1 |
737 |
jeremybenn |
/* Copyright (C) 2008, 2009, 2011, 2012 Free Software Foundation, Inc.
|
2 |
|
|
Contributed by Richard Henderson <rth@redhat.com>.
|
3 |
|
|
|
4 |
|
|
This file is part of the GNU Transactional Memory Library (libitm).
|
5 |
|
|
|
6 |
|
|
Libitm is free software; you can redistribute it and/or modify it
|
7 |
|
|
under the terms of the GNU General Public License as published by
|
8 |
|
|
the Free Software Foundation; either version 3 of the License, or
|
9 |
|
|
(at your option) any later version.
|
10 |
|
|
|
11 |
|
|
Libitm is distributed in the hope that it will be useful, but WITHOUT ANY
|
12 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
13 |
|
|
FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
14 |
|
|
more details.
|
15 |
|
|
|
16 |
|
|
Under Section 7 of GPL version 3, you are granted additional
|
17 |
|
|
permissions described in the GCC Runtime Library Exception, version
|
18 |
|
|
3.1, as published by the Free Software Foundation.
|
19 |
|
|
|
20 |
|
|
You should have received a copy of the GNU General Public License and
|
21 |
|
|
a copy of the GCC Runtime Library Exception along with this program;
|
22 |
|
|
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
23 |
|
|
<http://www.gnu.org/licenses/>. */
|
24 |
|
|
|
25 |
|
|
#include "libitm_i.h"
|
26 |
|
|
#include <pthread.h>
|
27 |
|
|
|
28 |
|
|
|
29 |
|
|
using namespace GTM;
|
30 |
|
|
|
31 |
|
|
#if !defined(HAVE_ARCH_GTM_THREAD) || !defined(HAVE_ARCH_GTM_THREAD_DISP)
|
32 |
|
|
extern __thread gtm_thread_tls _gtm_thr_tls;
|
33 |
|
|
#endif
|
34 |
|
|
|
35 |
|
|
gtm_rwlock GTM::gtm_thread::serial_lock;
|
36 |
|
|
gtm_thread *GTM::gtm_thread::list_of_threads = 0;
|
37 |
|
|
unsigned GTM::gtm_thread::number_of_threads = 0;
|
38 |
|
|
|
39 |
|
|
gtm_stmlock GTM::gtm_stmlock_array[LOCK_ARRAY_SIZE];
|
40 |
|
|
atomic<gtm_version> GTM::gtm_clock;
|
41 |
|
|
|
42 |
|
|
/* ??? Move elsewhere when we figure out library initialization. */
|
43 |
|
|
uint64_t GTM::gtm_spin_count_var = 1000;
|
44 |
|
|
|
45 |
|
|
#ifdef HAVE_64BIT_SYNC_BUILTINS
|
46 |
|
|
static atomic<_ITM_transactionId_t> global_tid;
|
47 |
|
|
#else
|
48 |
|
|
static _ITM_transactionId_t global_tid;
|
49 |
|
|
static pthread_mutex_t global_tid_lock = PTHREAD_MUTEX_INITIALIZER;
|
50 |
|
|
#endif
|
51 |
|
|
|
52 |
|
|
|
53 |
|
|
// Provides a on-thread-exit callback used to release per-thread data.
