1 |
747 |
jeremybenn |
// Copyright 2009 The Go Authors. All rights reserved.
|
2 |
|
|
// Use of this source code is governed by a BSD-style
|
3 |
|
|
// license that can be found in the LICENSE file.
|
4 |
|
|
|
5 |
|
|
// Memory allocator, based on tcmalloc.
|
6 |
|
|
// http://goog-perftools.sourceforge.net/doc/tcmalloc.html
|
7 |
|
|
|
8 |
|
|
// The main allocator works in runs of pages.
|
9 |
|
|
// Small allocation sizes (up to and including 32 kB) are
|
10 |
|
|
// rounded to one of about 100 size classes, each of which
|
11 |
|
|
// has its own free list of objects of exactly that size.
|
12 |
|
|
// Any free page of memory can be split into a set of objects
|
13 |
|
|
// of one size class, which are then managed using free list
|
14 |
|
|
// allocators.
|
15 |
|
|
//
|
16 |
|
|
// The allocator's data structures are:
|
17 |
|
|
//
|
18 |
|
|
// FixAlloc: a free-list allocator for fixed-size objects,
|
19 |
|
|
// used to manage storage used by the allocator.
|
20 |
|
|
// MHeap: the malloc heap, managed at page (4096-byte) granularity.
|
21 |
|
|
// MSpan: a run of pages managed by the MHeap.
|
22 |
|
|
// MCentral: a shared free list for a given size class.
|
23 |
|
|
// MCache: a per-thread (in Go, per-M) cache for small objects.
|
24 |
|
|
// MStats: allocation statistics.
|
25 |
|
|
//
|
26 |
|
|
// Allocating a small object proceeds up a hierarchy of caches:
|
27 |
|
|
//
|
28 |
|
|
// 1. Round the size up to one of the small size classes
|
29 |
|
|
// and look in the corresponding MCache free list.
|
30 |
|
|
// If the list is not empty, allocate an object from it.
|
31 |
|
|
// This can all be done without acquiring a lock.
|
32 |
|
|
//
|
33 |
|
|
// 2. If the MCache free list is empty, replenish it by
|
34 |
|
|
// taking a bunch of objects from the MCentral free list.
|
35 |
|
|
// Moving a bunch amortizes the cost of acquiring the MCentral lock.
|
36 |
|
|
//
|
37 |
|
|
// 3. If the MCentral free list is empty, replenish it by
|
38 |
|
|
// allocating a run of pages from the MHeap and then
|
39 |
|
|
// chopping that memory into a objects of the given size.
|
40 |
|
|
// Allocating many objects amortizes the cost of locking
|
41 |
|
|
// the heap.
|
42 |
|
|
//
|
43 |
|
|
// 4. If the MHeap is empty or has no page runs large enough,
|
44 |
|
|
// allocate a new group of pages (at least 1MB) from the
|
45 |
|
|
// operating system. Allocating a large run of pages
|
46 |
|
|
// amortizes the cost of talking to the operating system.
|
47 |
|
|
//
|
48 |
|
|
// Freeing a small object proceeds up the same hierarchy:
|
49 |
|
|
//
|
50 |
|
|
// 1. Look up the size class for the object and add it to
|
51 |
|
|
// the MCache free list.
|
52 |
|
|
//
|
53 |
|
|
// 2. If the MCache free list is too long or the MCache has
|
54 |
|
|
// too much memory, return some to the MCentral free lists.
|
55 |
|
|
//
|
56 |
|
|
// 3. If all the objects in a given span have returned to
|
57 |
|
|
// the MCentral list, return that span to the page heap.
|
58 |
|
|
//
|
59 |
|
|
// 4. If the heap has too much memory, return some to the
|
60 |
|
|
// operating system.
|
61 |
|
|
//
|
62 |
|
|
// TODO(rsc): Step 4 is not implemented.
|
63 |
|
|
//
|
64 |
|
|
// Allocating and freeing a large object uses the page heap
|
65 |
|
|
// directly, bypassing the MCache and MCentral free lists.
|
66 |
|
|
//
|
67 |
|
|
// The small objects on the MCache and MCentral free lists
|
68 |
|
|
// may or may not be zeroed. They are zeroed if and only if
|
69 |
|
|
// the second word of the object is zero. The spans in the
|
70 |
|
|
// page heap are always zeroed. When a span full of objects
|
71 |
|
|
// is returned to the page heap, the objects that need to be
|
72 |
|
|
// are zeroed first. There are two main benefits to delaying the
|
73 |
|
|
// zeroing this way:
|
74 |
|
|
//
|
75 |
|
|
// 1. stack frames allocated from the small object lists
|
76 |
|
|
// can avoid zeroing altogether.
