1 |
747 |
jeremybenn |
// Copyright 2009 The Go Authors. All rights reserved.
|
2 |
|
|
// Use of this source code is governed by a BSD-style
|
3 |
|
|
// license that can be found in the LICENSE file.
|
4 |
|
|
|
5 |
|
|
// See malloc.h for overview.
|
6 |
|
|
//
|
7 |
|
|
// TODO(rsc): double-check stats.
|
8 |
|
|
|
9 |
|
|
package runtime
|
10 |
|
|
#include
|
11 |
|
|
#include
|
12 |
|
|
#include
|
13 |
|
|
#include "go-alloc.h"
|
14 |
|
|
#include "runtime.h"
|
15 |
|
|
#include "arch.h"
|
16 |
|
|
#include "malloc.h"
|
17 |
|
|
#include "go-string.h"
|
18 |
|
|
#include "interface.h"
|
19 |
|
|
#include "go-type.h"
|
20 |
|
|
|
21 |
|
|
MHeap runtime_mheap;
|
22 |
|
|
extern MStats mstats; // defined in extern.go
|
23 |
|
|
|
24 |
|
|
extern volatile int32 runtime_MemProfileRate
|
25 |
|
|
__asm__ ("libgo_runtime.runtime.MemProfileRate");
|
26 |
|
|
|
27 |
|
|
// Allocate an object of at least size bytes.
|
28 |
|
|
// Small objects are allocated from the per-thread cache's free lists.
|
29 |
|
|
// Large objects (> 32 kB) are allocated straight from the heap.
|
30 |
|
|
void*
|
31 |
|
|
runtime_mallocgc(uintptr size, uint32 flag, int32 dogc, int32 zeroed)
|
32 |
|
|
{
|
33 |
|
|
M *m;
|
34 |
|
|
G *g;
|
35 |
|
|
int32 sizeclass, rate;
|
36 |
|
|
MCache *c;
|
37 |
|
|
uintptr npages;
|
38 |
|
|
MSpan *s;
|
39 |
|
|
void *v;
|
40 |
|
|
|
41 |
|
|
m = runtime_m();
|
42 |
|
|
g = runtime_g();
|
43 |
|
|
if(g->status == Gsyscall)
|
44 |
|
|
dogc = 0;
|
45 |
|
|
if(runtime_gcwaiting && g != m->g0 && m->locks == 0 && g->status != Gsyscall) {
|
46 |
|
|
runtime_gosched();
|
47 |
|
|
m = runtime_m();
|
48 |
|
|
}
|
49 |
|
|
if(m->mallocing)
|
50 |
|
|
runtime_throw("malloc/free - deadlock");
|
51 |
|
|
m->mallocing = 1;
|
52 |
|
|
if(size == 0)
|
53 |
|
|
size = 1;
|
54 |
|
|
|
55 |
|
|
c = m->mcache;
|
56 |
|
|
c->local_nmalloc++;
|
57 |
|
|
if(size <= MaxSmallSize) {
|
58 |
|
|
// Allocate from mcache free lists.
|
59 |
|
|
sizeclass = runtime_SizeToClass(size);
|
60 |
|
|
size = runtime_class_to_size[sizeclass];
|
61 |
|
|
v = runtime_MCache_Alloc(c, sizeclass, size, zeroed);
|
62 |
|
|
if(v == nil)
|
63 |
|
|
runtime_throw("out of memory");
|
64 |
|
|
c->local_alloc += size;
|
65 |
|
|
c->local_total_alloc += size;
|
66 |
|
|
c->local_by_size[sizeclass].nmalloc++;
|
67 |
|
|
} else {
|
68 |
|
|
// TODO(rsc): Report tracebacks for very large allocations.
|
69 |
|
|
|
70 |
|
|
// Allocate directly from heap.