|
54 |
|
|
static pthread_key_t thr_release_key;
|
55 |
|
|
static pthread_once_t thr_release_once = PTHREAD_ONCE_INIT;
|
56 |
|
|
|
57 |
|
|
|
58 |
|
|
/* Allocate a transaction structure. */
|
59 |
|
|
void *
|
60 |
|
|
GTM::gtm_thread::operator new (size_t s)
|
61 |
|
|
{
|
62 |
|
|
void *tx;
|
63 |
|
|
|
64 |
|
|
assert(s == sizeof(gtm_thread));
|
65 |
|
|
|
66 |
|
|
tx = xmalloc (sizeof (gtm_thread), true);
|
67 |
|
|
memset (tx, 0, sizeof (gtm_thread));
|
68 |
|
|
|
69 |
|
|
return tx;
|
70 |
|
|
}
|
71 |
|
|
|
72 |
|
|
/* Free the given transaction. Raises an error if the transaction is still
|
73 |
|
|
in use. */
|
74 |
|
|
void
|
75 |
|
|
GTM::gtm_thread::operator delete(void *tx)
|
76 |
|
|
{
|
77 |
|
|
free(tx);
|
78 |
|
|
}
|
79 |
|
|
|
80 |
|
|
static void
|
81 |
|
|
thread_exit_handler(void *)
|
82 |
|
|
{
|
83 |
|
|
gtm_thread *thr = gtm_thr();
|
84 |
|
|
if (thr)
|
85 |
|
|
delete thr;
|
86 |
|
|
set_gtm_thr(0);
|
87 |
|
|
}
|
88 |
|
|
|
89 |
|
|
static void
|
90 |
|
|
thread_exit_init()
|
91 |
|
|
{
|
92 |
|
|
if (pthread_key_create(&thr_release_key, thread_exit_handler))
|
93 |
|
|
GTM_fatal("Creating thread release TLS key failed.");
|
94 |
|
|
}
|
95 |
|
|
|
96 |
|
|
|
97 |
|
|
GTM::gtm_thread::~gtm_thread()
|
98 |
|
|
{
|
99 |
|
|
if (nesting > 0)
|
100 |
|
|
GTM_fatal("Thread exit while a transaction is still active.");
|
101 |
|
|
|
102 |
|
|
// Deregister this transaction.
|
103 |
|
|
serial_lock.write_lock ();
|
104 |
|
|
gtm_thread **prev = &list_of_threads;
|
105 |
|
|
for (; *prev; prev = &(*prev)->next_thread)
|
106 |
|
|
{
|
107 |
|
|
if (*prev == this)
|
108 |
|
|
{
|
109 |
|
|
*prev = (*prev)->next_thread;
|
110 |
|
|
break;
|
111 |
|
|
}
|
112 |
|
|
}
|
113 |
|
|
number_of_threads--;
|
114 |
|
|
number_of_threads_changed(number_of_threads + 1, number_of_threads);
|
115 |
|
|
serial_lock.write_unlock ();
|
116 |
|
|
}
|
117 |
|
|
|
118 |
|
|
GTM::gtm_thread::gtm_thread ()
|
119 |
|
|
{
|
120 |
|
|
// This object's memory has been set to zero by operator new, so no need
|
121 |
|
|
// to initialize any of the other primitive-type members that do not have
|
122 |
|
|
// constructors.
|
123 |
|
|
shared_state.store(-1, memory_order_relaxed);
|
124 |
|
|
|
125 |
|
|
// Register this transaction with the list of all threads' transactions.
|
126 |
|
|
serial_lock.write_lock ();
|
127 |
|
|
next_thread = list_of_threads;
|
128 |
|
|
list_of_threads = this;
|
129 |
|
|
number_of_threads++;
|
130 |
|
|
number_of_threads_changed(number_of_threads - 1, number_of_threads);
|
131 |
|
|
serial_lock.write_unlock ();
|
132 |
|
|
|
133 |
|
|
if (pthread_once(&thr_release_once, thread_exit_init))
|
134 |
|
|
GTM_fatal("Initializing thread release TLS key failed.");
|
135 |
|
|
// Any non-null value is sufficient to trigger destruction of this
|
136 |
|
|
// transaction when the current thread terminates.