|
77 |
|
|
// 2. the cost of zeroing when reusing a small object is
|
78 |
|
|
// charged to the mutator, not the garbage collector.
|
79 |
|
|
//
|
80 |
|
|
// This C code was written with an eye toward translating to Go
|
81 |
|
|
// in the future. Methods have the form Type_Method(Type *t, ...).
|
82 |
|
|
|
83 |
|
|
typedef struct MCentral MCentral;
|
84 |
|
|
typedef struct MHeap MHeap;
|
85 |
|
|
typedef struct MSpan MSpan;
|
86 |
|
|
typedef struct MStats MStats;
|
87 |
|
|
typedef struct MLink MLink;
|
88 |
|
|
|
89 |
|
|
enum
|
90 |
|
|
{
|
91 |
|
|
PageShift = 12,
|
92 |
|
|
PageSize = 1<<PageShift,
|
93 |
|
|
PageMask = PageSize - 1,
|
94 |
|
|
};
|
95 |
|
|
typedef uintptr PageID; // address >> PageShift
|
96 |
|
|
|
97 |
|
|
enum
|
98 |
|
|
{
|
99 |
|
|
// Computed constant. The definition of MaxSmallSize and the
|
100 |
|
|
// algorithm in msize.c produce some number of different allocation
|
101 |
|
|
// size classes. NumSizeClasses is that number. It's needed here
|
102 |
|
|
// because there are static arrays of this length; when msize runs its
|
103 |
|
|
// size choosing algorithm it double-checks that NumSizeClasses agrees.
|
104 |
|
|
NumSizeClasses = 61,
|
105 |
|
|
|
106 |
|
|
// Tunable constants.
|
107 |
|
|
MaxSmallSize = 32<<10,
|
108 |
|
|
|
109 |
|
|
FixAllocChunk = 128<<10, // Chunk size for FixAlloc
|
110 |
|
|
MaxMCacheListLen = 256, // Maximum objects on MCacheList
|
111 |
|
|
MaxMCacheSize = 2<<20, // Maximum bytes in one MCache
|
112 |
|
|
MaxMHeapList = 1<<(20 - PageShift), // Maximum page length for fixed-size list in MHeap.
|
113 |
|
|
HeapAllocChunk = 1<<20, // Chunk size for heap growth
|
114 |
|
|
|
115 |
|
|
// Number of bits in page to span calculations (4k pages).
|
116 |
|
|
// On 64-bit, we limit the arena to 16G, so 22 bits suffices.
|
117 |
|
|
// On 32-bit, we don't bother limiting anything: 20 bits for 4G.
|
118 |
|
|
#if __SIZEOF_POINTER__ == 8
|
119 |
|
|
MHeapMap_Bits = 22,
|
120 |
|
|
#else
|
121 |
|
|
MHeapMap_Bits = 20,
|
122 |
|
|
#endif
|
123 |
|
|
|
124 |
|
|
// Max number of threads to run garbage collection.
|
125 |
|
|
// 2, 3, and 4 are all plausible maximums depending
|
126 |
|
|
// on the hardware details of the machine. The garbage
|
127 |
|
|
// collector scales well to 4 cpus.
|
128 |
|
|
MaxGcproc = 4,
|
129 |
|
|
};
|
130 |
|
|
|
131 |
|
|
// A generic linked list of blocks. (Typically the block is bigger than sizeof(MLink).)
|
132 |
|
|
struct MLink
|
133 |
|
|
{
|
134 |
|
|
MLink *next;
|
135 |
|
|
};
|
136 |
|
|
|
137 |
|
|
// SysAlloc obtains a large chunk of zeroed memory from the
|
138 |
|
|
// operating system, typically on the order of a hundred kilobytes
|
139 |
|
|
// or a megabyte. If the pointer argument is non-nil, the caller
|
140 |
|
|
// wants a mapping there or nowhere.
|
141 |
|
|
//
|
142 |
|
|
// SysUnused notifies the operating system that the contents
|
143 |
|
|
// of the memory region are no longer needed and can be reused
|
144 |
|
|
// for other purposes. The program reserves the right to start
|
145 |
|
|
// accessing those pages in the future.
