OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libiberty/] [md5.c] - Blame information for rev 740

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 736 jeremybenn
/* md5.c - Functions to compute MD5 message digest of files or memory blocks
2
   according to the definition of MD5 in RFC 1321 from April 1992.
3
   Copyright (C) 1995, 1996, 2011 Free Software Foundation, Inc.
4
 
5
   NOTE: This source is derived from an old version taken from the GNU C
6
   Library (glibc).
7
 
8
   This program is free software; you can redistribute it and/or modify it
9
   under the terms of the GNU General Public License as published by the
10
   Free Software Foundation; either version 2, or (at your option) any
11
   later version.
12
 
13
   This program is distributed in the hope that it will be useful,
14
   but WITHOUT ANY WARRANTY; without even the implied warranty of
15
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16
   GNU General Public License for more details.
17
 
18
   You should have received a copy of the GNU General Public License
19
   along with this program; if not, write to the Free Software Foundation,
20
   Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA.  */
21
 
22
/* Written by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1995.  */
23
 
24
#ifdef HAVE_CONFIG_H
25
# include <config.h>
26
#endif
27
 
28
#include <sys/types.h>
29
 
30
#if STDC_HEADERS || defined _LIBC
31
# include <stdlib.h>
32
# include <string.h>
33
#else
34
# ifndef HAVE_MEMCPY
35
#  define memcpy(d, s, n) bcopy ((s), (d), (n))
36
# endif
37
#endif
38
 
39
#include "ansidecl.h"
40
#include "md5.h"
41
 
42
#ifdef _LIBC
43
# include <endian.h>
44
# if __BYTE_ORDER == __BIG_ENDIAN
45
#  define WORDS_BIGENDIAN 1
46
# endif
47
#endif
48
 
49
#ifdef WORDS_BIGENDIAN
50
# define SWAP(n)                                                        \
51
    (((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24))
52
#else
53
# define SWAP(n) (n)
54
#endif
55
 
56
 
57
/* This array contains the bytes used to pad the buffer to the next
58
   64-byte boundary.  (RFC 1321, 3.1: Step 1)  */
59
static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ...  */ };
60
 
61
 
62
/* Initialize structure containing state of computation.
63
   (RFC 1321, 3.3: Step 3)  */
64
void
65
md5_init_ctx (struct md5_ctx *ctx)
66
{
67
  ctx->A = (md5_uint32) 0x67452301;
68
  ctx->B = (md5_uint32) 0xefcdab89;
69
  ctx->C = (md5_uint32) 0x98badcfe;
70
  ctx->D = (md5_uint32) 0x10325476;
71
 
72
  ctx->total[0] = ctx->total[1] = 0;
73
  ctx->buflen = 0;
74
}
75
 
76
/* Put result from CTX in first 16 bytes following RESBUF.  The result
77
   must be in little endian byte order.
78
 
79
   IMPORTANT: RESBUF may not be aligned as strongly as MD5_UNIT32 so we
80
   put things in a local (aligned) buffer first, then memcpy into RESBUF.  */
81
void *
82
md5_read_ctx (const struct md5_ctx *ctx, void *resbuf)
83
{
84
  md5_uint32 buffer[4];
85
 
86
  buffer[0] = SWAP (ctx->A);
87
  buffer[1] = SWAP (ctx->B);
88
  buffer[2] = SWAP (ctx->C);
89
  buffer[3] = SWAP (ctx->D);
90
 
91
  memcpy (resbuf, buffer, 16);
92
 
93
  return resbuf;
94
}
95
 
96
/* Process the remaining bytes in the internal buffer and the usual
97
   prolog according to the standard and write the result to RESBUF.
98
 
99
   IMPORTANT: On some systems it is required that RESBUF is correctly
100
   aligned for a 32 bits value.  */
101
void *
102
md5_finish_ctx (struct md5_ctx *ctx, void *resbuf)
103
{
104
  /* Take yet unprocessed bytes into account.  */
105
  md5_uint32 bytes = ctx->buflen;
106
  size_t pad;
107
 