|
137 |
|
|
if (pthread_setspecific(thr_release_key, this))
|
138 |
|
|
GTM_fatal("Setting thread release TLS key failed.");
|
139 |
|
|
}
|
140 |
|
|
|
141 |
|
|
static inline uint32_t
|
142 |
|
|
choose_code_path(uint32_t prop, abi_dispatch *disp)
|
143 |
|
|
{
|
144 |
|
|
if ((prop & pr_uninstrumentedCode) && disp->can_run_uninstrumented_code())
|
145 |
|
|
return a_runUninstrumentedCode;
|
146 |
|
|
else
|
147 |
|
|
return a_runInstrumentedCode;
|
148 |
|
|
}
|
149 |
|
|
|
150 |
|
|
uint32_t
|
151 |
|
|
GTM::gtm_thread::begin_transaction (uint32_t prop, const gtm_jmpbuf *jb)
|
152 |
|
|
{
|
153 |
|
|
static const _ITM_transactionId_t tid_block_size = 1 << 16;
|
154 |
|
|
|
155 |
|
|
gtm_thread *tx;
|
156 |
|
|
abi_dispatch *disp;
|
157 |
|
|
uint32_t ret;
|
158 |
|
|
|
159 |
|
|
// ??? pr_undoLogCode is not properly defined in the ABI. Are barriers
|
160 |
|
|
// omitted because they are not necessary (e.g., a transaction on thread-
|
161 |
|
|
// local data) or because the compiler thinks that some kind of global
|
162 |
|
|
// synchronization might perform better?
|
163 |
|
|
if (unlikely(prop & pr_undoLogCode))
|
164 |
|
|
GTM_fatal("pr_undoLogCode not supported");
|
165 |
|
|
|
166 |
|
|
tx = gtm_thr();
|
167 |
|
|
if (unlikely(tx == NULL))
|
168 |
|
|
{
|
169 |
|
|
// Create the thread object. The constructor will also set up automatic
|
170 |
|
|
// deletion on thread termination.
|
171 |
|
|
tx = new gtm_thread();
|
172 |
|
|
set_gtm_thr(tx);
|
173 |
|
|
}
|
174 |
|
|
|
175 |
|
|
if (tx->nesting > 0)
|
176 |
|
|
{
|
177 |
|
|
// This is a nested transaction.
|
178 |
|
|
// Check prop compatibility:
|
179 |
|
|
// The ABI requires pr_hasNoFloatUpdate, pr_hasNoVectorUpdate,
|
180 |
|
|
// pr_hasNoIrrevocable, pr_aWBarriersOmitted, pr_RaRBarriersOmitted, and
|
181 |
|
|
// pr_hasNoSimpleReads to hold for the full dynamic scope of a
|
182 |
|
|
// transaction. We could check that these are set for the nested
|
183 |
|
|
// transaction if they are also set for the parent transaction, but the
|
184 |
|
|
// ABI does not require these flags to be set if they could be set,
|
185 |
|
|
// so the check could be too strict.
|
186 |
|
|
// ??? For pr_readOnly, lexical or dynamic scope is unspecified.
|
187 |
|
|
|
188 |
|
|
if (prop & pr_hasNoAbort)
|
189 |
|
|
{
|
190 |
|
|
// We can use flat nesting, so elide this transaction.
|
191 |
|
|
if (!(prop & pr_instrumentedCode))
|
192 |
|
|
{
|
193 |
|
|
if (!(tx->state & STATE_SERIAL) ||
|
194 |
|
|
!(tx->state & STATE_IRREVOCABLE))
|
195 |
|
|
tx->serialirr_mode();
|
196 |
|
|
}
|
197 |
|
|
// Increment nesting level after checking that we have a method that
|
198 |
|
|
// allows us to continue.
|
199 |
|
|
tx->nesting++;
|
200 |
|
|
return choose_code_path(prop, abi_disp());
|
201 |
|
|
}
|
202 |
|
|
|
203 |
|
|
// The transaction might abort, so use closed nesting if possible.
|
204 |
|
|
// pr_hasNoAbort has lexical scope, so the compiler should really have
|
205 |
|
|
// generated an instrumented code path.
|
206 |
|
|
assert(prop & pr_instrumentedCode);
|
207 |
|
|
|
208 |
|
|
// Create a checkpoint of the current transaction.