|
71 |
|
|
npages = size >> PageShift;
|
72 |
|
|
if((size & PageMask) != 0)
|
73 |
|
|
npages++;
|
74 |
|
|
s = runtime_MHeap_Alloc(&runtime_mheap, npages, 0, !(flag & FlagNoGC));
|
75 |
|
|
if(s == nil)
|
76 |
|
|
runtime_throw("out of memory");
|
77 |
|
|
size = npages<
|
78 |
|
|
c->local_alloc += size;
|
79 |
|
|
c->local_total_alloc += size;
|
80 |
|
|
v = (void*)(s->start << PageShift);
|
81 |
|
|
|
82 |
|
|
// setup for mark sweep
|
83 |
|
|
runtime_markspan(v, 0, 0, true);
|
84 |
|
|
}
|
85 |
|
|
if(!(flag & FlagNoGC))
|
86 |
|
|
runtime_markallocated(v, size, (flag&FlagNoPointers) != 0);
|
87 |
|
|
|
88 |
|
|
m->mallocing = 0;
|
89 |
|
|
|
90 |
|
|
if(!(flag & FlagNoProfiling) && (rate = runtime_MemProfileRate) > 0) {
|
91 |
|
|
if(size >= (uint32) rate)
|
92 |
|
|
goto profile;
|
93 |
|
|
if((uint32) m->mcache->next_sample > size)
|
94 |
|
|
m->mcache->next_sample -= size;
|
95 |
|
|
else {
|
96 |
|
|
// pick next profile time
|
97 |
|
|
// If you change this, also change allocmcache.
|
98 |
|
|
if(rate > 0x3fffffff) // make 2*rate not overflow
|
99 |
|
|
rate = 0x3fffffff;
|
100 |
|
|
m->mcache->next_sample = runtime_fastrand1() % (2*rate);
|
101 |
|
|
profile:
|
102 |
|
|
runtime_setblockspecial(v, true);
|
103 |
|
|
runtime_MProf_Malloc(v, size);
|
104 |
|
|
}
|
105 |
|
|
}
|
106 |
|
|
|
107 |
|
|
if(dogc && mstats.heap_alloc >= mstats.next_gc)
|
108 |
|
|
runtime_gc(0);
|
109 |
|
|
return v;
|
110 |
|
|
}
|
111 |
|
|
|
112 |
|
|
void*
|
113 |
|
|
__go_alloc(uintptr size)
|
114 |
|
|
{
|
115 |
|
|
return runtime_mallocgc(size, 0, 0, 1);
|
116 |
|
|
}
|
117 |
|
|
|
118 |
|
|
// Free the object whose base pointer is v.
|
119 |
|
|
void
|
120 |
|
|
__go_free(void *v)
|
121 |
|
|
{
|
122 |
|
|
M *m;
|
123 |
|
|
int32 sizeclass;
|
124 |
|
|
MSpan *s;
|
125 |
|
|
MCache *c;
|
126 |
|
|
uint32 prof;
|
127 |
|
|
uintptr size;
|
128 |
|
|
|
129 |
|
|
if(v == nil)
|
130 |
|
|
return;
|
131 |
|
|
|
132 |
|
|
// If you change this also change mgc0.c:/^sweep,
|
133 |
|
|
// which has a copy of the guts of free.
|
134 |
|
|
|
135 |
|
|
m = runtime_m();
|
136 |
|
|
if(m->mallocing)
|
137 |
|
|
runtime_throw("malloc/free - deadlock");
|
138 |
|
|
m->mallocing = 1;
|
139 |
|
|
|
140 |
|
|
if(!runtime_mlookup(v, nil, nil, &s)) {
|
141 |
|
|
// runtime_printf("free %p: not an allocated block\n", v);
|
142 |
|
|
runtime_throw("free runtime_mlookup");
|
143 |
|
|
}
|
144 |
|
|
prof = runtime_blockspecial(v);
|
145 |
|
|
|
146 |
|
|
// Find size class for v.
|
147 |
|
|
sizeclass = s->sizeclass;
|
148 |
|
|
c = m->mcache;
|
149 |
|
|
if(sizeclass == 0) {
|
150 |
|
|
// Large object.
|
151 |
|
|
size = s->npages<
|
152 |
|
|
*(uintptr*)(s->start<
|
153 |
|
|
// Must mark v freed before calling unmarkspan and MHeap_Free:
|
154 |
|
|
// they might coalesce v into other spans and change the bitmap further.
|
155 |
|
|
runtime_markfreed(v, size);
|
156 |
|
|
runtime_unmarkspan(v, 1<
|
157 |
|
|
runtime_MHeap_Free(&runtime_mheap, s, 1);
|
158 |
|
|
} else {
|
159 |
|
|
// Small object.
|
160 |
|
|
size = runtime_class_to_size[sizeclass];
|
161 |
|
|
if(size > sizeof(uintptr))
|
162 |
|
|
((uintptr*)v)[1] = 1; // mark as "needs to be zeroed"
|
163 |
|
|
// Must mark v freed before calling MCache_Free:
|
164 |
|
|
// it might coalesce v and other blocks into a bigger span
|
165 |
|
|
// and change the bitmap further.
