OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libgo/] [go/] [time/] [time.go] - Blame information for rev 750

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 747 jeremybenn
// Copyright 2009 The Go Authors. All rights reserved.
2
// Use of this source code is governed by a BSD-style
3
// license that can be found in the LICENSE file.
4
 
5
// Package time provides functionality for measuring and displaying time.
6
//
7
// The calendrical calculations always assume a Gregorian calendar.
8
package time
9
 
10
import "errors"
11
 
12
// A Time represents an instant in time with nanosecond precision.
13
//
14
// Programs using times should typically store and pass them as values,
15
// not pointers.  That is, time variables and struct fields should be of
16
// type time.Time, not *time.Time.
17
//
18
// Time instants can be compared using the Before, After, and Equal methods.
19
// The Sub method subtracts two instants, producing a Duration.
20
// The Add method adds a Time and a Duration, producing a Time.
21
//
22
// The zero value of type Time is January 1, year 1, 00:00:00.000000000 UTC.
23
// As this time is unlikely to come up in practice, the IsZero method gives
24
// a simple way of detecting a time that has not been initialized explicitly.
25
//
26
// Each Time has associated with it a Location, consulted when computing the
27
// presentation form of the time, such as in the Format, Hour, and Year methods.
28
// The methods Local, UTC, and In return a Time with a specific location.
29
// Changing the location in this way changes only the presentation; it does not
30
// change the instant in time being denoted and therefore does not affect the
31
// computations described in earlier paragraphs.
32
//
33
type Time struct {
34
        // sec gives the number of seconds elapsed since
35
        // January 1, year 1 00:00:00 UTC.
36
        sec int64
37
 
38
        // nsec specifies a non-negative nanosecond
39
        // offset within the second named by Seconds.
40
        // It must be in the range [0, 999999999].
41
        nsec int32
42
 
43
        // loc specifies the Location that should be used to
44
        // determine the minute, hour, month, day, and year
45
        // that correspond to this Time.
46
        // Only the zero Time has a nil Location.
47
        // In that case it is interpreted to mean UTC.
48
        loc *Location
49
}
50
 
51
// After reports whether the time instant t is after u.
52
func (t Time) After(u Time) bool {
53
        return t.sec > u.sec || t.sec == u.sec && t.nsec > u.nsec
54
}
55
 
56
// Before reports whether the time instant t is before u.
57
func (t Time) Before(u Time) bool {
58
        return t.sec < u.sec || t.sec == u.sec && t.nsec < u.nsec
59
}
60
 
61
// Equal reports whether t and u represent the same time instant.
62
// Two times can be equal even if they are in different locations.
63
// For example, 6:00 +0200 CEST and 4:00 UTC are Equal.
64
// This comparison is different from using t == u, which also compares
65
// the locations.
66
func (t Time) Equal(u Time) bool {
67
        return t.sec == u.sec && t.nsec == u.nsec
68
}
69
 
70
// A Month specifies a month of the year (January = 1, ...).
71
type Month int
72
 
73
const (
74
        January Month = 1 + iota
75
        February
76
        March
77
        April
78
        May
79
        June
80
        July
81
        August
82
        September
83
        October
84
        November
85
        December
86
)
87
 
88
var months = [...]string{
89
        "January",
90
        "February",
91
        "March",
92
        "April",
93
        "May",
94
        "June",
95
        "July",
96
        "August",
97
        "September",
98
        "October",
99
        "November",
100
        "December",
101
}
102
 
103
// String returns the English name of the month ("January", "February", ...).
104
func (m Month) String() string { return months[m-1] }
105
 
106
// A Weekday specifies a day of the week (Sunday = 0, ...).
107
type Weekday int
108
 
109
const (
110
        Sunday Weekday = iota
111
        Monday
112
        Tuesday
113
        Wednesday
114
        Thursday
115
        Friday
116
        Saturday
117
)
118
 
119
var days = [...]string{
120
        "Sunday",
121
        "Monday",
122
        "Tuesday",
123
        "Wednesday",
124
        "Thursday",
125
        "Friday",
126
        "Saturday",
127
}
128
 
129
// String returns the English name of the day ("Sunday", "Monday", ...).
130
func (d Weekday) String() string { return days[d] }
131
 
