1 |
747 |
jeremybenn |
// Copyright 2011 The Go Authors. All rights reserved.
|
2 |
|
|
// Use of this source code is governed by a BSD-style
|
3 |
|
|
// license that can be found in the LICENSE file.
|
4 |
|
|
|
5 |
|
|
// CPU profiling.
|
6 |
|
|
// Based on algorithms and data structures used in
|
7 |
|
|
// http://code.google.com/p/google-perftools/.
|
8 |
|
|
//
|
9 |
|
|
// The main difference between this code and the google-perftools
|
10 |
|
|
// code is that this code is written to allow copying the profile data
|
11 |
|
|
// to an arbitrary io.Writer, while the google-perftools code always
|
12 |
|
|
// writes to an operating system file.
|
13 |
|
|
//
|
14 |
|
|
// The signal handler for the profiling clock tick adds a new stack trace
|
15 |
|
|
// to a hash table tracking counts for recent traces. Most clock ticks
|
16 |
|
|
// hit in the cache. In the event of a cache miss, an entry must be
|
17 |
|
|
// evicted from the hash table, copied to a log that will eventually be
|
18 |
|
|
// written as profile data. The google-perftools code flushed the
|
19 |
|
|
// log itself during the signal handler. This code cannot do that, because
|
20 |
|
|
// the io.Writer might block or need system calls or locks that are not
|
21 |
|
|
// safe to use from within the signal handler. Instead, we split the log
|
22 |
|
|
// into two halves and let the signal handler fill one half while a goroutine
|
23 |
|
|
// is writing out the other half. When the signal handler fills its half, it
|
24 |
|
|
// offers to swap with the goroutine. If the writer is not done with its half,
|
25 |
|
|
// we lose the stack trace for this clock tick (and record that loss).
|
26 |
|
|
// The goroutine interacts with the signal handler by calling getprofile() to
|
27 |
|
|
// get the next log piece to write, implicitly handing back the last log
|
28 |
|
|
// piece it obtained.
|
29 |
|
|
//
|
30 |
|
|
// The state of this dance between the signal handler and the goroutine
|
31 |
|
|
// is encoded in the Profile.handoff field. If handoff == 0, then the goroutine
|
32 |
|
|
// is not using either log half and is waiting (or will soon be waiting) for
|
33 |
|
|
// a new piece by calling notesleep(&p->wait). If the signal handler
|
34 |
|
|
// changes handoff from 0 to non-zero, it must call notewakeup(&p->wait)
|
35 |
|
|
// to wake the goroutine. The value indicates the number of entries in the
|
36 |
|
|
// log half being handed off. The goroutine leaves the non-zero value in
|
37 |
|
|
// place until it has finished processing the log half and then flips the number
|
38 |
|
|
// back to zero. Setting the high bit in handoff means that the profiling is over,
|
39 |
|
|
// and the goroutine is now in charge of flushing the data left in the hash table
|
40 |
|
|
// to the log and returning that data.
|
41 |
|
|
//
|
42 |
|
|
// The handoff field is manipulated using atomic operations.
|
43 |
|
|
// For the most part, the manipulation of handoff is orderly: if handoff == 0
|
44 |
|
|
// then the signal handler owns it and can change it to non-zero.
|
45 |
|
|
// If handoff != 0 then the goroutine owns it and can change it to zero.
|
46 |
|
|
// If that were the end of the story then we would not need to manipulate
|
47 |
|
|
// handoff using atomic operations. The operations are needed, however,
|
48 |
|
|
// in order to let the log closer set the high bit to indicate "EOF" safely
|
49 |
|
|
// in the situation when normally the goroutine "owns" handoff.
|
50 |
|
|
|
51 |
|
|
#include "runtime.h"
|
52 |
|
|
#include "arch.h"
|
53 |
|
|
#include "malloc.h"
|
54 |
|
|
|
55 |
|
|
#include "array.h"
|
56 |
|
|
typedef struct __go_open_array Slice;
|
57 |
|
|
#define array __values
|
58 |
|
|
#define len __count
|
59 |
|
|
#define cap __capacity
|
60 |
|
|
|
61 |
|
|
enum
|
62 |
|
|
{
|
63 |
|
|
HashSize = 1<<10,
|
64 |
|
|
LogSize = 1<<17,
|
65 |
|
|
Assoc = 4,
|
66 |
|
|
MaxStack = 64,
|
67 |
|
|
};
|
68 |
|
|
|
69 |
|
|
typedef struct Profile Profile;
|
70 |
|
|
typedef struct Bucket Bucket;
|
71 |
|
|
typedef struct Entry Entry;
|
72 |
|
|
|
73 |
|
|
struct Entry {
|
74 |
|
|
uintptr count;
|
75 |
|
|
uintptr depth;
|
76 |
|
|
uintptr stack[MaxStack];
|
77 |
|
|
};
|
78 |
|
|
|
79 |
|
|
struct Bucket {
|
80 |
|
|
Entry entry[Assoc];
|
81 |
|
|
};
|
82 |
|
|
|
83 |
|
|
struct Profile {
|
84 |
|
|
bool on; // profiling is on
|
85 |
|
|
Note wait; // goroutine waits here
|
86 |
|
|
uintptr count; // tick count
|
87 |
|
|
uintptr evicts; // eviction count
|
88 |
|
|
uintptr lost; // lost ticks that need to be logged
|
89 |
|
|
uintptr totallost; // total lost ticks
|
90 |
|
|
|
91 |
|
|
// Active recent stack traces.