108
  /* Now count remaining bytes.  */
109
  ctx->total[0] += bytes;
110
  if (ctx->total[0] < bytes)
111
    ++ctx->total[1];
112
 
113
  pad = bytes >= 56 ? 64 + 56 - bytes : 56 - bytes;
114
  memcpy (&ctx->buffer[bytes], fillbuf, pad);
115
 
116
  /* Put the 64-bit file length in *bits* at the end of the buffer.  */
117
  *(md5_uint32 *) &ctx->buffer[bytes + pad] = SWAP (ctx->total[0] << 3);
118
  *(md5_uint32 *) &ctx->buffer[bytes + pad + 4] = SWAP ((ctx->total[1] << 3) |
119
                                                        (ctx->total[0] >> 29));
120
 
121
  /* Process last bytes.  */
122
  md5_process_block (ctx->buffer, bytes + pad + 8, ctx);
123
 
124
  return md5_read_ctx (ctx, resbuf);
125
}
126
 
127
/* Compute MD5 message digest for bytes read from STREAM.  The
128
   resulting message digest number will be written into the 16 bytes
129
   beginning at RESBLOCK.  */
130
int
131
md5_stream (FILE *stream, void *resblock)
132
{
133
  /* Important: BLOCKSIZE must be a multiple of 64.  */
134
#define BLOCKSIZE 4096
135
  struct md5_ctx ctx;
136
  char buffer[BLOCKSIZE + 72];
137
  size_t sum;
138
 
139
  /* Initialize the computation context.  */
140
  md5_init_ctx (&ctx);
141
 
142
  /* Iterate over full file contents.  */
143
  while (1)
144
    {
145
      /* We read the file in blocks of BLOCKSIZE bytes.  One call of the
146
         computation function processes the whole buffer so that with the
147
         next round of the loop another block can be read.  */
148
      size_t n;
149
      sum = 0;
150
 
151
      /* Read block.  Take care for partial reads.  */
152
      do
153
        {
154
          n = fread (buffer + sum, 1, BLOCKSIZE - sum, stream);
155
 
156
          sum += n;
157
        }
158
      while (sum < BLOCKSIZE && n != 0);
159
      if (n == 0 && ferror (stream))
160
        return 1;
161
 
162
      /* If end of file is reached, end the loop.  */
163
      if (n == 0)
164
        break;
165
 
166
      /* Process buffer with BLOCKSIZE bytes.  Note that
167
                        BLOCKSIZE % 64 == 0
168
       */
169
      md5_process_block (buffer, BLOCKSIZE, &ctx);
170
    }
171
 
172
  /* Add the last bytes if necessary.  */
173
  if (sum > 0)
174
    md5_process_bytes (buffer, sum, &ctx);
175
 
176
  /* Construct result in desired memory.  */
177
  md5_finish_ctx (&ctx, resblock);
178
  return 0;
179
}
180
 
181
/* Compute MD5 message digest for LEN bytes beginning at BUFFER.  The
182
   result is always in little endian byte order, so that a byte-wise
183
   output yields to the wanted ASCII representation of the message
184
   digest.  */
185
void *
186
md5_buffer (const char *buffer, size_t len, void *resblock)
187
{
188
  struct md5_ctx ctx;
189
 
190
  /* Initialize the computation context.  */
191
  md5_init_ctx (&ctx);
192
 
193
  /* Process whole buffer but last len % 64 bytes.  */
194
  md5_process_bytes (buffer, len, &ctx);
195
 
196
  /* Put result in desired memory area.  */
197
  return md5_finish_ctx (&ctx, resblock);
198
}
199
 
200
 
201
void
202
md5_process_bytes (const void *buffer, size_t len, struct md5_ctx *ctx)
203
{
204
  /* When we already have some bits in our internal buffer concatenate
205
     both inputs first.  */
206
  if (ctx->buflen != 0)
207
    {
208
      size_t left_over = ctx->buflen;
209
      size_t add = 128 - left_over > len ? len : 128 - left_over;
210
 
211
      memcpy (&ctx->buffer[left_over], buffer, add);
212
      ctx->buflen += add;
213
 