132
// Computations on time.
133
//
134
// The zero value for a Time is defined to be
135
//      January 1, year 1, 00:00:00.000000000 UTC
136
// which (1) looks like a zero, or as close as you can get in a date
137
// (1-1-1 00:00:00 UTC), (2) is unlikely enough to arise in practice to
138
// be a suitable "not set" sentinel, unlike Jan 1 1970, and (3) has a
139
// non-negative year even in time zones west of UTC, unlike 1-1-0
140
// 00:00:00 UTC, which would be 12-31-(-1) 19:00:00 in New York.
141
//
142
// The zero Time value does not force a specific epoch for the time
143
// representation.  For example, to use the Unix epoch internally, we
144
// could define that to distinguish a zero value from Jan 1 1970, that
145
// time would be represented by sec=-1, nsec=1e9.  However, it does
146
// suggest a representation, namely using 1-1-1 00:00:00 UTC as the
147
// epoch, and that's what we do.
148
//
149
// The Add and Sub computations are oblivious to the choice of epoch.
150
//
151
// The presentation computations - year, month, minute, and so on - all
152
// rely heavily on division and modulus by positive constants.  For
153
// calendrical calculations we want these divisions to round down, even
154
// for negative values, so that the remainder is always positive, but
155
// Go's division (like most hardware divison instructions) rounds to
156
// zero.  We can still do those computations and then adjust the result
157
// for a negative numerator, but it's annoying to write the adjustment
158
// over and over.  Instead, we can change to a different epoch so long
159
// ago that all the times we care about will be positive, and then round
160
// to zero and round down coincide.  These presentation routines already
161
// have to add the zone offset, so adding the translation to the
162
// alternate epoch is cheap.  For example, having a non-negative time t
163
// means that we can write
164
//
165
//      sec = t % 60
166
//
167
// instead of
168
//
169
//      sec = t % 60
170
//      if sec < 0 {
171
//              sec += 60
172
//      }
173
//
174
// everywhere.
175
//
176
// The calendar runs on an exact 400 year cycle: a 400-year calendar
177
// printed for 1970-2469 will apply as well to 2470-2869.  Even the days
178
// of the week match up.  It simplifies the computations to choose the
179
// cycle boundaries so that the exceptional years are always delayed as
180
// long as possible.  That means choosing a year equal to 1 mod 400, so
181
// that the first leap year is the 4th year, the first missed leap year
182
// is the 100th year, and the missed missed leap year is the 400th year.
183
// So we'd prefer instead to print a calendar for 2001-2400 and reuse it
184
// for 2401-2800.
185
//
186
// Finally, it's convenient if the delta between the Unix epoch and
187
// long-ago epoch is representable by an int64 constant.
188
//
189
// These three considerations—choose an epoch as early as possible, that
190
// uses a year equal to 1 mod 400, and that is no more than 2⁶³ seconds
191
// earlier than 1970—bring us to the year -292277022399.  We refer to
192
// this year as the absolute zero year, and to times measured as a uint64
193
// seconds since this year as absolute times.
194
//
195
// Times measured as an int64 seconds since the year 1—the representation
196
// used for Time's sec field—are called internal times.
197
//
198
// Times measured as an int64 seconds since the year 1970 are called Unix
199
// times.
200
//
201
// It is tempting to just use the year 1 as the absolute epoch, defining
202
// that the routines are only valid for years >= 1.  However, the
203
// routines would then be invalid when displaying the epoch in time zones
204
// west of UTC, since it is year 0.  It doesn't seem tenable to say that
205
// printing the zero time correctly isn't supported in half the time
206
// zones.  By comparison, it's reasonable to mishandle some times in
207
// the year -292277022399.
208
//
209
// All this is opaque to clients of the API and can be changed if a
210
// better implementation presents itself.
211
 
212
const (
213
        // The unsigned zero year for internal calculations.
214
        // Must be 1 mod 400, and times before it will not compute correctly,
215
        // but otherwise can be changed at will.
216
        absoluteZeroYear = -292277022399
217
 
218
        // The year of the zero Time.
219
        // Assumed by the unixToInternal computation below.
220
        internalYear = 1
221
 
222
        // The year of the zero Unix time.
223
        unixYear = 1970
224
 
225
        // Offsets to convert between internal and absolute or Unix times.
226
        absoluteToInternal int64 = (absoluteZeroYear - internalYear) * 365.2425 * secondsPerDay
227
        internalToAbsolute       = -absoluteToInternal
228
 
229
        unixToInternal int64 = (1969*365 + 1969/4 - 1969/100 + 1969/400) * secondsPerDay
230
        internalToUnix int64 = -unixToInternal
231
)
232
 
233
// IsZero reports whether t represents the zero time instant,
234
// January 1, year 1, 00:00:00 UTC.
235
func (t Time) IsZero() bool {
236
        return t.sec == 0 && t.nsec == 0
237
}
238
 