|
209 |
|
|
gtm_transaction_cp *cp = tx->parent_txns.push();
|
210 |
|
|
cp->save(tx);
|
211 |
|
|
new (&tx->alloc_actions) aa_tree<uintptr_t, gtm_alloc_action>();
|
212 |
|
|
|
213 |
|
|
// Check whether the current method actually supports closed nesting.
|
214 |
|
|
// If we can switch to another one, do so.
|
215 |
|
|
// If not, we assume that actual aborts are infrequent, and rather
|
216 |
|
|
// restart in _ITM_abortTransaction when we really have to.
|
217 |
|
|
disp = abi_disp();
|
218 |
|
|
if (!disp->closed_nesting())
|
219 |
|
|
{
|
220 |
|
|
// ??? Should we elide the transaction if there is no alternative
|
221 |
|
|
// method that supports closed nesting? If we do, we need to set
|
222 |
|
|
// some flag to prevent _ITM_abortTransaction from aborting the
|
223 |
|
|
// wrong transaction (i.e., some parent transaction).
|
224 |
|
|
abi_dispatch *cn_disp = disp->closed_nesting_alternative();
|
225 |
|
|
if (cn_disp)
|
226 |
|
|
{
|
227 |
|
|
disp = cn_disp;
|
228 |
|
|
set_abi_disp(disp);
|
229 |
|
|
}
|
230 |
|
|
}
|
231 |
|
|
}
|
232 |
|
|
else
|
233 |
|
|
{
|
234 |
|
|
// Outermost transaction
|
235 |
|
|
disp = tx->decide_begin_dispatch (prop);
|
236 |
|
|
set_abi_disp (disp);
|
237 |
|
|
}
|
238 |
|
|
|
239 |
|
|
// Initialization that is common for outermost and nested transactions.
|
240 |
|
|
tx->prop = prop;
|
241 |
|
|
tx->nesting++;
|
242 |
|
|
|
243 |
|
|
tx->jb = *jb;
|
244 |
|
|
|
245 |
|
|
// As long as we have not exhausted a previously allocated block of TIDs,
|
246 |
|
|
// we can avoid an atomic operation on a shared cacheline.
|
247 |
|
|
if (tx->local_tid & (tid_block_size - 1))
|
248 |
|
|
tx->id = tx->local_tid++;
|
249 |
|
|
else
|
250 |
|
|
{
|
251 |
|
|
#ifdef HAVE_64BIT_SYNC_BUILTINS
|
252 |
|
|
// We don't really care which block of TIDs we get but only that we
|
253 |
|
|
// acquire one atomically; therefore, relaxed memory order is
|
254 |
|
|
// sufficient.
|
255 |
|
|
tx->id = global_tid.fetch_add(tid_block_size, memory_order_relaxed);
|
256 |
|
|
tx->local_tid = tx->id + 1;
|
257 |
|
|
#else
|
258 |
|
|
pthread_mutex_lock (&global_tid_lock);
|
259 |
|
|
global_tid += tid_block_size;
|
260 |
|
|
tx->id = global_tid;
|
261 |
|
|
tx->local_tid = tx->id + 1;
|
262 |
|
|
pthread_mutex_unlock (&global_tid_lock);
|
263 |
|
|
#endif
|
264 |
|
|
}
|
265 |
|
|
|
266 |
|
|
// Run dispatch-specific restart code. Retry until we succeed.
|
267 |
|
|
GTM::gtm_restart_reason rr;
|
268 |
|
|
while ((rr = disp->begin_or_restart()) != NO_RESTART)
|
269 |
|
|
{
|
270 |
|
|
tx->decide_retry_strategy(rr);
|
271 |
|
|
disp = abi_disp();
|
272 |
|
|
}
|
273 |
|
|
|
274 |
|
|
// Determine the code path to run. Only irrevocable transactions cannot be
|
275 |
|
|
// restarted, so all other transactions need to save live variables.