|
146 |
|
|
//
|
147 |
|
|
// SysFree returns it unconditionally; this is only used if
|
148 |
|
|
// an out-of-memory error has been detected midway through
|
149 |
|
|
// an allocation. It is okay if SysFree is a no-op.
|
150 |
|
|
//
|
151 |
|
|
// SysReserve reserves address space without allocating memory.
|
152 |
|
|
// If the pointer passed to it is non-nil, the caller wants the
|
153 |
|
|
// reservation there, but SysReserve can still choose another
|
154 |
|
|
// location if that one is unavailable.
|
155 |
|
|
//
|
156 |
|
|
// SysMap maps previously reserved address space for use.
|
157 |
|
|
|
158 |
|
|
void* runtime_SysAlloc(uintptr nbytes);
|
159 |
|
|
void runtime_SysFree(void *v, uintptr nbytes);
|
160 |
|
|
void runtime_SysUnused(void *v, uintptr nbytes);
|
161 |
|
|
void runtime_SysMap(void *v, uintptr nbytes);
|
162 |
|
|
void* runtime_SysReserve(void *v, uintptr nbytes);
|
163 |
|
|
|
164 |
|
|
// FixAlloc is a simple free-list allocator for fixed size objects.
|
165 |
|
|
// Malloc uses a FixAlloc wrapped around SysAlloc to manages its
|
166 |
|
|
// MCache and MSpan objects.
|
167 |
|
|
//
|
168 |
|
|
// Memory returned by FixAlloc_Alloc is not zeroed.
|
169 |
|
|
// The caller is responsible for locking around FixAlloc calls.
|
170 |
|
|
// Callers can keep state in the object but the first word is
|
171 |
|
|
// smashed by freeing and reallocating.
|
172 |
|
|
struct FixAlloc
|
173 |
|
|
{
|
174 |
|
|
uintptr size;
|
175 |
|
|
void *(*alloc)(uintptr);
|
176 |
|
|
void (*first)(void *arg, byte *p); // called first time p is returned
|
177 |
|
|
void *arg;
|
178 |
|
|
MLink *list;
|
179 |
|
|
byte *chunk;
|
180 |
|
|
uint32 nchunk;
|
181 |
|
|
uintptr inuse; // in-use bytes now
|
182 |
|
|
uintptr sys; // bytes obtained from system
|
183 |
|
|
};
|
184 |
|
|
|
185 |
|
|
void runtime_FixAlloc_Init(FixAlloc *f, uintptr size, void *(*alloc)(uintptr), void (*first)(void*, byte*), void *arg);
|
186 |
|
|
void* runtime_FixAlloc_Alloc(FixAlloc *f);
|
187 |
|
|
void runtime_FixAlloc_Free(FixAlloc *f, void *p);
|
188 |
|
|
|
189 |
|
|
|
190 |
|
|
// Statistics.
|
191 |
|
|
// Shared with Go: if you edit this structure, also edit extern.go.
|
192 |
|
|
struct MStats
|
193 |
|
|
{
|
194 |
|
|
// General statistics.
|
195 |
|
|
uint64 alloc; // bytes allocated and still in use
|
196 |
|
|
uint64 total_alloc; // bytes allocated (even if freed)
|
197 |
|
|
uint64 sys; // bytes obtained from system (should be sum of xxx_sys below, no locking, approximate)
|
198 |
|
|
uint64 nlookup; // number of pointer lookups
|
199 |
|
|
uint64 nmalloc; // number of mallocs
|
200 |
|
|
uint64 nfree; // number of frees
|
201 |
|
|
|
202 |
|
|
// Statistics about malloc heap.
|
203 |
|
|
// protected by mheap.Lock
|
204 |
|
|
uint64 heap_alloc; // bytes allocated and still in use
|
205 |
|
|
uint64 heap_sys; // bytes obtained from system
|
206 |
|
|
uint64 heap_idle; // bytes in idle spans
|
207 |
|
|
uint64 heap_inuse; // bytes in non-idle spans
|
208 |
|
|
uint64 heap_objects; // total number of allocated objects
|
209 |
|
|
|
210 |
|
|
// Statistics about allocation of low-level fixed-size structures.
|
211 |
|
|
// Protected by FixAlloc locks.