239
// abs returns the time t as an absolute time, adjusted by the zone offset.
240
// It is called when computing a presentation property like Month or Hour.
241
func (t Time) abs() uint64 {
242
        l := t.loc
243
        if l == nil {
244
                l = &utcLoc
245
        }
246
        // Avoid function call if we hit the local time cache.
247
        sec := t.sec + internalToUnix
248
        if l != &utcLoc {
249
                if l.cacheZone != nil && l.cacheStart <= sec && sec < l.cacheEnd {
250
                        sec += int64(l.cacheZone.offset)
251
                } else {
252
                        _, offset, _, _, _ := l.lookup(sec)
253
                        sec += int64(offset)
254
                }
255
        }
256
        return uint64(sec + (unixToInternal + internalToAbsolute))
257
}
258
 
259
// Date returns the year, month, and day in which t occurs.
260
func (t Time) Date() (year int, month Month, day int) {
261
        year, month, day, _ = t.date(true)
262
        return
263
}
264
 
265
// Year returns the year in which t occurs.
266
func (t Time) Year() int {
267
        year, _, _, _ := t.date(false)
268
        return year
269
}
270
 
271
// Month returns the month of the year specified by t.
272
func (t Time) Month() Month {
273
        _, month, _, _ := t.date(true)
274
        return month
275
}
276
 
277
// Day returns the day of the month specified by t.
278
func (t Time) Day() int {
279
        _, _, day, _ := t.date(true)
280
        return day
281
}
282
 
283
// Weekday returns the day of the week specified by t.
284
func (t Time) Weekday() Weekday {
285
        // January 1 of the absolute year, like January 1 of 2001, was a Monday.
286
        sec := (t.abs() + uint64(Monday)*secondsPerDay) % secondsPerWeek
287
        return Weekday(int(sec) / secondsPerDay)
288
}
289
 
290
// ISOWeek returns the ISO 8601 year and week number in which t occurs.
291
// Week ranges from 1 to 53. Jan 01 to Jan 03 of year n might belong to
292
// week 52 or 53 of year n-1, and Dec 29 to Dec 31 might belong to week 1
293
// of year n+1.
294
func (t Time) ISOWeek() (year, week int) {
295
        year, month, day, yday := t.date(true)
296
        wday := int(t.Weekday()+6) % 7 // weekday but Monday = 0.
297
        const (
298
                Mon int = iota
299
                Tue
300
                Wed
301
                Thu
302
                Fri
303
                Sat
304
                Sun
305
        )
306
 
307
        // Calculate week as number of Mondays in year up to
308
        // and including today, plus 1 because the first week is week 0.
309
        // Putting the + 1 inside the numerator as a + 7 keeps the
310
        // numerator from being negative, which would cause it to
311
        // round incorrectly.
312
        week = (yday - wday + 7) / 7
313
 
314
        // The week number is now correct under the assumption
315
        // that the first Monday of the year is in week 1.
316
        // If Jan 1 is a Tuesday, Wednesday, or Thursday, the first Monday
317
        // is actually in week 2.
318
        jan1wday := (wday - yday + 7*53) % 7
319
        if Tue <= jan1wday && jan1wday <= Thu {
320
                week++
321
        }
322
 
323
        // If the week number is still 0, we're in early January but in
324
        // the last week of last year.
325
        if week == 0 {
326
                year--
327
                week = 52
328
                // A year has 53 weeks when Jan 1 or Dec 31 is a Thursday,
329
                // meaning Jan 1 of the next year is a Friday
330
                // or it was a leap year and Jan 1 of the next year is a Saturday.
331
                if jan1wday == Fri || (jan1wday == Sat && isLeap(year)) {
332
                        week++
333
                }
334
        }
335
 
336
        // December 29 to 31 are in week 1 of next year if
337
        // they are after the last Thursday of the year and
338
        // December 31 is a Monday, Tuesday, or Wednesday.
339
        if month == December && day >= 29 && wday < Thu {
340
                if dec31wday := (wday + 31 - day) % 7; Mon <= dec31wday && dec31wday <= Wed {
341
                        year++
342
                        week = 1
343
                }
344
        }
345
 
346
        return
347
}
348
 
349
// Clock returns the hour, minute, and second within the day specified by t.
350
func (t Time) Clock() (hour, min, sec int) {
351
        sec = int(t.abs() % secondsPerDay)
352
        hour = sec / secondsPerHour
353
        sec -= hour * secondsPerHour
354
        min = sec / secondsPerMinute
355
        sec -= min * secondsPerMinute
356
        return
357
}
358
 
359
// Hour returns the hour within the day specified by t, in the range [0, 23].
360
func (t Time) Hour() int {
361
        return int(t.abs()%secondsPerDay) / secondsPerHour
362
}
363
 