|
166 |
|
|
runtime_markfreed(v, size);
|
167 |
|
|
c->local_by_size[sizeclass].nfree++;
|
168 |
|
|
runtime_MCache_Free(c, v, sizeclass, size);
|
169 |
|
|
}
|
170 |
|
|
c->local_alloc -= size;
|
171 |
|
|
if(prof)
|
172 |
|
|
runtime_MProf_Free(v, size);
|
173 |
|
|
m->mallocing = 0;
|
174 |
|
|
}
|
175 |
|
|
|
176 |
|
|
int32
|
177 |
|
|
runtime_mlookup(void *v, byte **base, uintptr *size, MSpan **sp)
|
178 |
|
|
{
|
179 |
|
|
uintptr n, i;
|
180 |
|
|
byte *p;
|
181 |
|
|
MSpan *s;
|
182 |
|
|
|
183 |
|
|
runtime_m()->mcache->local_nlookup++;
|
184 |
|
|
s = runtime_MHeap_LookupMaybe(&runtime_mheap, v);
|
185 |
|
|
if(sp)
|
186 |
|
|
*sp = s;
|
187 |
|
|
if(s == nil) {
|
188 |
|
|
runtime_checkfreed(v, 1);
|
189 |
|
|
if(base)
|
190 |
|
|
*base = nil;
|
191 |
|
|
if(size)
|
192 |
|
|
*size = 0;
|
193 |
|
|
return 0;
|
194 |
|
|
}
|
195 |
|
|
|
196 |
|
|
p = (byte*)((uintptr)s->start<
|
197 |
|
|
if(s->sizeclass == 0) {
|
198 |
|
|
// Large object.
|
199 |
|
|
if(base)
|
200 |
|
|
*base = p;
|
201 |
|
|
if(size)
|
202 |
|
|
*size = s->npages<
|
203 |
|
|
return 1;
|
204 |
|
|
}
|
205 |
|
|
|
206 |
|
|
if((byte*)v >= (byte*)s->limit) {
|
207 |
|
|
// pointers past the last block do not count as pointers.
|
208 |
|
|
return 0;
|
209 |
|
|
}
|
210 |
|
|
|
211 |
|
|
n = runtime_class_to_size[s->sizeclass];
|
212 |
|
|
if(base) {
|
213 |
|
|
i = ((byte*)v - p)/n;
|
214 |
|
|
*base = p + i*n;
|
215 |
|
|
}
|
216 |
|
|
if(size)
|
217 |
|
|
*size = n;
|
218 |
|
|
|
219 |
|
|
return 1;
|
220 |
|
|
}
|
221 |
|
|
|
222 |
|
|
MCache*
|
223 |
|
|
runtime_allocmcache(void)
|
224 |
|
|
{
|
225 |
|
|
int32 rate;
|
226 |
|
|
MCache *c;
|
227 |
|
|
|
228 |
|
|
runtime_lock(&runtime_mheap);
|
229 |
|
|
c = runtime_FixAlloc_Alloc(&runtime_mheap.cachealloc);
|
230 |
|
|
mstats.mcache_inuse = runtime_mheap.cachealloc.inuse;
|
231 |
|
|
mstats.mcache_sys = runtime_mheap.cachealloc.sys;
|
232 |
|
|
runtime_unlock(&runtime_mheap);
|
233 |
|
|
|
234 |
|
|
// Set first allocation sample size.
|
235 |
|
|
rate = runtime_MemProfileRate;
|
236 |
|
|
if(rate > 0x3fffffff) // make 2*rate not overflow
|
237 |
|
|
rate = 0x3fffffff;
|
238 |
|
|
if(rate != 0)
|
239 |
|
|
c->next_sample = runtime_fastrand1() % (2*rate);
|
240 |
|
|
|
241 |
|
|
return c;
|
242 |
|
|
}
|
243 |
|
|
|
244 |
|
|
void
|
245 |
|
|
runtime_purgecachedstats(M* m)
|
246 |
|
|
{
|
247 |
|
|
MCache *c;
|
248 |
|
|
|
249 |
|
|
// Protected by either heap or GC lock.
