OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libgo/] [runtime/] [mheap.c] - Blame information for rev 747

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 747 jeremybenn
// Copyright 2009 The Go Authors. All rights reserved.
2
// Use of this source code is governed by a BSD-style
3
// license that can be found in the LICENSE file.
4
 
5
// Page heap.
6
//
7
// See malloc.h for overview.
8
//
9
// When a MSpan is in the heap free list, state == MSpanFree
10
// and heapmap(s->start) == span, heapmap(s->start+s->npages-1) == span.
11
//
12
// When a MSpan is allocated, state == MSpanInUse
13
// and heapmap(i) == span for all s->start <= i < s->start+s->npages.
14
 
15
#include "runtime.h"
16
#include "arch.h"
17
#include "malloc.h"
18
 
19
static MSpan *MHeap_AllocLocked(MHeap*, uintptr, int32);
20
static bool MHeap_Grow(MHeap*, uintptr);
21
static void MHeap_FreeLocked(MHeap*, MSpan*);
22
static MSpan *MHeap_AllocLarge(MHeap*, uintptr);
23
static MSpan *BestFit(MSpan*, uintptr, MSpan*);
24
 
25
static void
26
RecordSpan(void *vh, byte *p)
27
{
28
        MHeap *h;
29
        MSpan *s;
30
 
31
        h = vh;
32
        s = (MSpan*)p;
33
        s->allnext = h->allspans;
34
        h->allspans = s;
35
}
36
 
37
// Initialize the heap; fetch memory using alloc.
38
void
39
runtime_MHeap_Init(MHeap *h, void *(*alloc)(uintptr))
40
{
41
        uint32 i;
42
 
43
        runtime_FixAlloc_Init(&h->spanalloc, sizeof(MSpan), alloc, RecordSpan, h);
44
        runtime_FixAlloc_Init(&h->cachealloc, sizeof(MCache), alloc, nil, nil);
45
        // h->mapcache needs no init
46
        for(i=0; i<nelem(h->free); i++)
47
                runtime_MSpanList_Init(&h->free[i]);
48
        runtime_MSpanList_Init(&h->large);
49
        for(i=0; i<nelem(h->central); i++)
50
                runtime_MCentral_Init(&h->central[i], i);
51
}
52
 
53
// Allocate a new span of npage pages from the heap
54
// and record its size class in the HeapMap and HeapMapCache.
55
MSpan*
56
runtime_MHeap_Alloc(MHeap *h, uintptr npage, int32 sizeclass, int32 acct)
57
{
58
        MSpan *s;
59
 
60
        runtime_lock(h);
61
        runtime_purgecachedstats(runtime_m());
62
        s = MHeap_AllocLocked(h, npage, sizeclass);
63
        if(s != nil) {
64
                mstats.heap_inuse += npage<<PageShift;
65
                if(acct) {
66
                        mstats.heap_objects++;
67
                        mstats.heap_alloc += npage<<PageShift;
68
                }
69
        }
70
        runtime_unlock(h);
71
        return s;
72
}
73
 
74
static MSpan*
75
MHeap_AllocLocked(MHeap *h, uintptr npage, int32 sizeclass)
76
{
77
        uintptr n;
78
        MSpan *s, *t;
79
        PageID p;
80
 
81
        // Try in fixed-size lists up to max.
82
        for(n=npage; n < nelem(h->free); n++) {
83
                if(!runtime_MSpanList_IsEmpty(&h->free[n])) {
84
                        s = h->free[n].next;
85
                        goto HaveSpan;
86
                }
87
        }
88
 
89
        // Best fit in list of large spans.
90
        if((s = MHeap_AllocLarge(h, npage)) == nil) {
91
                if(!MHeap_Grow(h, npage))
92
                        return nil;
93
                if((s = MHeap_AllocLarge(h, npage)) == nil)
94
                        return nil;
95
        }
96
 
97
HaveSpan:
98
        // Mark span in use.
99
        if(s->state != MSpanFree)
100
                runtime_throw("MHeap_AllocLocked - MSpan not free");
101
        if(s->npages < npage)
102
                runtime_throw("MHeap_AllocLocked - bad npages");
103
        runtime_MSpanList_Remove(s);
104
        s->state = MSpanInUse;
105
        mstats.heap_idle -= s->npages<<PageShift;
106
 
107
        if(s->npages > npage) {
108
                // Trim extra and put it back in the heap.
109
                t = runtime_FixAlloc_Alloc(&h->spanalloc);
110
                mstats.mspan_inuse = h->spanalloc.inuse;
111
                mstats.mspan_sys = h->spanalloc.sys;
112
                runtime_MSpan_Init(t, s->start + npage, s->npages - npage);
113
                s->npages = npage;
114
                p = t->start;
115
                if(sizeof(void*) == 8)
116
                        p -= ((uintptr)h->arena_start>>PageShift);
117
                if(p > 0)
118
                        h->map[p-1] = s;
119
                h->map[p] = t;
120
                h->map[p+t->npages-1] = t;
121
                *(uintptr*)(t->start<<PageShift) = *(uintptr*)(s->start<<PageShift);  // copy "needs zeroing" mark
122
                t->state = MSpanInUse;
123
                MHeap_FreeLocked(h, t);
124
        }
125
 