364
// Minute returns the minute offset within the hour specified by t, in the range [0, 59].
365
func (t Time) Minute() int {
366
        return int(t.abs()%secondsPerHour) / secondsPerMinute
367
}
368
 
369
// Second returns the second offset within the minute specified by t, in the range [0, 59].
370
func (t Time) Second() int {
371
        return int(t.abs() % secondsPerMinute)
372
}
373
 
374
// Nanosecond returns the nanosecond offset within the second specified by t,
375
// in the range [0, 999999999].
376
func (t Time) Nanosecond() int {
377
        return int(t.nsec)
378
}
379
 
380
// A Duration represents the elapsed time between two instants
381
// as an int64 nanosecond count.  The representation limits the
382
// largest representable duration to approximately 290 years.
383
type Duration int64
384
 
385
// Common durations.  There is no definition for units of Day or larger
386
// to avoid confusion across daylight savings time zone transitions.
387
const (
388
        Nanosecond  Duration = 1
389
        Microsecond          = 1000 * Nanosecond
390
        Millisecond          = 1000 * Microsecond
391
        Second               = 1000 * Millisecond
392
        Minute               = 60 * Second
393
        Hour                 = 60 * Minute
394
)
395
 
396
// Duration returns a string representing the duration in the form "72h3m0.5s".
397
// Leading zero units are omitted.  As a special case, durations less than one
398
// second format use a smaller unit (milli-, micro-, or nanoseconds) to ensure
399
// that the leading digit is non-zero.  The zero duration formats as 0,
400
// with no unit.
401
func (d Duration) String() string {
402
        // Largest time is 2540400h10m10.000000000s
403
        var buf [32]byte
404
        w := len(buf)
405
 
406
        u := uint64(d)
407
        neg := d < 0
408
        if neg {
409
                u = -u
410
        }
411
 
412
        if u < uint64(Second) {
413
                // Special case: if duration is smaller than a second,
414
                // use smaller units, like 1.2ms
415
                var (
416
                        prec int
417
                        unit byte
418
                )
419
                switch {
420
                case u == 0:
421
                        return "0"
422
                case u < uint64(Microsecond):
423
                        // print nanoseconds
424
                        prec = 0
425
                        unit = 'n'
426
                case u < uint64(Millisecond):
427
                        // print microseconds
428
                        prec = 3
429
                        unit = 'u'
430
                default:
431
                        // print milliseconds
432
                        prec = 6
433
                        unit = 'm'
434
                }
435
                w -= 2
436
                buf[w] = unit
437
                buf[w+1] = 's'
438
                w, u = fmtFrac(buf[:w], u, prec)
439
                w = fmtInt(buf[:w], u)
440
        } else {
441
                w--
442
                buf[w] = 's'
443
 
444
                w, u = fmtFrac(buf[:w], u, 9)
445
 
446
                // u is now integer seconds
447
                w = fmtInt(buf[:w], u%60)
448
                u /= 60
449
 
450
                // u is now integer minutes
451
                if u > 0 {
452
                        w--
453
                        buf[w] = 'm'
454
                        w = fmtInt(buf[:w], u%60)
455
                        u /= 60
456
 
457
                        // u is now integer hours
458
                        // Stop at hours because days can be different lengths.
459
                        if u > 0 {
460
                                w--
461
                                buf[w] = 'h'
462
                                w = fmtInt(buf[:w], u)
463
                        }
464
                }
465
        }
466
 
467
        if neg {
468
                w--
469
                buf[w] = '-'
470
        }
471
 
472
        return string(buf[w:])
473
}
474
 
475
// fmtFrac formats the fraction of v/10**prec (e.g., ".12345") into the
476
// tail of buf, omitting trailing zeros.  it omits the decimal
477
// point too when the fraction is 0.  It returns the index where the
478
// output bytes begin and the value v/10**prec.
479
func fmtFrac(buf []byte, v uint64, prec int) (nw int, nv uint64) {
480
        // Omit trailing zeros up to and including decimal point.
481
        w := len(buf)
482
        print := false
483
        for i := 0; i < prec; i++ {
484
                digit := v % 10
485
                print = print || digit != 0
486
                if print {
487
                        w--
488
                        buf[w] = byte(digit) + '0'
489
                }
490
                v /= 10
491
        }
492
        if print {
493
                w--
494
                buf[w] = '.'
495
        }
496
        return w, v
497
}
498
 