|
250 |
|
|
c = m->mcache;
|
251 |
|
|
mstats.heap_alloc += c->local_cachealloc;
|
252 |
|
|
c->local_cachealloc = 0;
|
253 |
|
|
mstats.heap_objects += c->local_objects;
|
254 |
|
|
c->local_objects = 0;
|
255 |
|
|
mstats.nmalloc += c->local_nmalloc;
|
256 |
|
|
c->local_nmalloc = 0;
|
257 |
|
|
mstats.nfree += c->local_nfree;
|
258 |
|
|
c->local_nfree = 0;
|
259 |
|
|
mstats.nlookup += c->local_nlookup;
|
260 |
|
|
c->local_nlookup = 0;
|
261 |
|
|
mstats.alloc += c->local_alloc;
|
262 |
|
|
c->local_alloc= 0;
|
263 |
|
|
mstats.total_alloc += c->local_total_alloc;
|
264 |
|
|
c->local_total_alloc= 0;
|
265 |
|
|
}
|
266 |
|
|
|
267 |
|
|
extern uintptr runtime_sizeof_C_MStats
|
268 |
|
|
__asm__ ("libgo_runtime.runtime.Sizeof_C_MStats");
|
269 |
|
|
|
270 |
|
|
#define MaxArena32 (2U<<30)
|
271 |
|
|
|
272 |
|
|
void
|
273 |
|
|
runtime_mallocinit(void)
|
274 |
|
|
{
|
275 |
|
|
byte *p;
|
276 |
|
|
uintptr arena_size, bitmap_size;
|
277 |
|
|
extern byte end[];
|
278 |
|
|
byte *want;
|
279 |
|
|
|
280 |
|
|
runtime_sizeof_C_MStats = sizeof(MStats);
|
281 |
|
|
|
282 |
|
|
runtime_InitSizes();
|
283 |
|
|
|
284 |
|
|
// Set up the allocation arena, a contiguous area of memory where
|
285 |
|
|
// allocated data will be found. The arena begins with a bitmap large
|
286 |
|
|
// enough to hold 4 bits per allocated word.
|
287 |
|
|
if(sizeof(void*) == 8) {
|
288 |
|
|
// On a 64-bit machine, allocate from a single contiguous reservation.
|
289 |
|
|
// 16 GB should be big enough for now.
|
290 |
|
|
//
|
291 |
|
|
// The code will work with the reservation at any address, but ask
|
292 |
|
|
// SysReserve to use 0x000000f800000000 if possible.
|
293 |
|
|
// Allocating a 16 GB region takes away 36 bits, and the amd64
|
294 |
|
|
// doesn't let us choose the top 17 bits, so that leaves the 11 bits
|
295 |
|
|
// in the middle of 0x00f8 for us to choose. Choosing 0x00f8 means
|
296 |
|
|
// that the valid memory addresses will begin 0x00f8, 0x00f9, 0x00fa, 0x00fb.
|
297 |
|
|
// None of the bytes f8 f9 fa fb can appear in valid UTF-8, and
|
298 |
|
|
// they are otherwise as far from ff (likely a common byte) as possible.
|
299 |
|
|
// Choosing 0x00 for the leading 6 bits was more arbitrary, but it
|
300 |
|
|
// is not a common ASCII code point either. Using 0x11f8 instead
|
301 |
|
|
// caused out of memory errors on OS X during thread allocations.
|
302 |
|
|
// These choices are both for debuggability and to reduce the
|
303 |
|
|
// odds of the conservative garbage collector not collecting memory
|
304 |
|
|
// because some non-pointer block of memory had a bit pattern
|
305 |
|
|
// that matched a memory address.
|
306 |
|
|
//
|
307 |
|
|
// Actually we reserve 17 GB (because the bitmap ends up being 1 GB)
|
308 |
|
|
// but it hardly matters: fc is not valid UTF-8 either, and we have to
|
309 |
|
|
// allocate 15 GB before we get that far.
|
310 |
|
|
arena_size = (uintptr)(16LL<<30);
|
311 |
|
|
bitmap_size = arena_size / (sizeof(void*)*8/4);
|
312 |
|
|
p = runtime_SysReserve((void*)(0x00f8ULL<<32), bitmap_size + arena_size);
|
313 |
|
|
if(p == nil)
|
314 |
|
|
runtime_throw("runtime: cannot reserve arena virtual address space");
|
315 |
|
|
} else {
|
316 |
|
|
// On a 32-bit machine, we can't typically get away
|
317 |
|
|
// with a giant virtual address space reservation.
|
318 |
|
|
// Instead we map the memory information bitmap
|
319 |
|
|
// immediately after the data segment, large enough
|
320 |
|
|
// to handle another 2GB of mappings (256 MB),
|
321 |
|
|
// along with a reservation for another 512 MB of memory.