214
      if (left_over + add > 64)
215
        {
216
          md5_process_block (ctx->buffer, (left_over + add) & ~63, ctx);
217
          /* The regions in the following copy operation cannot overlap.  */
218
          memcpy (ctx->buffer, &ctx->buffer[(left_over + add) & ~63],
219
                  (left_over + add) & 63);
220
          ctx->buflen = (left_over + add) & 63;
221
        }
222
 
223
      buffer = (const void *) ((const char *) buffer + add);
224
      len -= add;
225
    }
226
 
227
  /* Process available complete blocks.  */
228
  if (len > 64)
229
    {
230
#if !_STRING_ARCH_unaligned
231
/* To check alignment gcc has an appropriate operator.  Other
232
   compilers don't.  */
233
# if __GNUC__ >= 2
234
#  define UNALIGNED_P(p) (((md5_uintptr) p) % __alignof__ (md5_uint32) != 0)
235
# else
236
#  define UNALIGNED_P(p) (((md5_uintptr) p) % sizeof (md5_uint32) != 0)
237
# endif
238
      if (UNALIGNED_P (buffer))
239
        while (len > 64)
240
          {
241
            memcpy (ctx->buffer, buffer, 64);
242
            md5_process_block (ctx->buffer, 64, ctx);
243
            buffer = (const char *) buffer + 64;
244
            len -= 64;
245
          }
246
      else
247
#endif
248
        {
249
          md5_process_block (buffer, len & ~63, ctx);
250
          buffer = (const void *) ((const char *) buffer + (len & ~63));
251
          len &= 63;
252
        }
253
    }
254
 
255
  /* Move remaining bytes in internal buffer.  */
256
  if (len > 0)
257
    {
258
      memcpy (ctx->buffer, buffer, len);
259
      ctx->buflen = len;
260
    }
261
}
262
 
263
 
264
/* These are the four functions used in the four steps of the MD5 algorithm
265
   and defined in the RFC 1321.  The first function is a little bit optimized
266
   (as found in Colin Plumbs public domain implementation).  */
267
/* #define FF(b, c, d) ((b & c) | (~b & d)) */
268
#define FF(b, c, d) (d ^ (b & (c ^ d)))
269
#define FG(b, c, d) FF (d, b, c)
270
#define FH(b, c, d) (b ^ c ^ d)
271
#define FI(b, c, d) (c ^ (b | ~d))
272
 
273
/* Process LEN bytes of BUFFER, accumulating context into CTX.
274
   It is assumed that LEN % 64 == 0.  */
275
 
276
void
277
md5_process_block (const void *buffer, size_t len, struct md5_ctx *ctx)
278
{
279
  md5_uint32 correct_words[16];
280
  const md5_uint32 *words = (const md5_uint32 *) buffer;
281
  size_t nwords = len / sizeof (md5_uint32);
282
  const md5_uint32 *endp = words + nwords;
283
  md5_uint32 A = ctx->A;
284
  md5_uint32 B = ctx->B;
285
  md5_uint32 C = ctx->C;
286
  md5_uint32 D = ctx->D;
287
 
288
  /* First increment the byte count.  RFC 1321 specifies the possible
289
     length of the file up to 2^64 bits.  Here we only compute the
290
     number of bytes.  Do a double word increment.  */
291
  ctx->total[0] += len;
292
  if (ctx->total[0] < len)
293
    ++ctx->total[1];
294
 
295
  /* Process all bytes in the buffer with 64 bytes in each round of
296
     the loop.  */
297
  while (words < endp)
298
    {
299
      md5_uint32 *cwp = correct_words;
300
      md5_uint32 A_save = A;
301
      md5_uint32 B_save = B;
302
      md5_uint32 C_save = C;
303
      md5_uint32 D_save = D;
304
 
305
      /* First round: using the given function, the context and a constant
306
         the next context is computed.  Because the algorithms processing
307
         unit is a 32-bit word and it is determined to work on words in
308
         little endian byte order we perhaps have to change the byte order
309
         before the computation.  To reduce the work for the next steps
310
         we store the swapped words in the array CORRECT_WORDS.  */
311
 