126
        if(*(uintptr*)(s->start<<PageShift) != 0)
127
                runtime_memclr((byte*)(s->start<<PageShift), s->npages<<PageShift);
128
 
129
        // Record span info, because gc needs to be
130
        // able to map interior pointer to containing span.
131
        s->sizeclass = sizeclass;
132
        p = s->start;
133
        if(sizeof(void*) == 8)
134
                p -= ((uintptr)h->arena_start>>PageShift);
135
        for(n=0; n<npage; n++)
136
                h->map[p+n] = s;
137
        return s;
138
}
139
 
140
// Allocate a span of exactly npage pages from the list of large spans.
141
static MSpan*
142
MHeap_AllocLarge(MHeap *h, uintptr npage)
143
{
144
        return BestFit(&h->large, npage, nil);
145
}
146
 
147
// Search list for smallest span with >= npage pages.
148
// If there are multiple smallest spans, take the one
149
// with the earliest starting address.
150
static MSpan*
151
BestFit(MSpan *list, uintptr npage, MSpan *best)
152
{
153
        MSpan *s;
154
 
155
        for(s=list->next; s != list; s=s->next) {
156
                if(s->npages < npage)
157
                        continue;
158
                if(best == nil
159
                || s->npages < best->npages
160
                || (s->npages == best->npages && s->start < best->start))
161
                        best = s;
162
        }
163
        return best;
164
}
165
 
166
// Try to add at least npage pages of memory to the heap,
167
// returning whether it worked.
168
static bool
169
MHeap_Grow(MHeap *h, uintptr npage)
170
{
171
        uintptr ask;
172
        void *v;
173
        MSpan *s;
174
        PageID p;
175
 
176
        // Ask for a big chunk, to reduce the number of mappings
177
        // the operating system needs to track; also amortizes
178
        // the overhead of an operating system mapping.
179
        // Allocate a multiple of 64kB (16 pages).
180
        npage = (npage+15)&~15;
181
        ask = npage<<PageShift;
182
        if(ask < HeapAllocChunk)
183
                ask = HeapAllocChunk;
184
 
185
        v = runtime_MHeap_SysAlloc(h, ask);
186
        if(v == nil) {
187
                if(ask > (npage<<PageShift)) {
188
                        ask = npage<<PageShift;
189
                        v = runtime_MHeap_SysAlloc(h, ask);
190
                }
191
                if(v == nil) {
192
                        runtime_printf("runtime: out of memory: cannot allocate %llu-byte block (%llu in use)\n", (unsigned long long)ask, (unsigned long long)mstats.heap_sys);
193
                        return false;
194
                }
195
        }
196
        mstats.heap_sys += ask;
197
 
198
        // Create a fake "in use" span and free it, so that the
199
        // right coalescing happens.
200
        s = runtime_FixAlloc_Alloc(&h->spanalloc);
201
        mstats.mspan_inuse = h->spanalloc.inuse;
202
        mstats.mspan_sys = h->spanalloc.sys;
203
        runtime_MSpan_Init(s, (uintptr)v>>PageShift, ask>>PageShift);
204
        p = s->start;
205
        if(sizeof(void*) == 8)
206
                p -= ((uintptr)h->arena_start>>PageShift);
207
        h->map[p] = s;
208
        h->map[p + s->npages - 1] = s;
209
        s->state = MSpanInUse;
210
        MHeap_FreeLocked(h, s);
211
        return true;
212
}
213
 
214
// Look up the span at the given address.
215
// Address is guaranteed to be in map
216
// and is guaranteed to be start or end of span.
217
MSpan*
218
runtime_MHeap_Lookup(MHeap *h, void *v)
219
{
220
        uintptr p;
221
 
222
        p = (uintptr)v;
223
        if(sizeof(void*) == 8)
224
                p -= (uintptr)h->arena_start;
225
        return h->map[p >> PageShift];
226
}
227
 
228
// Look up the span at the given address.
229
// Address is *not* guaranteed to be in map
230
// and may be anywhere in the span.
231
// Map entries for the middle of a span are only
232
// valid for allocated spans.  Free spans may have
233
// other garbage in their middles, so we have to
234
// check for that.
235
MSpan*
236
runtime_MHeap_LookupMaybe(MHeap *h, void *v)
237
{
238
        MSpan *s;
239
        PageID p, q;
240
 
241
        if((byte*)v < h->arena_start || (byte*)v >= h->arena_used)
242
                return nil;
243
        p = (uintptr)v>>PageShift;
244
        q = p;
245
        if(sizeof(void*) == 8)
246
                q -= (uintptr)h->arena_start >> PageShift;
247
        s = h->map[q];
248
        if(s == nil || p < s->start || p - s->start >= s->npages)
249
                return nil;
250
        if(s->state != MSpanInUse)
251
                return nil;
252
        return s;
253
}
254
 