|
322 |
|
|
// When that gets used up, we'll start asking the kernel
|
323 |
|
|
// for any memory anywhere and hope it's in the 2GB
|
324 |
|
|
// following the bitmap (presumably the executable begins
|
325 |
|
|
// near the bottom of memory, so we'll have to use up
|
326 |
|
|
// most of memory before the kernel resorts to giving out
|
327 |
|
|
// memory before the beginning of the text segment).
|
328 |
|
|
//
|
329 |
|
|
// Alternatively we could reserve 512 MB bitmap, enough
|
330 |
|
|
// for 4GB of mappings, and then accept any memory the
|
331 |
|
|
// kernel threw at us, but normally that's a waste of 512 MB
|
332 |
|
|
// of address space, which is probably too much in a 32-bit world.
|
333 |
|
|
bitmap_size = MaxArena32 / (sizeof(void*)*8/4);
|
334 |
|
|
arena_size = 512<<20;
|
335 |
|
|
|
336 |
|
|
// SysReserve treats the address we ask for, end, as a hint,
|
337 |
|
|
// not as an absolute requirement. If we ask for the end
|
338 |
|
|
// of the data segment but the operating system requires
|
339 |
|
|
// a little more space before we can start allocating, it will
|
340 |
|
|
// give out a slightly higher pointer. Except QEMU, which
|
341 |
|
|
// is buggy, as usual: it won't adjust the pointer upward.
|
342 |
|
|
// So adjust it upward a little bit ourselves: 1/4 MB to get
|
343 |
|
|
// away from the running binary image and then round up
|
344 |
|
|
// to a MB boundary.
|
345 |
|
|
want = (byte*)(((uintptr)end + (1<<18) + (1<<20) - 1)&~((1<<20)-1));
|
346 |
|
|
if(0xffffffff - (uintptr)want <= bitmap_size + arena_size)
|
347 |
|
|
want = 0;
|
348 |
|
|
p = runtime_SysReserve(want, bitmap_size + arena_size);
|
349 |
|
|
if(p == nil)
|
350 |
|
|
runtime_throw("runtime: cannot reserve arena virtual address space");
|
351 |
|
|
}
|
352 |
|
|
if((uintptr)p & (((uintptr)1<
|
353 |
|
|
runtime_throw("runtime: SysReserve returned unaligned address");
|
354 |
|
|
|
355 |
|
|
runtime_mheap.bitmap = p;
|
356 |
|
|
runtime_mheap.arena_start = p + bitmap_size;
|
357 |
|
|
runtime_mheap.arena_used = runtime_mheap.arena_start;
|
358 |
|
|
runtime_mheap.arena_end = runtime_mheap.arena_start + arena_size;
|
359 |
|
|
|
360 |
|
|
// Initialize the rest of the allocator.
|
361 |
|
|
runtime_MHeap_Init(&runtime_mheap, runtime_SysAlloc);
|
362 |
|
|
runtime_m()->mcache = runtime_allocmcache();
|
363 |
|
|
|
364 |
|
|
// See if it works.
|
365 |
|
|
runtime_free(runtime_malloc(1));
|
366 |
|
|
}
|
367 |
|
|
|
368 |
|
|
void*
|
369 |
|
|
runtime_MHeap_SysAlloc(MHeap *h, uintptr n)
|
370 |
|
|
{
|
371 |
|
|
byte *p;
|
372 |
|
|
|
373 |
|
|
if(n <= (uintptr)(h->arena_end - h->arena_used)) {
|
374 |
|
|
// Keep taking from our reservation.
|
375 |
|
|
p = h->arena_used;
|
376 |
|
|
runtime_SysMap(p, n);
|
377 |
|
|
h->arena_used += n;
|
378 |
|
|
runtime_MHeap_MapBits(h);
|
379 |
|
|
return p;
|
380 |
|
|
}
|
381 |
|
|
|
382 |
|
|
// On 64-bit, our reservation is all we have.
|
383 |
|
|
if(sizeof(void*) == 8)
|
384 |
|
|
return nil;
|
385 |
|
|
|
386 |
|
|
// On 32-bit, once the reservation is gone we can
|
387 |
|
|
// try to get memory at a location chosen by the OS
|
388 |
|
|
// and hope that it is in the range we allocated bitmap for.