312
#define OP(a, b, c, d, s, T)                                            \
313
      do                                                                \
314
        {                                                               \
315
          a += FF (b, c, d) + (*cwp++ = SWAP (*words)) + T;             \
316
          ++words;                                                      \
317
          CYCLIC (a, s);                                                \
318
          a += b;                                                       \
319
        }                                                               \
320
      while (0)
321
 
322
      /* It is unfortunate that C does not provide an operator for
323
         cyclic rotation.  Hope the C compiler is smart enough.  */
324
#define CYCLIC(w, s) (w = (w << s) | (w >> (32 - s)))
325
 
326
      /* Before we start, one word to the strange constants.
327
         They are defined in RFC 1321 as
328
 
329
         T[i] = (int) (4294967296.0 * fabs (sin (i))), i=1..64
330
       */
331
 
332
      /* Round 1.  */
333
      OP (A, B, C, D,  7, (md5_uint32) 0xd76aa478);
334
      OP (D, A, B, C, 12, (md5_uint32) 0xe8c7b756);
335
      OP (C, D, A, B, 17, (md5_uint32) 0x242070db);
336
      OP (B, C, D, A, 22, (md5_uint32) 0xc1bdceee);
337
      OP (A, B, C, D,  7, (md5_uint32) 0xf57c0faf);
338
      OP (D, A, B, C, 12, (md5_uint32) 0x4787c62a);
339
      OP (C, D, A, B, 17, (md5_uint32) 0xa8304613);
340
      OP (B, C, D, A, 22, (md5_uint32) 0xfd469501);
341
      OP (A, B, C, D,  7, (md5_uint32) 0x698098d8);
342
      OP (D, A, B, C, 12, (md5_uint32) 0x8b44f7af);
343
      OP (C, D, A, B, 17, (md5_uint32) 0xffff5bb1);
344
      OP (B, C, D, A, 22, (md5_uint32) 0x895cd7be);
345
      OP (A, B, C, D,  7, (md5_uint32) 0x6b901122);
346
      OP (D, A, B, C, 12, (md5_uint32) 0xfd987193);
347
      OP (C, D, A, B, 17, (md5_uint32) 0xa679438e);
348
      OP (B, C, D, A, 22, (md5_uint32) 0x49b40821);
349
 
350
      /* For the second to fourth round we have the possibly swapped words
351
         in CORRECT_WORDS.  Redefine the macro to take an additional first
352
         argument specifying the function to use.  */
353
#undef OP
354
#define OP(a, b, c, d, k, s, T)                                         \
355
      do                                                                \
356
        {                                                               \
357
          a += FX (b, c, d) + correct_words[k] + T;                     \
358
          CYCLIC (a, s);                                                \
359
          a += b;                                                       \
360
        }                                                               \
361
      while (0)
362
 
363
#define FX(b, c, d) FG (b, c, d)
364
 
365
      /* Round 2.  */
366
      OP (A, B, C, D,  1,  5, (md5_uint32) 0xf61e2562);
367
      OP (D, A, B, C,  6,  9, (md5_uint32) 0xc040b340);
368
      OP (C, D, A, B, 11, 14, (md5_uint32) 0x265e5a51);
369
      OP (B, C, D, A,  0, 20, (md5_uint32) 0xe9b6c7aa);
370
      OP (A, B, C, D,  5,  5, (md5_uint32) 0xd62f105d);
371
      OP (D, A, B, C, 10,  9, (md5_uint32) 0x02441453);
372
      OP (C, D, A, B, 15, 14, (md5_uint32) 0xd8a1e681);
373
      OP (B, C, D, A,  4, 20, (md5_uint32) 0xe7d3fbc8);
374
      OP (A, B, C, D,  9,  5, (md5_uint32) 0x21e1cde6);
375
      OP (D, A, B, C, 14,  9, (md5_uint32) 0xc33707d6);
376
      OP (C, D, A, B,  3, 14, (md5_uint32) 0xf4d50d87);
377
      OP (B, C, D, A,  8, 20, (md5_uint32) 0x455a14ed);
378
      OP (A, B, C, D, 13,  5, (md5_uint32) 0xa9e3e905);
379
      OP (D, A, B, C,  2,  9, (md5_uint32) 0xfcefa3f8);
380
      OP (C, D, A, B,  7, 14, (md5_uint32) 0x676f02d9);
381
      OP (B, C, D, A, 12, 20, (md5_uint32) 0x8d2a4c8a);
382
 