499
// fmtInt formats v into the tail of buf.
500
// It returns the index where the output begins.
501
func fmtInt(buf []byte, v uint64) int {
502
        w := len(buf)
503
        if v == 0 {
504
                w--
505
                buf[w] = '0'
506
        } else {
507
                for v > 0 {
508
                        w--
509
                        buf[w] = byte(v%10) + '0'
510
                        v /= 10
511
                }
512
        }
513
        return w
514
}
515
 
516
// Nanoseconds returns the duration as an integer nanosecond count.
517
func (d Duration) Nanoseconds() int64 { return int64(d) }
518
 
519
// These methods return float64 because the dominant
520
// use case is for printing a floating point number like 1.5s, and
521
// a truncation to integer would make them not useful in those cases.
522
// Splitting the integer and fraction ourselves guarantees that
523
// converting the returned float64 to an integer rounds the same
524
// way that a pure integer conversion would have, even in cases
525
// where, say, float64(d.Nanoseconds())/1e9 would have rounded
526
// differently.
527
 
528
// Seconds returns the duration as a floating point number of seconds.
529
func (d Duration) Seconds() float64 {
530
        sec := d / Second
531
        nsec := d % Second
532
        return float64(sec) + float64(nsec)*1e-9
533
}
534
 
535
// Minutes returns the duration as a floating point number of minutes.
536
func (d Duration) Minutes() float64 {
537
        min := d / Minute
538
        nsec := d % Minute
539
        return float64(min) + float64(nsec)*(1e-9/60)
540
}
541
 
542
// Hours returns the duration as a floating point number of hours.
543
func (d Duration) Hours() float64 {
544
        hour := d / Hour
545
        nsec := d % Hour
546
        return float64(hour) + float64(nsec)*(1e-9/60/60)
547
}
548
 
549
// Add returns the time t+d.
550
func (t Time) Add(d Duration) Time {
551
        t.sec += int64(d / 1e9)
552
        t.nsec += int32(d % 1e9)
553
        if t.nsec >= 1e9 {
554
                t.sec++
555
                t.nsec -= 1e9
556
        } else if t.nsec < 0 {
557
                t.sec--
558
                t.nsec += 1e9
559
        }
560
        return t
561
}
562
 
563
// Sub returns the duration t-u.
564
// To compute t-d for a duration d, use t.Add(-d).
565
func (t Time) Sub(u Time) Duration {
566
        return Duration(t.sec-u.sec)*Second + Duration(t.nsec-u.nsec)
567
}
568
 
569
// Since returns the time elapsed since t.
570
// It is shorthand for time.Now().Sub(t).
571
func Since(t Time) Duration {
572
        return Now().Sub(t)
573
}
574
 
575
// AddDate returns the time corresponding to adding the
576
// given number of years, months, and days to t.
577
// For example, AddDate(-1, 2, 3) applied to January 1, 2011
578
// returns March 4, 2010.
579
//
580
// AddDate normalizes its result in the same way that Date does,
581
// so, for example, adding one month to October 31 yields
582
// December 1, the normalized form for November 31.
583
func (t Time) AddDate(years int, months int, days int) Time {
584
        year, month, day := t.Date()
585
        hour, min, sec := t.Clock()
586
        return Date(year+years, month+Month(months), day+days, hour, min, sec, int(t.nsec), t.loc)
587
}
588
 
589
const (
590
        secondsPerMinute = 60
591
        secondsPerHour   = 60 * 60
592
        secondsPerDay    = 24 * secondsPerHour
593
        secondsPerWeek   = 7 * secondsPerDay
594
        daysPer400Years  = 365*400 + 97
595
        daysPer100Years  = 365*100 + 24
596
        daysPer4Years    = 365*4 + 1
597
        days1970To2001   = 31*365 + 8
598
)
599
 
600
// date computes the year and, only when full=true,
601
// the month and day in which t occurs.
602
func (t Time) date(full bool) (year int, month Month, day int, yday int) {
603
        // Split into time and day.
604
        d := t.abs() / secondsPerDay
605
 
606
        // Account for 400 year cycles.
607
        n := d / daysPer400Years
608
        y := 400 * n
609
        d -= daysPer400Years * n
610
 
611
        // Cut off 100-year cycles.
612
        // The last cycle has one extra leap year, so on the last day
613
        // of that year, day / daysPer100Years will be 4 instead of 3.
614
        // Cut it back down to 3 by subtracting n>>2.
615
        n = d / daysPer100Years
616
        n -= n >> 2
617
        y += 100 * n
618
        d -= daysPer100Years * n
619
 
620
        // Cut off 4-year cycles.
621
        // The last cycle has a missing leap year, which does not
622
        // affect the computation.
623
        n = d / daysPer4Years
624
        y += 4 * n
625
        d -= daysPer4Years * n
626
 