|
276 |
|
|
ret = choose_code_path(prop, disp);
|
277 |
|
|
if (!(tx->state & STATE_IRREVOCABLE))
|
278 |
|
|
ret |= a_saveLiveVariables;
|
279 |
|
|
return ret;
|
280 |
|
|
}
|
281 |
|
|
|
282 |
|
|
|
283 |
|
|
void
|
284 |
|
|
GTM::gtm_transaction_cp::save(gtm_thread* tx)
|
285 |
|
|
{
|
286 |
|
|
// Save everything that we might have to restore on restarts or aborts.
|
287 |
|
|
jb = tx->jb;
|
288 |
|
|
undolog_size = tx->undolog.size();
|
289 |
|
|
memcpy(&alloc_actions, &tx->alloc_actions, sizeof(alloc_actions));
|
290 |
|
|
user_actions_size = tx->user_actions.size();
|
291 |
|
|
id = tx->id;
|
292 |
|
|
prop = tx->prop;
|
293 |
|
|
cxa_catch_count = tx->cxa_catch_count;
|
294 |
|
|
cxa_unthrown = tx->cxa_unthrown;
|
295 |
|
|
disp = abi_disp();
|
296 |
|
|
nesting = tx->nesting;
|
297 |
|
|
}
|
298 |
|
|
|
299 |
|
|
void
|
300 |
|
|
GTM::gtm_transaction_cp::commit(gtm_thread* tx)
|
301 |
|
|
{
|
302 |
|
|
// Restore state that is not persistent across commits. Exception handling,
|
303 |
|
|
// information, nesting level, and any logs do not need to be restored on
|
304 |
|
|
// commits of nested transactions. Allocation actions must be committed
|
305 |
|
|
// before committing the snapshot.
|
306 |
|
|
tx->jb = jb;
|
307 |
|
|
memcpy(&tx->alloc_actions, &alloc_actions, sizeof(alloc_actions));
|
308 |
|
|
tx->id = id;
|
309 |
|
|
tx->prop = prop;
|
310 |
|
|
}
|
311 |
|
|
|
312 |
|
|
|
313 |
|
|
void
|
314 |
|
|
GTM::gtm_thread::rollback (gtm_transaction_cp *cp, bool aborting)
|
315 |
|
|
{
|
316 |
|
|
// The undo log is special in that it used for both thread-local and shared
|
317 |
|
|
// data. Because of the latter, we have to roll it back before any
|
318 |
|
|
// dispatch-specific rollback (which handles synchronization with other
|
319 |
|
|
// transactions).
|
320 |
|
|
undolog.rollback (this, cp ? cp->undolog_size : 0);
|
321 |
|
|
|
322 |
|
|
// Perform dispatch-specific rollback.
|
323 |
|
|
abi_disp()->rollback (cp);
|
324 |
|
|
|
325 |
|
|
// Roll back all actions that are supposed to happen around the transaction.
|
326 |
|
|
rollback_user_actions (cp ? cp->user_actions_size : 0);
|
327 |
|
|
commit_allocations (true, (cp ? &cp->alloc_actions : 0));
|
328 |
|
|
revert_cpp_exceptions (cp);
|
329 |
|
|
|
330 |
|
|
if (cp)
|
331 |
|
|
{
|
332 |
|
|
// We do not yet handle restarts of nested transactions. To do that, we
|
333 |
|
|
// would have to restore some state (jb, id, prop, nesting) not to the
|
334 |
|
|
// checkpoint but to the transaction that was started from this
|
335 |
|
|
// checkpoint (e.g., nesting = cp->nesting + 1);
|
336 |
|
|
assert(aborting);
|
337 |
|
|
// Roll back the rest of the state to the checkpoint.
|
338 |
|
|
jb = cp->jb;
|
339 |
|
|
id = cp->id;
|
340 |
|
|
prop = cp->prop;
|
341 |
|
|
if (cp->disp != abi_disp())
|
342 |
|
|
set_abi_disp(cp->disp);
|
343 |
|
|
memcpy(&alloc_actions, &cp->alloc_actions, sizeof(alloc_actions));
|
344 |
|
|
nesting = cp->nesting;
|
345 |
|
|
}
|
346 |
|
|
else
|
347 |
|
|
{
|
348 |
|
|
// Roll back to the outermost transaction.