383
#undef FX
384
#define FX(b, c, d) FH (b, c, d)
385
 
386
      /* Round 3.  */
387
      OP (A, B, C, D,  5,  4, (md5_uint32) 0xfffa3942);
388
      OP (D, A, B, C,  8, 11, (md5_uint32) 0x8771f681);
389
      OP (C, D, A, B, 11, 16, (md5_uint32) 0x6d9d6122);
390
      OP (B, C, D, A, 14, 23, (md5_uint32) 0xfde5380c);
391
      OP (A, B, C, D,  1,  4, (md5_uint32) 0xa4beea44);
392
      OP (D, A, B, C,  4, 11, (md5_uint32) 0x4bdecfa9);
393
      OP (C, D, A, B,  7, 16, (md5_uint32) 0xf6bb4b60);
394
      OP (B, C, D, A, 10, 23, (md5_uint32) 0xbebfbc70);
395
      OP (A, B, C, D, 13,  4, (md5_uint32) 0x289b7ec6);
396
      OP (D, A, B, C,  0, 11, (md5_uint32) 0xeaa127fa);
397
      OP (C, D, A, B,  3, 16, (md5_uint32) 0xd4ef3085);
398
      OP (B, C, D, A,  6, 23, (md5_uint32) 0x04881d05);
399
      OP (A, B, C, D,  9,  4, (md5_uint32) 0xd9d4d039);
400
      OP (D, A, B, C, 12, 11, (md5_uint32) 0xe6db99e5);
401
      OP (C, D, A, B, 15, 16, (md5_uint32) 0x1fa27cf8);
402
      OP (B, C, D, A,  2, 23, (md5_uint32) 0xc4ac5665);
403
 
404
#undef FX
405
#define FX(b, c, d) FI (b, c, d)
406
 
407
      /* Round 4.  */
408
      OP (A, B, C, D,  0,  6, (md5_uint32) 0xf4292244);
409
      OP (D, A, B, C,  7, 10, (md5_uint32) 0x432aff97);
410
      OP (C, D, A, B, 14, 15, (md5_uint32) 0xab9423a7);
411
      OP (B, C, D, A,  5, 21, (md5_uint32) 0xfc93a039);
412
      OP (A, B, C, D, 12,  6, (md5_uint32) 0x655b59c3);
413
      OP (D, A, B, C,  3, 10, (md5_uint32) 0x8f0ccc92);
414
      OP (C, D, A, B, 10, 15, (md5_uint32) 0xffeff47d);
415
      OP (B, C, D, A,  1, 21, (md5_uint32) 0x85845dd1);
416
      OP (A, B, C, D,  8,  6, (md5_uint32) 0x6fa87e4f);
417
      OP (D, A, B, C, 15, 10, (md5_uint32) 0xfe2ce6e0);
418
      OP (C, D, A, B,  6, 15, (md5_uint32) 0xa3014314);
419
      OP (B, C, D, A, 13, 21, (md5_uint32) 0x4e0811a1);
420
      OP (A, B, C, D,  4,  6, (md5_uint32) 0xf7537e82);
421
      OP (D, A, B, C, 11, 10, (md5_uint32) 0xbd3af235);
422
      OP (C, D, A, B,  2, 15, (md5_uint32) 0x2ad7d2bb);
423
      OP (B, C, D, A,  9, 21, (md5_uint32) 0xeb86d391);
424
 
425
      /* Add the starting values of the context.  */
426
      A += A_save;
427
      B += B_save;
428
      C += C_save;
429
      D += D_save;
430
    }
431
 
432
  /* Put checksum in context given as argument.  */
433
  ctx->A = A;
434
  ctx->B = B;
435
  ctx->C = C;
436
  ctx->D = D;
437
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.