]byte
328
        i := len(buf)
329
        for exp >= 10 {
330
                i--
331
                buf[i] = byte(exp%10 + '0')
332
                exp /= 10
333
        }
334
        // exp < 10
335
        i--
336
        buf[i] = byte(exp + '0')
337
 
338
        // leading zeroes
339
        if i > len(buf)-2 {
340
                i--
341
                buf[i] = '0'
342
        }
343
 
344
        return append(dst, buf[i:]...)
345
}
346
 
347
// %f: -ddddddd.ddddd
348
func fmtF(dst []byte, neg bool, d *decimal, prec int) []byte {
349
        // sign
350
        if neg {
351
                dst = append(dst, '-')
352
        }
353
 
354
        // integer, padded with zeros as needed.
355
        if d.dp > 0 {
356
                var i int
357
                for i = 0; i < d.dp && i < d.nd; i++ {
358
                        dst = append(dst, d.d[i])
359
                }
360
                for ; i < d.dp; i++ {
361
                        dst = append(dst, '0')
362
                }
363
        } else {
364
                dst = append(dst, '0')
365
        }
366
 
367
        // fraction
368
        if prec > 0 {
369
                dst = append(dst, '.')
370
                for i := 0; i < prec; i++ {
371
                        ch := byte('0')
372
                        if j := d.dp + i; 0 <= j && j < d.nd {
373
                                ch = d.d[j]
374
                        }
375
                        dst = append(dst, ch)
376
                }
377
        }
378
 
379
        return dst
380
}
381
 
382
// %b: -ddddddddp+ddd
383
func fmtB(dst []byte, neg bool, mant uint64, exp int, flt *floatInfo) []byte {
384
        var buf [50]byte
385
        w := len(buf)
386
        exp -= int(flt.mantbits)
387
        esign := byte('+')
388
        if exp < 0 {
389
                esign = '-'
390
                exp = -exp
391
        }
392
        n := 0
393
        for exp > 0 || n < 1 {
394
                n++
395
                w--
396
                buf[w] = byte(exp%10 + '0')
397
                exp /= 10
398
        }
399
        w--
400
        buf[w] = esign
401
        w--
402
        buf[w] = 'p'
403
        n = 0
404
        for mant > 0 || n < 1 {
405
                n++
406
                w--
407
                buf[w] = byte(mant%10 + '0')
408
                mant /= 10
409
        }
410
        if neg {
411
                w--
412
                buf[w] = '-'
413
        }
414
        return append(dst, buf[w:]...)
415
}
416
 
417
func max(a, b int) int {
418
        if a > b {
419
                return a
420
        }
421
        return b
422
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.