|
212 |
|
|
uint64 stacks_inuse; // bootstrap stacks
|
213 |
|
|
uint64 stacks_sys;
|
214 |
|
|
uint64 mspan_inuse; // MSpan structures
|
215 |
|
|
uint64 mspan_sys;
|
216 |
|
|
uint64 mcache_inuse; // MCache structures
|
217 |
|
|
uint64 mcache_sys;
|
218 |
|
|
uint64 buckhash_sys; // profiling bucket hash table
|
219 |
|
|
|
220 |
|
|
// Statistics about garbage collector.
|
221 |
|
|
// Protected by stopping the world during GC.
|
222 |
|
|
uint64 next_gc; // next GC (in heap_alloc time)
|
223 |
|
|
uint64 pause_total_ns;
|
224 |
|
|
uint64 pause_ns[256];
|
225 |
|
|
uint32 numgc;
|
226 |
|
|
bool enablegc;
|
227 |
|
|
bool debuggc;
|
228 |
|
|
|
229 |
|
|
// Statistics about allocation size classes.
|
230 |
|
|
struct {
|
231 |
|
|
uint32 size;
|
232 |
|
|
uint64 nmalloc;
|
233 |
|
|
uint64 nfree;
|
234 |
|
|
} by_size[NumSizeClasses];
|
235 |
|
|
};
|
236 |
|
|
|
237 |
|
|
extern MStats mstats
|
238 |
|
|
__asm__ ("libgo_runtime.runtime.VmemStats");
|
239 |
|
|
|
240 |
|
|
|
241 |
|
|
// Size classes. Computed and initialized by InitSizes.
|
242 |
|
|
//
|
243 |
|
|
// SizeToClass(0 <= n <= MaxSmallSize) returns the size class,
|
244 |
|
|
// 1 <= sizeclass < NumSizeClasses, for n.
|
245 |
|
|
// Size class 0 is reserved to mean "not small".
|
246 |
|
|
//
|
247 |
|
|
// class_to_size[i] = largest size in class i
|
248 |
|
|
// class_to_allocnpages[i] = number of pages to allocate when
|
249 |
|
|
// making new objects in class i
|
250 |
|
|
// class_to_transfercount[i] = number of objects to move when
|
251 |
|
|
// taking a bunch of objects out of the central lists
|
252 |
|
|
// and putting them in the thread free list.
|
253 |
|
|
|
254 |
|
|
int32 runtime_SizeToClass(int32);
|
255 |
|
|
extern int32 runtime_class_to_size[NumSizeClasses];
|
256 |
|
|
extern int32 runtime_class_to_allocnpages[NumSizeClasses];
|
257 |
|
|
extern int32 runtime_class_to_transfercount[NumSizeClasses];
|
258 |
|
|
extern void runtime_InitSizes(void);
|
259 |
|
|
|
260 |
|
|
|
261 |
|
|
// Per-thread (in Go, per-M) cache for small objects.
|
262 |
|
|
// No locking needed because it is per-thread (per-M).
|
263 |
|
|
typedef struct MCacheList MCacheList;
|
264 |
|
|
struct MCacheList
|
265 |
|
|
{
|
266 |
|
|
MLink *list;
|
267 |
|
|
uint32 nlist;
|
268 |
|
|
uint32 nlistmin;
|
269 |
|
|
};
|
270 |
|
|
|
271 |
|
|
struct MCache
|
272 |
|
|
{
|
273 |
|
|
MCacheList list[NumSizeClasses];
|
274 |
|
|
uint64 size;
|
275 |
|
|
int64 local_cachealloc; // bytes allocated (or freed) from cache since last lock of heap
|
276 |
|
|
int64 local_objects; // objects allocated (or freed) from cache since last lock of heap
|
277 |
|
|
int64 local_alloc; // bytes allocated (or freed) since last lock of heap
|
278 |
|
|
int64 local_total_alloc; // bytes allocated (even if freed) since last lock of heap
|
279 |
|
|
int64 local_nmalloc; // number of mallocs since last lock of heap
|
280 |
|
|
int64 local_nfree; // number of frees since last lock of heap
|
281 |
|
|
int64 local_nlookup; // number of pointer lookups since last lock of heap
|
282 |
|
|
int32 next_sample; // trigger heap sample after allocating this many bytes
|
283 |
|
|
// Statistics about allocation size classes since last lock of heap
|
284 |
|
|
struct {
|
285 |
|
|
int64 nmalloc;
|
286 |
|
|
int64 nfree;
|
287 |
|
|
} local_by_size[NumSizeClasses];
|
288 |
|
|
|
289 |
|
|
};
|
290 |
|
|
|
291 |
|
|
void* runtime_MCache_Alloc(MCache *c, int32 sizeclass, uintptr size, int32 zeroed);
|
292 |
|
|
void runtime_MCache_Free(MCache *c, void *p, int32 sizeclass, uintptr size);
|
293 |
|
|
void runtime_MCache_ReleaseAll(MCache *c);
|
294 |
|
|
|
295 |
|
|
// An MSpan is a run of pages.