627
        // Cut off years within a 4-year cycle.
628
        // The last year is a leap year, so on the last day of that year,
629
        // day / 365 will be 4 instead of 3.  Cut it back down to 3
630
        // by subtracting n>>2.
631
        n = d / 365
632
        n -= n >> 2
633
        y += n
634
        d -= 365 * n
635
 
636
        year = int(int64(y) + absoluteZeroYear)
637
        yday = int(d)
638
 
639
        if !full {
640
                return
641
        }
642
 
643
        day = yday
644
        if isLeap(year) {
645
                // Leap year
646
                switch {
647
                case day > 31+29-1:
648
                        // After leap day; pretend it wasn't there.
649
                        day--
650
                case day == 31+29-1:
651
                        // Leap day.
652
                        month = February
653
                        day = 29
654
                        return
655
                }
656
        }
657
 
658
        // Estimate month on assumption that every month has 31 days.
659
        // The estimate may be too low by at most one month, so adjust.
660
        month = Month(day / 31)
661
        end := int(daysBefore[month+1])
662
        var begin int
663
        if day >= end {
664
                month++
665
                begin = end
666
        } else {
667
                begin = int(daysBefore[month])
668
        }
669
 
670
        month++ // because January is 1
671
        day = day - begin + 1
672
        return
673
}
674
 
675
// daysBefore[m] counts the number of days in a non-leap year
676
// before month m begins.  There is an entry for m=12, counting
677
// the number of days before January of next year (365).
678
var daysBefore = [...]int32{
679
        0,
680
        31,
681
        31 + 28,
682
        31 + 28 + 31,
683
        31 + 28 + 31 + 30,
684
        31 + 28 + 31 + 30 + 31,
685
        31 + 28 + 31 + 30 + 31 + 30,
686
        31 + 28 + 31 + 30 + 31 + 30 + 31,
687
        31 + 28 + 31 + 30 + 31 + 30 + 31 + 31,
688
        31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30,
689
        31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31,
690
        31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30,
691
        31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30 + 31,
692
}
693
 
694
func daysIn(m Month, year int) int {
695
        if m == February && isLeap(year) {
696
                return 29
697
        }
698
        return int(daysBefore[m] - daysBefore[m-1])
699
}
700
 
701
// Provided by package runtime.
702
func now() (sec int64, nsec int32)
703
 
704
// Now returns the current local time.
705
func Now() Time {
706
        sec, nsec := now()
707
        return Time{sec + unixToInternal, nsec, Local}
708
}
709
 
710
// UTC returns t with the location set to UTC.
711
func (t Time) UTC() Time {
712
        t.loc = UTC
713
        return t
714
}
715
 
716
// Local returns t with the location set to local time.
717
func (t Time) Local() Time {
718
        t.loc = Local
719
        return t
720
}
721
 
722
// In returns t with the location information set to loc.
723
//
724
// In panics if loc is nil.
725
func (t Time) In(loc *Location) Time {
726
        if loc == nil {
727
                panic("time: missing Location in call to Time.In")
728
        }
729
        t.loc = loc
730
        return t
731
}
732
 
733
// Location returns the time zone information associated with t.
734
func (t Time) Location() *Location {
735
        l := t.loc
736
        if l == nil {
737
                l = UTC
738
        }
739
        return l
740
}
741
 
742
// Zone computes the time zone in effect at time t, returning the abbreviated
743
// name of the zone (such as "CET") and its offset in seconds east of UTC.
744
func (t Time) Zone() (name string, offset int) {
745
        name, offset, _, _, _ = t.loc.lookup(t.sec + internalToUnix)
746
        return
747
}
748
 
749
// Unix returns the Unix time, the number of seconds elapsed
750
// since January 1, 1970 UTC.
751
func (t Time) Unix() int64 {
752
        return t.sec + internalToUnix
753
}
754
 
755
// UnixNano returns the Unix time, the number of nanoseconds elapsed
756
// since January 1, 1970 UTC.
757
func (t Time) UnixNano() int64 {
758
        return (t.sec+internalToUnix)*1e9 + int64(t.nsec)
759
}
760
 
761
type gobError string
762
 
763
func (g gobError) Error() string { return string(g) }
764
 
765
const timeGobVersion byte = 1
766
 
767
// GobEncode implements the gob.GobEncoder interface.
768
func (t Time) GobEncode() ([]byte, error) {
769
        var offsetMin int16 // minutes east of UTC. -1 is UTC.
770
 