255
// Free the span back into the heap.
256
void
257
runtime_MHeap_Free(MHeap *h, MSpan *s, int32 acct)
258
{
259
        runtime_lock(h);
260
        runtime_purgecachedstats(runtime_m());
261
        mstats.heap_inuse -= s->npages<<PageShift;
262
        if(acct) {
263
                mstats.heap_alloc -= s->npages<<PageShift;
264
                mstats.heap_objects--;
265
        }
266
        MHeap_FreeLocked(h, s);
267
        runtime_unlock(h);
268
}
269
 
270
static void
271
MHeap_FreeLocked(MHeap *h, MSpan *s)
272
{
273
        uintptr *sp, *tp;
274
        MSpan *t;
275
        PageID p;
276
 
277
        if(s->state != MSpanInUse || s->ref != 0) {
278
                // runtime_printf("MHeap_FreeLocked - span %p ptr %p state %d ref %d\n", s, s->start<<PageShift, s->state, s->ref);
279
                runtime_throw("MHeap_FreeLocked - invalid free");
280
        }
281
        mstats.heap_idle += s->npages<<PageShift;
282
        s->state = MSpanFree;
283
        runtime_MSpanList_Remove(s);
284
        sp = (uintptr*)(s->start<<PageShift);
285
 
286
        // Coalesce with earlier, later spans.
287
        p = s->start;
288
        if(sizeof(void*) == 8)
289
                p -= (uintptr)h->arena_start >> PageShift;
290
        if(p > 0 && (t = h->map[p-1]) != nil && t->state != MSpanInUse) {
291
                tp = (uintptr*)(t->start<<PageShift);
292
                *tp |= *sp;     // propagate "needs zeroing" mark
293
                s->start = t->start;
294
                s->npages += t->npages;
295
                p -= t->npages;
296
                h->map[p] = s;
297
                runtime_MSpanList_Remove(t);
298
                t->state = MSpanDead;
299
                runtime_FixAlloc_Free(&h->spanalloc, t);
300
                mstats.mspan_inuse = h->spanalloc.inuse;
301
                mstats.mspan_sys = h->spanalloc.sys;
302
        }
303
        if(p+s->npages < nelem(h->map) && (t = h->map[p+s->npages]) != nil && t->state != MSpanInUse) {
304
                tp = (uintptr*)(t->start<<PageShift);
305
                *sp |= *tp;     // propagate "needs zeroing" mark
306
                s->npages += t->npages;
307
                h->map[p + s->npages - 1] = s;
308
                runtime_MSpanList_Remove(t);
309
                t->state = MSpanDead;
310
                runtime_FixAlloc_Free(&h->spanalloc, t);
311
                mstats.mspan_inuse = h->spanalloc.inuse;
312
                mstats.mspan_sys = h->spanalloc.sys;
313
        }
314
 
315
        // Insert s into appropriate list.
316
        if(s->npages < nelem(h->free))
317
                runtime_MSpanList_Insert(&h->free[s->npages], s);
318
        else
319
                runtime_MSpanList_Insert(&h->large, s);
320
 
321
        // TODO(rsc): IncrementalScavenge() to return memory to OS.
322
}
323
 
324
// Initialize a new span with the given start and npages.
325
void
326
runtime_MSpan_Init(MSpan *span, PageID start, uintptr npages)
327
{
328
        span->next = nil;
329
        span->prev = nil;
330
        span->start = start;
331
        span->npages = npages;
332
        span->freelist = nil;
333
        span->ref = 0;
334
        span->sizeclass = 0;
335
        span->state = 0;
336
}
337
 
338
// Initialize an empty doubly-linked list.
339
void
340
runtime_MSpanList_Init(MSpan *list)
341
{
342
        list->state = MSpanListHead;
343
        list->next = list;
344
        list->prev = list;
345
}
346
 
347
void
348
runtime_MSpanList_Remove(MSpan *span)
349
{
350
        if(span->prev == nil && span->next == nil)
351
                return;
352
        span->prev->next = span->next;
353
        span->next->prev = span->prev;
354
        span->prev = nil;
355
        span->next = nil;
356
}
357
 
358
bool
359
runtime_MSpanList_IsEmpty(MSpan *list)
360
{
361
        return list->next == list;
362
}
363
 
364
void
365
runtime_MSpanList_Insert(MSpan *list, MSpan *span)
366
{
367
        if(span->next != nil || span->prev != nil) {
368
                // runtime_printf("failed MSpanList_Insert %p %p %p\n", span, span->next, span->prev);
369
                runtime_throw("MSpanList_Insert");
370
        }
371
        span->next = list->next;
372
        span->prev = list;
373
        span->next->prev = span;
374
        span->prev->next = span;
375
}
376
 
377
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.