|
349 |
|
|
// Restore the jump buffer and transaction properties, which we will
|
350 |
|
|
// need for the longjmp used to restart or abort the transaction.
|
351 |
|
|
if (parent_txns.size() > 0)
|
352 |
|
|
{
|
353 |
|
|
jb = parent_txns[0].jb;
|
354 |
|
|
id = parent_txns[0].id;
|
355 |
|
|
prop = parent_txns[0].prop;
|
356 |
|
|
}
|
357 |
|
|
// Reset the transaction. Do not reset this->state, which is handled by
|
358 |
|
|
// the callers. Note that if we are not aborting, we reset the
|
359 |
|
|
// transaction to the point after having executed begin_transaction
|
360 |
|
|
// (we will return from it), so the nesting level must be one, not zero.
|
361 |
|
|
nesting = (aborting ? 0 : 1);
|
362 |
|
|
parent_txns.clear();
|
363 |
|
|
}
|
364 |
|
|
|
365 |
|
|
if (this->eh_in_flight)
|
366 |
|
|
{
|
367 |
|
|
_Unwind_DeleteException ((_Unwind_Exception *) this->eh_in_flight);
|
368 |
|
|
this->eh_in_flight = NULL;
|
369 |
|
|
}
|
370 |
|
|
}
|
371 |
|
|
|
372 |
|
|
void ITM_REGPARM
|
373 |
|
|
_ITM_abortTransaction (_ITM_abortReason reason)
|
374 |
|
|
{
|
375 |
|
|
gtm_thread *tx = gtm_thr();
|
376 |
|
|
|
377 |
|
|
assert (reason == userAbort || reason == (userAbort | outerAbort));
|
378 |
|
|
assert ((tx->prop & pr_hasNoAbort) == 0);
|
379 |
|
|
|
380 |
|
|
if (tx->state & gtm_thread::STATE_IRREVOCABLE)
|
381 |
|
|
abort ();
|
382 |
|
|
|
383 |
|
|
// Roll back to innermost transaction.
|
384 |
|
|
if (tx->parent_txns.size() > 0 && !(reason & outerAbort))
|
385 |
|
|
{
|
386 |
|
|
// If the current method does not support closed nesting but we are
|
387 |
|
|
// nested and must only roll back the innermost transaction, then
|
388 |
|
|
// restart with a method that supports closed nesting.
|
389 |
|
|
abi_dispatch *disp = abi_disp();
|
390 |
|
|
if (!disp->closed_nesting())
|
391 |
|
|
tx->restart(RESTART_CLOSED_NESTING);
|
392 |
|
|
|
393 |
|
|
// The innermost transaction is a closed nested transaction.
|
394 |
|
|
gtm_transaction_cp *cp = tx->parent_txns.pop();
|
395 |
|
|
uint32_t longjmp_prop = tx->prop;
|
396 |
|
|
gtm_jmpbuf longjmp_jb = tx->jb;
|
397 |
|
|
|
398 |
|
|
tx->rollback (cp, true);
|
399 |
|
|
|
400 |
|
|
// Jump to nested transaction (use the saved jump buffer).
|
401 |
|
|
GTM_longjmp (a_abortTransaction | a_restoreLiveVariables,
|
402 |
|
|
&longjmp_jb, longjmp_prop);
|
403 |
|
|
}
|
404 |
|
|
else
|
405 |
|
|
{
|
406 |
|
|
// There is no nested transaction or an abort of the outermost
|
407 |
|
|
// transaction was requested, so roll back to the outermost transaction.
|
408 |
|
|
tx->rollback (0, true);
|
409 |
|
|
|
410 |
|
|
// Aborting an outermost transaction finishes execution of the whole
|
411 |
|
|
// transaction. Therefore, reset transaction state.