771
        if t.Location() == &utcLoc {
772
                offsetMin = -1
773
        } else {
774
                _, offset := t.Zone()
775
                if offset%60 != 0 {
776
                        return nil, errors.New("Time.GobEncode: zone offset has fractional minute")
777
                }
778
                offset /= 60
779
                if offset < -32768 || offset == -1 || offset > 32767 {
780
                        return nil, errors.New("Time.GobEncode: unexpected zone offset")
781
                }
782
                offsetMin = int16(offset)
783
        }
784
 
785
        enc := []byte{
786
                timeGobVersion,    // byte 0 : version
787
                byte(t.sec >> 56), // bytes 1-8: seconds
788
                byte(t.sec >> 48),
789
                byte(t.sec >> 40),
790
                byte(t.sec >> 32),
791
                byte(t.sec >> 24),
792
                byte(t.sec >> 16),
793
                byte(t.sec >> 8),
794
                byte(t.sec),
795
                byte(t.nsec >> 24), // bytes 9-12: nanoseconds
796
                byte(t.nsec >> 16),
797
                byte(t.nsec >> 8),
798
                byte(t.nsec),
799
                byte(offsetMin >> 8), // bytes 13-14: zone offset in minutes
800
                byte(offsetMin),
801
        }
802
 
803
        return enc, nil
804
}
805
 
806
// GobDecode implements the gob.GobDecoder interface.
807
func (t *Time) GobDecode(buf []byte) error {
808
        if len(buf) == 0 {
809
                return errors.New("Time.GobDecode: no data")
810
        }
811
 
812
        if buf[0] != timeGobVersion {
813
                return errors.New("Time.GobDecode: unsupported version")
814
        }
815
 
816
        if len(buf) != /*version*/ 1+ /*sec*/ 8+ /*nsec*/ 4+ /*zone offset*/ 2 {
817
                return errors.New("Time.GobDecode: invalid length")
818
        }
819
 
820
        buf = buf[1:]
821
        t.sec = int64(buf[7]) | int64(buf[6])<<8 | int64(buf[5])<<16 | int64(buf[4])<<24 |
822
                int64(buf[3])<<32 | int64(buf[2])<<40 | int64(buf[1])<<48 | int64(buf[0])<<56
823
 
824
        buf = buf[8:]
825
        t.nsec = int32(buf[3]) | int32(buf[2])<<8 | int32(buf[1])<<16 | int32(buf[0])<<24
826
 
827
        buf = buf[4:]
828
        offset := int(int16(buf[1])|int16(buf[0])<<8) * 60
829
 
830
        if offset == -1*60 {
831
                t.loc = &utcLoc
832
        } else if _, localoff, _, _, _ := Local.lookup(t.sec + internalToUnix); offset == localoff {
833
                t.loc = Local
834
        } else {
835
                t.loc = FixedZone("", offset)
836
        }
837
 
838
        return nil
839
}
840
 
841
// MarshalJSON implements the json.Marshaler interface.
842
// Time is formatted as RFC3339.
843
func (t Time) MarshalJSON() ([]byte, error) {
844
        yearInt := t.Year()
845
        if yearInt < 0 || yearInt > 9999 {
846
                return nil, errors.New("Time.MarshalJSON: year outside of range [0,9999]")
847
        }
848
 
849
        // We need a four-digit year, but Format produces variable-width years.
850
        year := itoa(yearInt)
851
        year = "0000"[:4-len(year)] + year
852
 
853
        var formattedTime string
854
        if t.nsec == 0 {
855
                // RFC3339, no fractional second
856
                formattedTime = t.Format("-01-02T15:04:05Z07:00")
857
        } else {
858
                // RFC3339 with fractional second
859
                formattedTime = t.Format("-01-02T15:04:05.000000000Z07:00")
860
 
861
                // Trim trailing zeroes from fractional second.
862
                const nanoEnd = 24 // Index of last digit of fractional second
863
                var i int
864
                for i = nanoEnd; formattedTime[i] == '0'; i-- {
865
                        // Seek backwards until first significant digit is found.
866
                }
867
 
868
                formattedTime = formattedTime[:i+1] + formattedTime[nanoEnd+1:]
869
        }
870
 
871
        buf := make([]byte, 0, 1+len(year)+len(formattedTime)+1)
872
        buf = append(buf, '"')
873
        buf = append(buf, year...)
874
        buf = append(buf, formattedTime...)
875
        buf = append(buf, '"')
876
        return buf, nil
877
}
878
 
879
// UnmarshalJSON implements the json.Unmarshaler interface.
880
// Time is expected in RFC3339 format.
881
func (t *Time) UnmarshalJSON(data []byte) (err error) {
882
        *t, err = Parse("\""+RFC3339+"\"", string(data))
883
        // Fractional seconds are handled implicitly by Parse.
884
        return
885
}
886
 