|
92 |
|
|
Bucket hash[HashSize];
|
93 |
|
|
|
94 |
|
|
// Log of traces evicted from hash.
|
95 |
|
|
// Signal handler has filled log[toggle][:nlog].
|
96 |
|
|
// Goroutine is writing log[1-toggle][:handoff].
|
97 |
|
|
uintptr log[2][LogSize/2];
|
98 |
|
|
uintptr nlog;
|
99 |
|
|
int32 toggle;
|
100 |
|
|
uint32 handoff;
|
101 |
|
|
|
102 |
|
|
// Writer state.
|
103 |
|
|
// Writer maintains its own toggle to avoid races
|
104 |
|
|
// looking at signal handler's toggle.
|
105 |
|
|
uint32 wtoggle;
|
106 |
|
|
bool wholding; // holding & need to release a log half
|
107 |
|
|
bool flushing; // flushing hash table - profile is over
|
108 |
|
|
};
|
109 |
|
|
|
110 |
|
|
static Lock lk;
|
111 |
|
|
static Profile *prof;
|
112 |
|
|
|
113 |
|
|
static void tick(uintptr*, int32);
|
114 |
|
|
static void add(Profile*, uintptr*, int32);
|
115 |
|
|
static bool evict(Profile*, Entry*);
|
116 |
|
|
static bool flushlog(Profile*);
|
117 |
|
|
|
118 |
|
|
// LostProfileData is a no-op function used in profiles
|
119 |
|
|
// to mark the number of profiling stack traces that were
|
120 |
|
|
// discarded due to slow data writers.
|
121 |
|
|
static void LostProfileData(void) {
|
122 |
|
|
}
|
123 |
|
|
|
124 |
|
|
extern void runtime_SetCPUProfileRate(int32)
|
125 |
|
|
__asm__("libgo_runtime.runtime.SetCPUProfileRate");
|
126 |
|
|
|
127 |
|
|
// SetCPUProfileRate sets the CPU profiling rate.
|
128 |
|
|
// The user documentation is in debug.go.
|
129 |
|
|
void
|
130 |
|
|
runtime_SetCPUProfileRate(int32 hz)
|
131 |
|
|
{
|
132 |
|
|
uintptr *p;
|
133 |
|
|
uintptr n;
|
134 |
|
|
|
135 |
|
|
// Clamp hz to something reasonable.
|
136 |
|
|
if(hz < 0)
|
137 |
|
|
hz = 0;
|
138 |
|
|
if(hz > 1000000)
|
139 |
|
|
hz = 1000000;
|
140 |
|
|
|
141 |
|
|
runtime_lock(&lk);
|
142 |
|
|
if(hz > 0) {
|
143 |
|
|
if(prof == nil) {
|
144 |
|
|
prof = runtime_SysAlloc(sizeof *prof);
|
145 |
|
|
if(prof == nil) {
|
146 |
|
|
runtime_printf("runtime: cpu profiling cannot allocate memory\n");
|
147 |
|
|
runtime_unlock(&lk);
|
148 |
|
|
return;
|
149 |
|
|
}
|
150 |
|
|
}
|
151 |
|
|
if(prof->on || prof->handoff != 0) {
|
152 |
|
|
runtime_printf("runtime: cannot set cpu profile rate until previous profile has finished.\n");
|
153 |
|
|
runtime_unlock(&lk);
|
154 |
|
|
return;
|
155 |
|
|
}
|
156 |
|
|
|
157 |
|
|
prof->on = true;
|
158 |
|
|
p = prof->log[0];
|
159 |
|
|
// pprof binary header format.