|
412 |
|
|
if (tx->state & gtm_thread::STATE_SERIAL)
|
413 |
|
|
gtm_thread::serial_lock.write_unlock ();
|
414 |
|
|
else
|
415 |
|
|
gtm_thread::serial_lock.read_unlock (tx);
|
416 |
|
|
tx->state = 0;
|
417 |
|
|
|
418 |
|
|
GTM_longjmp (a_abortTransaction | a_restoreLiveVariables,
|
419 |
|
|
&tx->jb, tx->prop);
|
420 |
|
|
}
|
421 |
|
|
}
|
422 |
|
|
|
423 |
|
|
bool
|
424 |
|
|
GTM::gtm_thread::trycommit ()
|
425 |
|
|
{
|
426 |
|
|
nesting--;
|
427 |
|
|
|
428 |
|
|
// Skip any real commit for elided transactions.
|
429 |
|
|
if (nesting > 0 && (parent_txns.size() == 0 ||
|
430 |
|
|
nesting > parent_txns[parent_txns.size() - 1].nesting))
|
431 |
|
|
return true;
|
432 |
|
|
|
433 |
|
|
if (nesting > 0)
|
434 |
|
|
{
|
435 |
|
|
// Commit of a closed-nested transaction. Remove one checkpoint and add
|
436 |
|
|
// any effects of this transaction to the parent transaction.
|
437 |
|
|
gtm_transaction_cp *cp = parent_txns.pop();
|
438 |
|
|
commit_allocations(false, &cp->alloc_actions);
|
439 |
|
|
cp->commit(this);
|
440 |
|
|
return true;
|
441 |
|
|
}
|
442 |
|
|
|
443 |
|
|
// Commit of an outermost transaction.
|
444 |
|
|
gtm_word priv_time = 0;
|
445 |
|
|
if (abi_disp()->trycommit (priv_time))
|
446 |
|
|
{
|
447 |
|
|
// The transaction is now inactive. Everything that we still have to do
|
448 |
|
|
// will not synchronize with other transactions anymore.
|
449 |
|
|
if (state & gtm_thread::STATE_SERIAL)
|
450 |
|
|
{
|
451 |
|
|
gtm_thread::serial_lock.write_unlock ();
|
452 |
|
|
// There are no other active transactions, so there's no need to
|
453 |
|
|
// enforce privatization safety.
|
454 |
|
|
priv_time = 0;
|
455 |
|
|
}
|
456 |
|
|
else
|
457 |
|
|
gtm_thread::serial_lock.read_unlock (this);
|
458 |
|
|
state = 0;
|
459 |
|
|
|
460 |
|
|
// We can commit the undo log after dispatch-specific commit and after
|
461 |
|
|
// making the transaction inactive because we only have to reset
|
462 |
|
|
// gtm_thread state.
|
463 |
|
|
undolog.commit ();
|
464 |
|
|
// Reset further transaction state.
|
465 |
|
|
cxa_catch_count = 0;
|
466 |
|
|
cxa_unthrown = NULL;
|
467 |
|
|
restart_total = 0;
|
468 |
|
|
|
469 |
|
|
// Ensure privatization safety, if necessary.
|
470 |
|
|
if (priv_time)
|
471 |
|
|
{
|
472 |
|
|
// There must be a seq_cst fence between the following loads of the
|
473 |
|
|
// other transactions' shared_state and the dispatch-specific stores
|
474 |
|
|
// that signal updates by this transaction (e.g., lock
|
475 |
|
|
// acquisitions). This ensures that if we read prior to other
|
476 |
|
|
// reader transactions setting their shared_state to 0, then those
|
477 |
|
|
// readers will observe our updates. We can reuse the seq_cst fence
|
478 |
|
|
// in serial_lock.read_unlock() however, so we don't need another
|
479 |
|
|
// one here.
|
480 |
|
|
// TODO Don't just spin but also block using cond vars / futexes
|
481 |
|
|
// here. Should probably be integrated with the serial lock code.