887
// Unix returns the local Time corresponding to the given Unix time,
888
// sec seconds and nsec nanoseconds since January 1, 1970 UTC.
889
// It is valid to pass nsec outside the range [0, 999999999].
890
func Unix(sec int64, nsec int64) Time {
891
        if nsec < 0 || nsec >= 1e9 {
892
                n := nsec / 1e9
893
                sec += n
894
                nsec -= n * 1e9
895
                if nsec < 0 {
896
                        nsec += 1e9
897
                        sec--
898
                }
899
        }
900
        return Time{sec + unixToInternal, int32(nsec), Local}
901
}
902
 
903
func isLeap(year int) bool {
904
        return year%4 == 0 && (year%100 != 0 || year%400 == 0)
905
}
906
 
907
// norm returns nhi, nlo such that
908
//      hi * base + lo == nhi * base + nlo
909
//      0 <= nlo < base
910
func norm(hi, lo, base int) (nhi, nlo int) {
911
        if lo < 0 {
912
                n := (-lo-1)/base + 1
913
                hi -= n
914
                lo += n * base
915
        }
916
        if lo >= base {
917
                n := lo / base
918
                hi += n
919
                lo -= n * base
920
        }
921
        return hi, lo
922
}
923
 
924
// Date returns the Time corresponding to
925
//      yyyy-mm-dd hh:mm:ss + nsec nanoseconds
926
// in the appropriate zone for that time in the given location.
927
//
928
// The month, day, hour, min, sec, and nsec values may be outside
929
// their usual ranges and will be normalized during the conversion.
930
// For example, October 32 converts to November 1.
931
//
932
// A daylight savings time transition skips or repeats times.
933
// For example, in the United States, March 13, 2011 2:15am never occurred,
934
// while November 6, 2011 1:15am occurred twice.  In such cases, the
935
// choice of time zone, and therefore the time, is not well-defined.
936
// Date returns a time that is correct in one of the two zones involved
937
// in the transition, but it does not guarantee which.
938
//
939
// Date panics if loc is nil.
940
func Date(year int, month Month, day, hour, min, sec, nsec int, loc *Location) Time {
941
        if loc == nil {
942
                panic("time: missing Location in call to Date")
943
        }
944
 
945
        // Normalize month, overflowing into year.
946
        m := int(month) - 1
947
        year, m = norm(year, m, 12)
948
        month = Month(m) + 1
949
 
950
        // Normalize nsec, sec, min, hour, overflowing into day.
951
        sec, nsec = norm(sec, nsec, 1e9)
952
        min, sec = norm(min, sec, 60)
953
        hour, min = norm(hour, min, 60)
954
        day, hour = norm(day, hour, 24)
955
 
956
        y := uint64(int64(year) - absoluteZeroYear)
957
 
958
        // Compute days since the absolute epoch.
959
 
960
        // Add in days from 400-year cycles.
961
        n := y / 400
962
        y -= 400 * n
963
        d := daysPer400Years * n
964
 
965
        // Add in 100-year cycles.
966
        n = y / 100
967
        y -= 100 * n
968
        d += daysPer100Years * n
969
 
970
        // Add in 4-year cycles.
971
        n = y / 4
972
        y -= 4 * n
973
        d += daysPer4Years * n
974
 
975
        // Add in non-leap years.
976
        n = y
977
        d += 365 * n
978
 
979
        // Add in days before this month.
980
        d += uint64(daysBefore[month-1])
981
        if isLeap(year) && month >= March {
982
                d++ // February 29
983
        }
984
 
985
        // Add in days before today.
986
        d += uint64(day - 1)
987
 
988
        // Add in time elapsed today.
989
        abs := d * secondsPerDay
990
        abs += uint64(hour*secondsPerHour + min*secondsPerMinute + sec)
991
 
992
        unix := int64(abs) + (absoluteToInternal + internalToUnix)
993
 
994
        // Look for zone offset for t, so we can adjust to UTC.
995
        // The lookup function expects UTC, so we pass t in the
996
        // hope that it will not be too close to a zone transition,
997
        // and then adjust if it is.
998
        _, offset, _, start, end := loc.lookup(unix)
999
        if offset != 0 {
1000
                switch utc := unix - int64(offset); {
1001
                case utc < start:
1002
                        _, offset, _, _, _ = loc.lookup(start - 1)
1003
                case utc >= end:
1004
                        _, offset, _, _, _ = loc.lookup(end)
1005
                }
1006
                unix -= int64(offset)
1007
        }
1008
 
1009
        return Time{unix + unixToInternal, int32(nsec), loc}
1010
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.