|
160 |
|
|
// http://code.google.com/p/google-perftools/source/browse/trunk/src/profiledata.cc#117
|
161 |
|
|
*p++ = 0; // count for header
|
162 |
|
|
*p++ = 3; // depth for header
|
163 |
|
|
*p++ = 0; // version number
|
164 |
|
|
*p++ = 1000000 / hz; // period (microseconds)
|
165 |
|
|
*p++ = 0;
|
166 |
|
|
prof->nlog = p - prof->log[0];
|
167 |
|
|
prof->toggle = 0;
|
168 |
|
|
prof->wholding = false;
|
169 |
|
|
prof->wtoggle = 0;
|
170 |
|
|
prof->flushing = false;
|
171 |
|
|
runtime_noteclear(&prof->wait);
|
172 |
|
|
|
173 |
|
|
runtime_setcpuprofilerate(tick, hz);
|
174 |
|
|
} else if(prof->on) {
|
175 |
|
|
runtime_setcpuprofilerate(nil, 0);
|
176 |
|
|
prof->on = false;
|
177 |
|
|
|
178 |
|
|
// Now add is not running anymore, and getprofile owns the entire log.
|
179 |
|
|
// Set the high bit in prof->handoff to tell getprofile.
|
180 |
|
|
for(;;) {
|
181 |
|
|
n = prof->handoff;
|
182 |
|
|
if(n&0x80000000)
|
183 |
|
|
runtime_printf("runtime: setcpuprofile(off) twice");
|
184 |
|
|
if(runtime_cas(&prof->handoff, n, n|0x80000000))
|
185 |
|
|
break;
|
186 |
|
|
}
|
187 |
|
|
if(n == 0) {
|
188 |
|
|
// we did the transition from 0 -> nonzero so we wake getprofile
|
189 |
|
|
runtime_notewakeup(&prof->wait);
|
190 |
|
|
}
|
191 |
|
|
}
|
192 |
|
|
runtime_unlock(&lk);
|
193 |
|
|
}
|
194 |
|
|
|
195 |
|
|
static void
|
196 |
|
|
tick(uintptr *pc, int32 n)
|
197 |
|
|
{
|
198 |
|
|
add(prof, pc, n);
|
199 |
|
|
}
|
200 |
|
|
|
201 |
|
|
// add adds the stack trace to the profile.
|
202 |
|
|
// It is called from signal handlers and other limited environments
|
203 |
|
|
// and cannot allocate memory or acquire locks that might be
|
204 |
|
|
// held at the time of the signal, nor can it use substantial amounts
|
205 |
|
|
// of stack. It is allowed to call evict.
|
206 |
|
|
static void
|
207 |
|
|
add(Profile *p, uintptr *pc, int32 n)
|
208 |
|
|
{
|
209 |
|
|
int32 i, j;
|
210 |
|
|
uintptr h, x;
|
211 |
|
|
Bucket *b;
|
212 |
|
|
Entry *e;
|
213 |
|
|
|
214 |
|
|
if(n > MaxStack)
|
215 |
|
|
n = MaxStack;
|
216 |
|
|
|
217 |
|
|
// Compute hash.
|
218 |
|
|
h = 0;
|
219 |
|
|
for(i=0; i<n; i++) {
|
220 |
|
|
h = h<<8 | (h>>(8*(sizeof(h)-1)));
|
221 |
|
|
x = pc[i];
|
222 |
|
|
h += x*31 + x*7 + x*3;
|
223 |
|
|
}
|
224 |
|
|
p->count++;
|
225 |
|
|
|
226 |
|
|
// Add to entry count if already present in table.
|
227 |
|
|
b = &p->hash[h%HashSize];
|
228 |
|
|
for(i=0; i<Assoc; i++) {
|
229 |
|
|
e = &b->entry[i];
|
230 |
|
|
if(e->depth != (uintptr)n)
|
231 |
|
|
continue;
|
232 |
|
|
for(j=0; j<n; j++)
|
233 |
|
|
if(e->stack[j] != pc[j])
|
234 |
|
|
goto ContinueAssoc;
|
235 |
|
|
e->count++;
|
236 |
|
|
return;
|
237 |
|
|
ContinueAssoc:;
|
238 |
|
|
}
|
239 |
|
|
|
240 |
|
|
// Evict entry with smallest count.
|
241 |
|
|
e = &b->entry[0];
|
242 |
|
|
for(i=1; i<Assoc; i++)
|
243 |
|
|
if(b->entry[i].count < e->count)
|
244 |
|
|
e = &b->entry[i];
|
245 |
|
|
if(e->count > 0) {
|
246 |
|
|
if(!evict(p, e)) {
|
247 |
|
|
// Could not evict entry. Record lost stack.