|
482 |
|
|
for (gtm_thread *it = gtm_thread::list_of_threads; it != 0;
|
483 |
|
|
it = it->next_thread)
|
484 |
|
|
{
|
485 |
|
|
if (it == this) continue;
|
486 |
|
|
// We need to load other threads' shared_state using acquire
|
487 |
|
|
// semantics (matching the release semantics of the respective
|
488 |
|
|
// updates). This is necessary to ensure that the other
|
489 |
|
|
// threads' memory accesses happen before our actions that
|
490 |
|
|
// assume privatization safety.
|
491 |
|
|
// TODO Are there any platform-specific optimizations (e.g.,
|
492 |
|
|
// merging barriers)?
|
493 |
|
|
while (it->shared_state.load(memory_order_acquire) < priv_time)
|
494 |
|
|
cpu_relax();
|
495 |
|
|
}
|
496 |
|
|
}
|
497 |
|
|
|
498 |
|
|
// After ensuring privatization safety, we execute potentially
|
499 |
|
|
// privatizing actions (e.g., calling free()). User actions are first.
|
500 |
|
|
commit_user_actions ();
|
501 |
|
|
commit_allocations (false, 0);
|
502 |
|
|
|
503 |
|
|
return true;
|
504 |
|
|
}
|
505 |
|
|
return false;
|
506 |
|
|
}
|
507 |
|
|
|
508 |
|
|
void ITM_NORETURN
|
509 |
|
|
GTM::gtm_thread::restart (gtm_restart_reason r, bool finish_serial_upgrade)
|
510 |
|
|
{
|
511 |
|
|
// Roll back to outermost transaction. Do not reset transaction state because
|
512 |
|
|
// we will continue executing this transaction.
|
513 |
|
|
rollback ();
|
514 |
|
|
|
515 |
|
|
// If we have to restart while an upgrade of the serial lock is happening,
|
516 |
|
|
// we need to finish this here, after rollback (to ensure privatization
|
517 |
|
|
// safety despite undo writes) and before deciding about the retry strategy
|
518 |
|
|
// (which could switch to/from serial mode).
|
519 |
|
|
if (finish_serial_upgrade)
|
520 |
|
|
gtm_thread::serial_lock.write_upgrade_finish(this);
|
521 |
|
|
|
522 |
|
|
decide_retry_strategy (r);
|
523 |
|
|
|
524 |
|
|
// Run dispatch-specific restart code. Retry until we succeed.
|
525 |
|
|
abi_dispatch* disp = abi_disp();
|
526 |
|
|
GTM::gtm_restart_reason rr;
|
527 |
|
|
while ((rr = disp->begin_or_restart()) != NO_RESTART)
|
528 |
|
|
{
|
529 |
|
|
decide_retry_strategy(rr);
|
530 |
|
|
disp = abi_disp();
|
531 |
|
|
}
|
532 |
|
|
|
533 |
|
|
GTM_longjmp (choose_code_path(prop, disp) | a_restoreLiveVariables,
|
534 |
|
|
&jb, prop);
|
535 |
|
|
}
|
536 |
|
|
|
537 |
|
|
void ITM_REGPARM
|
538 |
|
|
_ITM_commitTransaction(void)
|
539 |
|
|
{
|
540 |
|
|
gtm_thread *tx = gtm_thr();
|
541 |
|
|
if (!tx->trycommit ())
|
542 |
|
|
tx->restart (RESTART_VALIDATE_COMMIT);
|
543 |
|
|
}
|
544 |
|
|
|
545 |
|
|
void ITM_REGPARM
|
546 |
|
|
_ITM_commitTransactionEH(void *exc_ptr)
|
547 |
|
|
{
|
548 |
|
|
gtm_thread *tx = gtm_thr();
|
549 |
|
|
if (!tx->trycommit ())
|
550 |
|
|
{
|
551 |
|
|
tx->eh_in_flight = exc_ptr;
|
552 |
|
|
tx->restart (RESTART_VALIDATE_COMMIT);
|
553 |
|
|
}
|
554 |
|
|
}
|