|
296 |
|
|
enum
|
297 |
|
|
{
|
298 |
|
|
MSpanInUse = 0,
|
299 |
|
|
MSpanFree,
|
300 |
|
|
MSpanListHead,
|
301 |
|
|
MSpanDead,
|
302 |
|
|
};
|
303 |
|
|
struct MSpan
|
304 |
|
|
{
|
305 |
|
|
MSpan *next; // in a span linked list
|
306 |
|
|
MSpan *prev; // in a span linked list
|
307 |
|
|
MSpan *allnext; // in the list of all spans
|
308 |
|
|
PageID start; // starting page number
|
309 |
|
|
uintptr npages; // number of pages in span
|
310 |
|
|
MLink *freelist; // list of free objects
|
311 |
|
|
uint32 ref; // number of allocated objects in this span
|
312 |
|
|
uint32 sizeclass; // size class
|
313 |
|
|
uint32 state; // MSpanInUse etc
|
314 |
|
|
byte *limit; // end of data in span
|
315 |
|
|
};
|
316 |
|
|
|
317 |
|
|
void runtime_MSpan_Init(MSpan *span, PageID start, uintptr npages);
|
318 |
|
|
|
319 |
|
|
// Every MSpan is in one doubly-linked list,
|
320 |
|
|
// either one of the MHeap's free lists or one of the
|
321 |
|
|
// MCentral's span lists. We use empty MSpan structures as list heads.
|
322 |
|
|
void runtime_MSpanList_Init(MSpan *list);
|
323 |
|
|
bool runtime_MSpanList_IsEmpty(MSpan *list);
|
324 |
|
|
void runtime_MSpanList_Insert(MSpan *list, MSpan *span);
|
325 |
|
|
void runtime_MSpanList_Remove(MSpan *span); // from whatever list it is in
|
326 |
|
|
|
327 |
|
|
|
328 |
|
|
// Central list of free objects of a given size.
|
329 |
|
|
struct MCentral
|
330 |
|
|
{
|
331 |
|
|
Lock;
|
332 |
|
|
int32 sizeclass;
|
333 |
|
|
MSpan nonempty;
|
334 |
|
|
MSpan empty;
|
335 |
|
|
int32 nfree;
|
336 |
|
|
};
|
337 |
|
|
|
338 |
|
|
void runtime_MCentral_Init(MCentral *c, int32 sizeclass);
|
339 |
|
|
int32 runtime_MCentral_AllocList(MCentral *c, int32 n, MLink **first);
|
340 |
|
|
void runtime_MCentral_FreeList(MCentral *c, int32 n, MLink *first);
|
341 |
|
|
|
342 |
|
|
// Main malloc heap.
|
343 |
|
|
// The heap itself is the "free[]" and "large" arrays,
|
344 |
|
|
// but all the other global data is here too.
|
345 |
|
|
struct MHeap
|
346 |
|
|
{
|
347 |
|
|
Lock;
|
348 |
|
|
MSpan free[MaxMHeapList]; // free lists of given length
|
349 |
|
|
MSpan large; // free lists length >= MaxMHeapList
|
350 |
|
|
MSpan *allspans;
|
351 |
|
|
|
352 |
|
|
// span lookup
|
353 |
|
|
MSpan *map[1<<MHeapMap_Bits];
|
354 |
|
|
|
355 |
|
|
// range of addresses we might see in the heap
|
356 |
|
|
byte *bitmap;
|
357 |
|
|
uintptr bitmap_mapped;
|
358 |
|
|
byte *arena_start;
|
359 |
|
|
byte *arena_used;
|
360 |
|
|
byte *arena_end;
|
361 |
|
|
|
362 |
|
|
// central free lists for small size classes.