|
389 |
|
|
p = runtime_SysAlloc(n);
|
390 |
|
|
if(p == nil)
|
391 |
|
|
return nil;
|
392 |
|
|
|
393 |
|
|
if(p < h->arena_start || (uintptr)(p+n - h->arena_start) >= MaxArena32) {
|
394 |
|
|
runtime_printf("runtime: memory allocated by OS not in usable range\n");
|
395 |
|
|
runtime_SysFree(p, n);
|
396 |
|
|
return nil;
|
397 |
|
|
}
|
398 |
|
|
|
399 |
|
|
if(p+n > h->arena_used) {
|
400 |
|
|
h->arena_used = p+n;
|
401 |
|
|
if(h->arena_used > h->arena_end)
|
402 |
|
|
h->arena_end = h->arena_used;
|
403 |
|
|
runtime_MHeap_MapBits(h);
|
404 |
|
|
}
|
405 |
|
|
|
406 |
|
|
return p;
|
407 |
|
|
}
|
408 |
|
|
|
409 |
|
|
// Runtime stubs.
|
410 |
|
|
|
411 |
|
|
void*
|
412 |
|
|
runtime_mal(uintptr n)
|
413 |
|
|
{
|
414 |
|
|
return runtime_mallocgc(n, 0, 1, 1);
|
415 |
|
|
}
|
416 |
|
|
|
417 |
|
|
func new(typ *Type) (ret *uint8) {
|
418 |
|
|
uint32 flag = typ->__code&GO_NO_POINTERS ? FlagNoPointers : 0;
|
419 |
|
|
ret = runtime_mallocgc(typ->__size, flag, 1, 1);
|
420 |
|
|
}
|
421 |
|
|
|
422 |
|
|
func Alloc(n uintptr) (p *byte) {
|
423 |
|
|
p = runtime_malloc(n);
|
424 |
|
|
}
|
425 |
|
|
|
426 |
|
|
func Free(p *byte) {
|
427 |
|
|
runtime_free(p);
|
428 |
|
|
}
|
429 |
|
|
|
430 |
|
|
func Lookup(p *byte) (base *byte, size uintptr) {
|
431 |
|
|
runtime_mlookup(p, &base, &size, nil);
|
432 |
|
|
}
|
433 |
|
|
|
434 |
|
|
func GC() {
|
435 |
|
|
runtime_gc(1);
|
436 |
|
|
}
|
437 |
|
|
|
438 |
|
|
func SetFinalizer(obj Eface, finalizer Eface) {
|
439 |
|
|
byte *base;
|
440 |
|
|
uintptr size;
|
441 |
|
|
const FuncType *ft;
|
442 |
|
|
|
443 |
|
|
if(obj.__type_descriptor == nil) {
|
444 |
|
|
// runtime·printf("runtime.SetFinalizer: first argument is nil interface\n");
|
445 |
|
|
goto throw;
|
446 |
|
|
}
|
447 |
|
|
if(obj.__type_descriptor->__code != GO_PTR) {
|
448 |
|
|
// runtime_printf("runtime.SetFinalizer: first argument is %S, not pointer\n", *obj.type->string);
|
449 |
|
|
goto throw;
|
450 |
|
|
}
|
451 |
|
|
if(!runtime_mlookup(obj.__object, &base, &size, nil) || obj.__object != base) {
|
452 |
|
|
// runtime_printf("runtime.SetFinalizer: pointer not at beginning of allocated block\n");
|
453 |
|
|
goto throw;
|
454 |
|
|
}
|
455 |
|
|
ft = nil;
|
456 |
|
|
if(finalizer.__type_descriptor != nil) {
|
457 |
|
|
if(finalizer.__type_descriptor->__code != GO_FUNC)
|
458 |
|
|
goto badfunc;
|
459 |
|
|
ft = (const FuncType*)finalizer.__type_descriptor;
|
460 |
|
|
if(ft->__dotdotdot || ft->__in.__count != 1 || !__go_type_descriptors_equal(*(Type**)ft->__in.__values, obj.__type_descriptor))
|
461 |
|
|
goto badfunc;
|
462 |
|
|
}
|
463 |
|
|
|
464 |
|
|
if(!runtime_addfinalizer(obj.__object, finalizer.__type_descriptor != nil ? *(void**)finalizer.__object : nil, ft)) {
|
465 |
|
|
runtime_printf("runtime.SetFinalizer: finalizer already set\n");
|
466 |
|
|
goto throw;
|
467 |
|
|
}
|
468 |
|
|
return;
|
469 |
|
|
|
470 |
|
|
badfunc:
|
471 |
|
|
// runtime_printf("runtime.SetFinalizer: second argument is %S, not func(%S)\n", *finalizer.type->string, *obj.type->string);
|
472 |
|
|
throw:
|
473 |
|
|
runtime_throw("runtime.SetFinalizer");
|
474 |
|
|
}
|