|
248 |
|
|
p->lost++;
|
249 |
|
|
p->totallost++;
|
250 |
|
|
return;
|
251 |
|
|
}
|
252 |
|
|
p->evicts++;
|
253 |
|
|
}
|
254 |
|
|
|
255 |
|
|
// Reuse the newly evicted entry.
|
256 |
|
|
e->depth = n;
|
257 |
|
|
e->count = 1;
|
258 |
|
|
for(i=0; i<n; i++)
|
259 |
|
|
e->stack[i] = pc[i];
|
260 |
|
|
}
|
261 |
|
|
|
262 |
|
|
// evict copies the given entry's data into the log, so that
|
263 |
|
|
// the entry can be reused. evict is called from add, which
|
264 |
|
|
// is called from the profiling signal handler, so it must not
|
265 |
|
|
// allocate memory or block. It is safe to call flushLog.
|
266 |
|
|
// evict returns true if the entry was copied to the log,
|
267 |
|
|
// false if there was no room available.
|
268 |
|
|
static bool
|
269 |
|
|
evict(Profile *p, Entry *e)
|
270 |
|
|
{
|
271 |
|
|
int32 i, d, nslot;
|
272 |
|
|
uintptr *log, *q;
|
273 |
|
|
|
274 |
|
|
d = e->depth;
|
275 |
|
|
nslot = d+2;
|
276 |
|
|
log = p->log[p->toggle];
|
277 |
|
|
if(p->nlog+nslot > nelem(p->log[0])) {
|
278 |
|
|
if(!flushlog(p))
|
279 |
|
|
return false;
|
280 |
|
|
log = p->log[p->toggle];
|
281 |
|
|
}
|
282 |
|
|
|
283 |
|
|
q = log+p->nlog;
|
284 |
|
|
*q++ = e->count;
|
285 |
|
|
*q++ = d;
|
286 |
|
|
for(i=0; i<d; i++)
|
287 |
|
|
*q++ = e->stack[i];
|
288 |
|
|
p->nlog = q - log;
|
289 |
|
|
e->count = 0;
|
290 |
|
|
return true;
|
291 |
|
|
}
|
292 |
|
|
|
293 |
|
|
// flushlog tries to flush the current log and switch to the other one.
|
294 |
|
|
// flushlog is called from evict, called from add, called from the signal handler,
|
295 |
|
|
// so it cannot allocate memory or block. It can try to swap logs with
|
296 |
|
|
// the writing goroutine, as explained in the comment at the top of this file.
|
297 |
|
|
static bool
|
298 |
|
|
flushlog(Profile *p)
|
299 |
|
|
{
|
300 |
|
|
uintptr *log, *q;
|
301 |
|
|
|
302 |
|
|
if(!runtime_cas(&p->handoff, 0, p->nlog))
|
303 |
|
|
return false;
|
304 |
|
|
runtime_notewakeup(&p->wait);
|
305 |
|
|
|
306 |
|
|
p->toggle = 1 - p->toggle;
|
307 |
|
|
log = p->log[p->toggle];
|
308 |
|
|
q = log;
|
309 |
|
|
if(p->lost > 0) {
|
310 |
|
|
*q++ = p->lost;
|
311 |
|
|
*q++ = 1;
|
312 |
|
|
*q++ = (uintptr)LostProfileData;
|
313 |
|
|
}
|
314 |
|
|
p->nlog = q - log;
|
315 |
|
|
return true;
|
316 |
|
|
}
|
317 |
|
|
|
318 |
|
|
// getprofile blocks until the next block of profiling data is available
|
319 |
|
|
// and returns it as a []byte. It is called from the writing goroutine.
|
320 |
|
|
Slice
|
321 |
|
|
getprofile(Profile *p)
|
322 |
|
|
{
|
323 |
|
|
uint32 i, j, n;
|
324 |
|
|
Slice ret;
|
325 |
|
|
Bucket *b;
|
326 |
|
|
Entry *e;
|
327 |
|
|
|
328 |
|
|
ret.array = nil;
|
329 |
|
|
ret.len = 0;
|
330 |
|
|
ret.cap = 0;
|
331 |
|
|
|
332 |
|
|
if(p == nil)
|
333 |
|
|
return ret;
|
334 |
|
|
|
335 |
|
|
if(p->wholding) {
|
336 |
|
|
// Release previous log to signal handling side.
|
337 |
|
|
// Loop because we are racing against setprofile(off).