|
363 |
|
|
// the union makes sure that the MCentrals are
|
364 |
|
|
// spaced CacheLineSize bytes apart, so that each MCentral.Lock
|
365 |
|
|
// gets its own cache line.
|
366 |
|
|
union {
|
367 |
|
|
MCentral;
|
368 |
|
|
byte pad[CacheLineSize];
|
369 |
|
|
} central[NumSizeClasses];
|
370 |
|
|
|
371 |
|
|
FixAlloc spanalloc; // allocator for Span*
|
372 |
|
|
FixAlloc cachealloc; // allocator for MCache*
|
373 |
|
|
};
|
374 |
|
|
extern MHeap runtime_mheap;
|
375 |
|
|
|
376 |
|
|
void runtime_MHeap_Init(MHeap *h, void *(*allocator)(uintptr));
|
377 |
|
|
MSpan* runtime_MHeap_Alloc(MHeap *h, uintptr npage, int32 sizeclass, int32 acct);
|
378 |
|
|
void runtime_MHeap_Free(MHeap *h, MSpan *s, int32 acct);
|
379 |
|
|
MSpan* runtime_MHeap_Lookup(MHeap *h, void *v);
|
380 |
|
|
MSpan* runtime_MHeap_LookupMaybe(MHeap *h, void *v);
|
381 |
|
|
void runtime_MGetSizeClassInfo(int32 sizeclass, uintptr *size, int32 *npages, int32 *nobj);
|
382 |
|
|
void* runtime_MHeap_SysAlloc(MHeap *h, uintptr n);
|
383 |
|
|
void runtime_MHeap_MapBits(MHeap *h);
|
384 |
|
|
|
385 |
|
|
void* runtime_mallocgc(uintptr size, uint32 flag, int32 dogc, int32 zeroed);
|
386 |
|
|
int32 runtime_mlookup(void *v, byte **base, uintptr *size, MSpan **s);
|
387 |
|
|
void runtime_gc(int32 force);
|
388 |
|
|
void runtime_markallocated(void *v, uintptr n, bool noptr);
|
389 |
|
|
void runtime_checkallocated(void *v, uintptr n);
|
390 |
|
|
void runtime_markfreed(void *v, uintptr n);
|
391 |
|
|
void runtime_checkfreed(void *v, uintptr n);
|
392 |
|
|
int32 runtime_checking;
|
393 |
|
|
void runtime_markspan(void *v, uintptr size, uintptr n, bool leftover);
|
394 |
|
|
void runtime_unmarkspan(void *v, uintptr size);
|
395 |
|
|
bool runtime_blockspecial(void*);
|
396 |
|
|
void runtime_setblockspecial(void*, bool);
|
397 |
|
|
void runtime_purgecachedstats(M*);
|
398 |
|
|
|
399 |
|
|
enum
|
400 |
|
|
{
|
401 |
|
|
// flags to malloc
|
402 |
|
|
FlagNoPointers = 1<<0, // no pointers here
|
403 |
|
|
FlagNoProfiling = 1<<1, // must not profile
|
404 |
|
|
FlagNoGC = 1<<2, // must not free or scan for pointers
|
405 |
|
|
};
|
406 |
|
|
|
407 |
|
|
void runtime_MProf_Malloc(void*, uintptr);
|
408 |
|
|
void runtime_MProf_Free(void*, uintptr);
|
409 |
|
|
void runtime_MProf_Mark(void (*scan)(byte *, int64));
|
410 |
|
|
int32 runtime_helpgc(bool*);
|
411 |
|
|
void runtime_gchelper(void);
|
412 |
|
|
|
413 |
|
|
// Malloc profiling settings.
|
414 |
|
|
// Must match definition in extern.go.
|
415 |
|
|
enum {
|
416 |
|
|
MProf_None = 0,
|
417 |
|
|
MProf_Sample = 1,
|
418 |
|
|
MProf_All = 2,
|
419 |
|
|
};
|
420 |
|
|
extern int32 runtime_malloc_profile;
|
421 |
|
|
|
422 |
|
|
struct __go_func_type;
|
423 |
|
|
bool runtime_getfinalizer(void *p, bool del, void (**fn)(void*), const struct __go_func_type **ft);
|
424 |
|
|
void runtime_walkfintab(void (*fn)(void*), void (*scan)(byte *, int64));
|