|
338 |
|
|
for(;;) {
|
339 |
|
|
n = p->handoff;
|
340 |
|
|
if(n == 0) {
|
341 |
|
|
runtime_printf("runtime: phase error during cpu profile handoff\n");
|
342 |
|
|
return ret;
|
343 |
|
|
}
|
344 |
|
|
if(n & 0x80000000) {
|
345 |
|
|
p->wtoggle = 1 - p->wtoggle;
|
346 |
|
|
p->wholding = false;
|
347 |
|
|
p->flushing = true;
|
348 |
|
|
goto flush;
|
349 |
|
|
}
|
350 |
|
|
if(runtime_cas(&p->handoff, n, 0))
|
351 |
|
|
break;
|
352 |
|
|
}
|
353 |
|
|
p->wtoggle = 1 - p->wtoggle;
|
354 |
|
|
p->wholding = false;
|
355 |
|
|
}
|
356 |
|
|
|
357 |
|
|
if(p->flushing)
|
358 |
|
|
goto flush;
|
359 |
|
|
|
360 |
|
|
if(!p->on && p->handoff == 0)
|
361 |
|
|
return ret;
|
362 |
|
|
|
363 |
|
|
// Wait for new log.
|
364 |
|
|
runtime_entersyscall();
|
365 |
|
|
runtime_notesleep(&p->wait);
|
366 |
|
|
runtime_exitsyscall();
|
367 |
|
|
runtime_noteclear(&p->wait);
|
368 |
|
|
|
369 |
|
|
n = p->handoff;
|
370 |
|
|
if(n == 0) {
|
371 |
|
|
runtime_printf("runtime: phase error during cpu profile wait\n");
|
372 |
|
|
return ret;
|
373 |
|
|
}
|
374 |
|
|
if(n == 0x80000000) {
|
375 |
|
|
p->flushing = true;
|
376 |
|
|
goto flush;
|
377 |
|
|
}
|
378 |
|
|
n &= ~0x80000000;
|
379 |
|
|
|
380 |
|
|
// Return new log to caller.
|
381 |
|
|
p->wholding = true;
|
382 |
|
|
|
383 |
|
|
ret.array = (byte*)p->log[p->wtoggle];
|
384 |
|
|
ret.len = n*sizeof(uintptr);
|
385 |
|
|
ret.cap = ret.len;
|
386 |
|
|
return ret;
|
387 |
|
|
|
388 |
|
|
flush:
|
389 |
|
|
// In flush mode.
|
390 |
|
|
// Add is no longer being called. We own the log.
|
391 |
|
|
// Also, p->handoff is non-zero, so flushlog will return false.
|
392 |
|
|
// Evict the hash table into the log and return it.
|
393 |
|
|
for(i=0; i<HashSize; i++) {
|
394 |
|
|
b = &p->hash[i];
|
395 |
|
|
for(j=0; j<Assoc; j++) {
|
396 |
|
|
e = &b->entry[j];
|
397 |
|
|
if(e->count > 0 && !evict(p, e)) {
|
398 |
|
|
// Filled the log. Stop the loop and return what we've got.
|
399 |
|
|
goto breakflush;
|
400 |
|
|
}
|
401 |
|
|
}
|
402 |
|
|
}
|
403 |
|
|
breakflush:
|
404 |
|
|
|
405 |
|
|
// Return pending log data.
|
406 |
|
|
if(p->nlog > 0) {
|
407 |
|
|
// Note that we're using toggle now, not wtoggle,
|
408 |
|
|
// because we're working on the log directly.
|
409 |
|
|
ret.array = (byte*)p->log[p->toggle];
|
410 |
|
|
ret.len = p->nlog*sizeof(uintptr);
|
411 |
|
|
ret.cap = ret.len;
|
412 |
|
|
p->nlog = 0;
|
413 |
|
|
return ret;
|
414 |
|
|
}
|
415 |
|
|
|
416 |
|
|
// Made it through the table without finding anything to log.
|
417 |
|
|
// Finally done. Clean up and return nil.
|
418 |
|
|
p->flushing = false;
|
419 |
|
|
if(!runtime_cas(&p->handoff, p->handoff, 0))
|
420 |
|
|
runtime_printf("runtime: profile flush racing with something\n");
|
421 |
|
|
return ret; // set to nil at top of function
|
422 |
|
|
}
|
423 |
|
|
|
424 |
|
|
extern Slice runtime_CPUProfile(void)
|
425 |
|
|
__asm__("libgo_runtime.runtime.CPUProfile");
|
426 |
|
|
|
427 |
|
|
// CPUProfile returns the next cpu profile block as a []byte.
|
428 |
|
|
// The user documentation is in debug.go.
|
429 |
|
|
Slice
|
430 |
|
|
runtime_CPUProfile(void)
|
431 |
|
|
{
|
432 |
|
|
return getprofile(prof);
|
433 |
|
|
}
|